Discover
IEE 475: Simulating Stochastic Systems

IEE 475: Simulating Stochastic Systems
Author: Theodore P. Pavlic
Subscribed: 7Played: 188Subscribe
Share
© Copyright (c) 2019 by Theodore P. Pavlic
Description
Archived lectures from IEE 475 (Simulating Stochastic System) given by Ted Pavlic at Arizona State University. A course on discrete event system simulation focused on Industrial Engineering undergraduate students or others learning to use good simulation methodologies.
135 Episodes
Reverse
In this lecture, we first cover some discrete distributions (and the Poisson process) that we ran out of time for during the previous lecture. We then launch into a discussion of how to generate pseudo-random numbers distributed uniformly between 0 and 1 (which are necessary for us to easily generate random variates of any distribution). We talk about the two most important properties of a pseudo-random number generator (PRNG), uniformity and independence. We then talk about desirable properties. Some examples are given of some early PRNG's, and then we introduce the linear congruential generator (LCG) and its variants (like the Combined Linear Congruential Generator, CLCG), which represent a much more modern PRNG that has a number of good properties. We close with a discussion of tests of uniformity. We will continue this discussion and add on tests for independence during next lecture (which will primarily cover random-VARIATE generation).
In this lecture, we review basic probability fundamentals (measure spaces, probability measures, random variables, probability density functions, probability mass functions, cumulative distribution functions, moments, mean/expected value/center of mass, standard deviation, variance), and then we start to build a vocabulary of different probabilistic models that are used in different modeling contexts. These include uniform, triangular, normal, exponential, Erlang-k, Weibull, and Poisson variables. We will finish the discussing next time with the Bernoulli-based discrete variables and Poisson processes.
In this lecture, we introduce the measure-theoretic concept of a random variable (which is neither random nor a variable) and related terms, such as outcomes, events, probability measures, moments, means, etc. Throughout the lecture, we use the metaphor of probability as mass (and thus probability density as mass density, and a mean as a center of mass). This allows us to discuss the "statistical leverage" of outliers in a distribution (i.e., although they happen infrequently, they still have the ability to shift the mean significantly, as in physical leverage). This sets us up to talk about random processes and particular random variables in the next lecture.
This lecture provides some historical background and motivation for System Dynamics Modeling (SDM) and Agent-Based Modeling (ABM), two other simulation modeling approaches that contrast with Discrete Event System (DES) simulation.In particular, in this lecture, we briefly introduce System Dynamics Modeling (SDM) and Agent-Based/Individual-Based Modeling (ABM/IBM) as the two ends of the simulation modeling spectrum (from low resolution to high resolution). The introduction of ABM describes applications in life sciences, social sciences, and engineering (Multi-Agent Systems, MAS)/operations research. NetLogo is introduced, and it is used to present examples of running ABM's as well as the code behind them. This lecture is also be coupled with notes discussing the Lab 3 (Monte Carlo simulation) results and general experience. These comments focus on interval estimation (which is right 95% of the time, as opposed to point estimation that is right 0% of the time) and the role of non-trivial distributions of random variables (as opposed to just their means).
This lecture covers content related to implementing simulations with spreadsheets and the motivations for the use of special-purpose Discrete Event System Simulation tools. In particular, we discuss different approaches to implementing Discrete Event System (DES) simulations (DESS) with simple spreadsheets (e.g., Microsoft Excel, Google Sheets, Apple Numbers, etc.). We cover inventory management problems (such as the newsvendor model) as well as Monte Carlo sampling and stochastic activity networks (SAN's). Although we show that spreadsheets can be very powerful for this kind of work, we highlight that this approach is cumbersome for systems with increasing complexity. So this motivates why we would use more sophisticated tools specifically built for simulation (but perhaps not so great for data analysis by themselves), like Arena, FlexSim, Simio, and NetLogo.
In this lecture, we close out our review of DES fundamentals and hand simulation. After going through a hand-simulation example one last time, we show how to implement a Discrete Event System (DES) simulation using a spreadsheet tool like Microsoft Excel without any "macros" (VBA, etc.). This involves defining relationships ACROSS TIME that allow the spreadsheet to (in a declarative fashion) reconstruct the trajectory that is the output of the simulation.At the end of the lecture, we pivot to discussing the previous "Lab 2 (Muffin Oven Simulation)", which lets us introduce common random numbers (CRNs), statistical blocking, requirements of 2-sample and paired t-tests, and more sophisticated statistical methods that better characterize PRACTICAL significance (and take into account the multiple comparisons problem). Thus, the post-lab2 reflections are largely a preview of future topics in the course.
In this lecture, we review fundamentals of Discrete Event System (DES) simulation (e.g., entities, resources, activities, processes, delays, attributes) and we run through a number of DES modeling examples. These examples show how different research/operations questions can lead to different choices of entities/resources/etc. We close with a hand-simulation example of a single-channel, single-server queue with provided interarrival times and service times.
In this lecture, we cover fundamentals of discrete-event system (DES) simulation (DESS). This involves reviewing basic simulation concepts (entities, resources, attributes, events, activities, delays) and introducing the event-scheduling world view, which provides a causality framework on which an automatic simulation of a DES system can be built. We also discuss briefly how the stochastic modeling inherent to DESS means that outputs will be variable and thus will require rigorous statistics to make sense of.
In this lecture, we introduce the three different simulation methodologies (agent-based modeling, system dynamics modeling, and discrete event system simulation) and then focus on how stochastic modeling is used within discrete-event system simulation. In particular, we define terms such as system, dynamic system, state, state variable, activity, delay, resource, entity, and the notion of "input modeling."
In this lecture, we introduce Industrial and Systems Engineering as a blend of science and engineering that necessitates model building. We then define model (as something that answers a "What If" question) and different types of models. This gives us an opportunity to discuss how modeling is less about describing reality and more about generating tools to do useful things/make useful predictions. We end with a comparison of mental and quantitative models, as well as a comparison of different types of quantitative models (including simulation modeling).
This lecture introduces students to IEE 475 (Simulating Stochastic Systems), a required course for Industrial Engineering majors that covers the design and analysis of simulation models of real-world engineered systems. The lecture covers contents of the syllabus as well as where students can find more information in the Canvas Learning Management System site for the course.
In this lecture, we prepare for the final exam and give a brief review of all topics from the course. Students are encouraged to bring their own questions so that the focus of the class is on the topics that students feel they need the most help with.
In this lecture, we wrap up the course content in IEE 475. We first do a quick overview of the four variance reduction techniques (VRT's) covered in Unit K. That is, we cover: common random numbers (CRN's), antithetic variates (AV's), importance sampling, and control variates. We then remember some general comments about the goal of modeling and commonalities seen across simulation platforms (as well as the different types of simulation platforms in general).
In this lecture, we review four different Variance Reduction Techniques (VRT's). Namely, we discuss common random numbers (CRNs), control variates, antithetic variates (AVs), and importance sampling. Each one of these is a different approach to reducing the variance in the estimation of relative or absolute performance of a simulation model. Variance reduction is an alternative way to increase the power of a simulation that is hopefully less costly than increasing the number of replications.
In this lecture, we start by reviewing approaches for absolute and relative performance estimation in stochastic simulation. This begins with a reminder of the use of confidence intervals for estimation of performance for a single simulation model. We then move to different ways to use confidence intervals on mean DIFFERENCES to compare two different simulation models. We then move to the ranking and selection problem for three or more different simulation models, which allows us to talk about analysis of variance (ANOVA) and post hoc tests (like the Tukey HSD or Fisher's LSD). After that review, we move on to introducing variance reduction techniques (VRTs) which reduce the size of confidence intervals by experimentally controlling/accounting for alternative sources of variance (and thus reducing the observed variance in response variables). We discuss Common Random Numbers (CRNs), which use a paired/blocked design to reduce the variance caused by different random-number streams. We start to discuss control variates (CVs), but that discussion will be picked up at the start of the next lecture.
In this lecture, we review what we have learned about one-sample confidence intervals (i.e., how to use them as graphical versions of one-sample t-tests) for absolute performance estimation in order to motivate the problem of relative performance estimation. We introduce two-sample confidence intervals (i.e., confidence intervals on DIFFERENCES based on different two-sample t-tests) that are tested against a null hypothesis of 0. This means covering confidence interval half widths for the paired-difference t-test, the equal-variance (pooled) t-test, and Welch's unequal variance t-test. Each of these different experimental conditions sets up a different standard error of the mean formula and formula for degrees of freedom that are used to define the actual confidence interval half widths (centered on the difference in sample means in the pairwise comparison of systems). We then generalize to the case of more than 2 systems, particularly for "ranking and selection (R&S)." This lets us review the multiple-comparisons problem (and Bonferroni correction) and how post hoc tests (after an ANOVA) are more statistically powerful ways to do comparisons.
In this lecture, we start by further reviewing confidence intervals (where they come from and what they mean) and prediction intervals and then use them to motivate a simpler way to determine how many replications are needed in a simulation study (focusing first on transient simulations of terminating systems). We then shift our attention to steady-state simulations of non-terminating systems and the issue of initialization bias. We discuss different methods of "warming up" a steady-state simulation to reduce initialization bias and then merge that discussion with the prior discussion on how to choose the number of replications. In the next lecture, we'll finish up with a discussion of the method of "batch means" in steady-state simulations.
In this lecture, we review estimating absolute performance from simulation, with focus on choosing the number of necessary replications of transient simulations of terminating systems. The lecture starts by overviewing point estimation, bias, and different types of point estimators. This includes an overview of quantile estimation and how to use quantile estimation to use simulations as null-hypothesis-prediction generators. We the introduce interval estimation with confidence intervals and prediction intervals. Confidence intervals, which are visualizations of t-tests, provide an alternative way to choose the number of required replications without doing a formal power analysis.
In this lecture, we introduce the estimation of absolute performance measures in simulation – effectively shifting our focus from validating input models to validating and making inferences about simulation outputs. Most of this lecture is a review of statistics and reasons for the assumptions for various parametric and non-exact non-parametric methods. We also introduce a few more advanced statistical topics, such as non-parametric methods and special high-power tests for normality. We then switch to focusing on simulations and their outputs, starting with the definition of terminating and non-terminating systems as well as the related transient and steady-state simulations. We will pick up next time with discussing details related to performance measures (and methods) for transient simulations next time and steady-state simulations after that. Our goal was to discuss the difference between point estimation and interval estimation for simulation, but we will hold off to discuss that topic in the next lecture.
In this lecture, we review statistical fundamentals – such as the origins of the t-test, the meaning of type-I and type-II error (and alternative terminology for both, such as false positive rate and false negative rate) and the connection to statistical power (sensitivity). We review the Receiver Operating Characteristic (ROC) curve and give a qualitative description of where it gets its shape in a hypothesis test. We close with a validation example (from Lecture H) where we use a power analysis on a one-sample t-test to help justify whether we have gathered enough data to trust that a simulation model is a good match for reality when it has a similar mean output performance to the real system.