DiscoverIowa Type Theory Commute
Iowa Type Theory Commute
Claim Ownership

Iowa Type Theory Commute

Author: Aaron Stump

Subscribed: 41Played: 1,629
Share

Description

Aaron Stump talks about type theory, computational logic, and related topics in Computer Science on his short commute.
178 Episodes
Reverse
To solve the problem raised in the last episode, I propose schematic affine recursion. We saw that affine lambda calculus (where lambda-bound variables are used at most once) plus structural recursion does not enforce termination, even if you restrict the recursor so that the function to be iterated is closed when you reduce ("closed at reduction"). You have to restrict it so that recursion terms are disallowed entirely unless the function to be iterated is closed ("closed at cons...
In this episode, I shoot down last episode's proposal -- at least in the version I discussed -- based on an amazing observation from an astonishing paper, "Gödel’s system T revisited", by Alves, Fernández, Florido, and Mackie. Linear System T is diverging, as they reveal through a short but clever example. It is even diverging if one requires that the iterator can only be reduced when the function to be iterated is closed (no free variables). This extraordinary observation d...
In this episode, I discuss an intriguing idea proposed by Victor Taelin, to base a logically sound type theory on an untyped but terminating language, upon which one may then erect as exotic a type system as one wishes. By enforcing termination already for the untyped language, we no longer have to make the type system do the heavy work of enforcing termination.
I correct what I said in the last episode about the author of the proof of FD from last episode based on intersection types. I also describe AI flopping when I ask it a question about this.
Krivine's book (Section 4.2) has a proof of the Finite Developments Theorem, based on intersection types. I discuss this proof in this episode.
I discuss the paper "A Direct Proof of the Finite Developments Theorem", by Roel de Vrijer. See also the write-up at my blog.
The finite developments theorem in pure lambda calculus says that if you select as set of redexes in a lambda term and reduce only those and their residuals (redexes that can be traced back as existing in the original set), then this process will always terminate. In this episode, I discuss the theorem and why I got interested in it.
Nominal Isabelle/HOL

Nominal Isabelle/HOL

2025-01-3116:18

In this episode, I discuss the paper Nominal Techniques in Isabelle/HOL, by Christian Urban. This paper shows how to reason with terms modulo alpha-equivalence, using ideas from nominal logic. The basic idea is that instead of renamings, one works with permutations of names.
I discuss what is called the locally nameless representation of syntax with binders, following the first couple of sections of the very nicely written paper "The Locally Nameless Representation," by Charguéraud. I complain due to the statement in the paper that "the theory of λ-calculus identifies terms that are α-equivalent," which is simply not true if one is considering lambda calculus as defined by Church, where renaming is an explicit reduction step, on a par with beta-reduction.&n...
I continue the discussion of POPLmark Reloaded , discussing the solutions proposed to the benchmark problem. The solutions are in the Beluga, Coq (recently renamed Rocq), and Agda provers.
I discuss the paper POPLmark Reloaded: Mechanizing Proofs by Logical Relations, which proposes a benchmark problem for mechanizing Programming Language theory.
In this episode, I begin discussing the question and history of formalizing results in Programming Languages Theory using interactive theorem provers like Rocq (formerly Coq) and Agda.
In this episode, I describe the first proof of normalization for STLC, written by Alan Turing in the 1940s. See this short note for Turing's original proof and some historical comments.
In this episode, after a quick review of the preceding couple, I discuss the property of normalization for STLC, and talk a bit about proof methods. We will look at proofs in more detail in the coming episodes. Feel free to join the Telegram group for the podcast if you want to discuss anything (or just email me at aaron.stump@gmail.com).
Like addition and multiplication on Church-encoded numbers, exponentiation can be assigned a type in simply typed lambda calculus (STLC). But surprisingly, the type is non-uniform. If we abbreviate (A -> A) -> A -> A as Nat_A, then exponentiation, which is defined as \ x . \ y . y x, can be assigned type Nat_A -> Nat_(A -> A) -> Nat_A. The second argument needs to have type at strictly higher order than the first argument. This has the fascinating con...
It is maybe not so well known that arithmetic operations -- at least some of them -- can be implemented in simply typed lambda calculus (STLC). Church-encoded numbers can be given the simple type (A -> A) -> A -> A, for any simple type A. If we abbreviate that type as Nat_A, then addition and multiplication can both be typed in STLC, at type Nat_A -> Nat_A -> Nat_A. Interestingly, things change with exponentiation, which we will consider in the next episode.
I review the typing rules and some basic examples for STLC. I also remind listeners of the Curry-Howard isomorphism for STLC.
In this episode, after a pretty long hiatus, I start a new chapter on simply typed lambda calculus. I present the typing rules and give some basic examples. Subsequent episodes will discuss various interesting nuances...
This episode presents two somewhat more advanced examples in DCS. They are Harper's continuation-based regular-expression matcher, and Bird's quickmin, which finds the least natural number not in a given list of distinct natural numbers, in linear time. I explain these examples in detail and then discuss how they are implemented in DCS, which ensures that they are terminating on all inputs.
In this episode, I continue introducing DCS by comparing it to termination checkers in constructive type theories like Coq, Agda, and Lean. I warmly invite ITTC listeners to experiment with the tool themselves. The repo is here.
loading
Comments