DiscoverSmart City
Smart City
Claim Ownership

Smart City

Author: Radio 24

Subscribed: 4,742Played: 132,048
Share

Description

Il drammatico uno-due della pandemia seguita dal conflitto in Ucraina ha contribuito dolorosamente a un passaggio culturale importante, facendoci finalmente realizzare che la transizione ecologica è uno strumento per conseguire una maggiore indipendenza dalle importazioni di materie prime, energia e semilavorati, da cui le economie europee sono estremamente indipendenti. Le soluzioni proprie della crisi ecologica (dalle fonti rinnovabili al ciclo idrico integrato, dall'economia circolare alla fusione nucleare) si rivelano infatti essere ciò che serve per affrontare la crisi geo-politica, energetica ed economica che ci attanaglia.Lo speciale estivo di Smart City "La transizione ecologica in tempo di crisi" racconta i punti di contatto tra le crisi del nostro tempo, e la ricerca di possibili soluzioni comuni, affrontando temi quali la gestione dell'acqua, le opportunità offerte dalle energie forestali e marine, le sfide dei sistemi di stoccaggio energetico sostenibili e della fusione nucleare.

Scopri il podcast originale  Smart City XL 

559 Episodes
Reverse
La Formula 1 più veloce potrebbe presto essere quella elettrica. La velocità di punta delle Formula 1 elettriche di quarta generazione - cioè quelle che inizieranno a gareggiare a partire dal prossimo campionato di Formula E - sarà di circa 350km/h contro i 370 delle Formula 1 a combustione, ma cresce molto più rapidamente ed è ormai opinione diffusa degli esperti che presto ci sarà il sorpasso. La prossima generazione di Formula 1 elettriche, infatti, potrà generare da regolamento 600 chilowatt di potenza, pari a circa 815 cavalli, contro i 350 attuali, che pure già rendono le Formula E di terza generazione in grado di accelerare del 30% più rapidamente di quelle convenzionali. Insomma, sarà lecito attendersi questo sorpasso sul giro più veloce. Ma nessuna Formula E di quarta generazione sarà ancora in grado di battere una Formula 1 sulla lunghezza standard di un gran premio, dove la densità energetica dei combustibili rimane, ancora per il momento, insuperabile. Ne parliamo con Matteo Corno, professore di Sistemi di Controllo presso il Dipartimento di Elettronica del Politecnico di Milano.
È possibile che l'Italia ospiti giacimenti di idrogeno naturale? Detto anche idrogeno bianco o idrogeno geologico, la sua esistenza è una scoperta relativamente recente. È idrogeno che si produce con continuità nelle profondità della terra, per lo più in seguito a reazioni chimiche tra minerali di ferro e acqua calda. Questo il ferro incontra l'acqua, si ossida trasformandosi in ruggine e liberando idrogeno, che inizia a risalire attraverso la crosta terrestre e nel corso del tragitto può incontrare trappole che ne favoriscono l'accumulo. Questi contesti geologici sono l'opposto di quelli in cui ci si aspetta di trovare petrolio. Un aspetto importante per paesi che, come l'Italia, non hanno petrolio, ma hanno in compenso un'attività geologica intensa. NHeat -Natural Hydrogen for Energy trAnsiTion è il primo progetto di ricerca in Italia dedicato alla ricerca dell'idrogeno naturale. E ne parliamo con Chiara Boschi, prima ricercatrice del l'Istituto di Geoscienze e Georisorse del CNR e leader di NHeat.
Torniamo a parlare di un protagonista recentissimo della transizione energetica, inatteso e potenzialmente rivoluzionario: l'idrogeno naturale. Solo da pochi anni, infatti, si è iniziato a prendere sul serio la possibilità, prima esclusa categoricamente, che il sottosuolo potesse ospitare quantità significative di idrogeno naturale, detto anche idrogeno geologico o idrogeno bianco. Una semplice curiosità scientifica si è quindi trasformata negli anni in oggetto di importanti investimenti in paesi come la Francia, gli USA, l'Australia e il Canada. Il Mali, invece, ospita i primo giacimento sfruttato di idrogeno naturale, nonché il primo ad essere scoperto per puro caso. Facciamo il punto della situazione nel mondo, con l'aiuto di Chiara Boschi, prima ricercatrice del l'Istituto di Geoscienze e Georisorse del CNR.
Circa il 30% della biomassa vegetale è composto da lignina, il più abbondante biopolimero presente in natura dopo la cellulosa, che conferisce rigidità al legno e ai tessuti vegetali. E' una delle risorse rinnovabili più abbondanti al mondo, ma anche una delle meno sfruttate, a causa della composizione chimica complessa e variabile. Benché si tratti di un polimero formato da composti molto preziosi, almeno 50 milioni di tonnellate di lignina vengono prodotte ogni anno dall'industria della carta e della cellulosa e utilizzate quasi esclusivamente come combustibile. Negli ultimi anni la ricerca ha tuttavia sviluppato enzimi in grado di scomporre la lignina in modo controllato e trasformarla in prodotti chimici di valore. La tecnologia è matura a livello di laboratorio e promette di essere economicamente sostenibile. Ora tocca all'industria compiere il prossimo passo. Ne parliamo con Elena Rosini, professoressa di Bio-Chimica dell'Università dell'Insubria - Laboratorio The Protein Factory 2.0.
Domani, l'Università Federico II di Napoli inaugurerà il primo Quantum Internet Testbed, infrastruttura di ricerca avanzata, concepita come un laboratorio aperto dedicato a sviluppare nuove soluzioni e tecnologie per dare vita a reti di telecomunicazioni quantistiche capaci di coesistere con il traffico dati classico. Due infrastrutture in una: questa è l'idea su cui i ricercatori della Federico II lavoreranno insieme a colleghi che ospiteranno da tutto il Paese. Lanciato grazie al programma RESTART, finanziato grazie a fondi PNRR, il nuovo laboratorio si caratterizza per un approccio fortemente ingegneristico. L'obiettivo è portare le tecnologie fuori dai laboratori, motivo per cui si lavorerà non solo su HW, ma anche su SW, cercando di sviluppare dei primi standard per reti di telecomunicazioni miste, classiche e quantistiche. Ce ne parla Marcello Caleffi, professore di Comunicazioni Quantistiche alla Federico II di Napoli.
Quello delle capsule intelligenti è un filone in forte sviluppo negli ultimi anni, su cui la ricerca medica punta per aprire nuove prospettive nella cura dell'apparato digerente. C'è tutto un armamentario in via di sviluppo: capsule che, una volta ingerite, permettono di eseguire in modo non invasivo una gastroscopia, o di monitorare vari parametri chimici lungo il tragitto; capsule che trasportano i farmaci e li rilasciano nel punto giusto del sistema digerente; o addirittura - come nel caso di questa puntata - una capsula ingeribile capace di trovare un'ulcera intestinale e di trasformandosi in un cerotto che aderisce alla lesione e ne aiuta la guarigione. Ce lo racconta Carmelo De Maria, professore di Bioingegneria all'Università di Pisa.
Solo da pochi anni disponiamo di mezzi come la potenza di calcolo o gli strumenti di Intelligenza Artificiale, per studiare le proteine in modo sistematico e comprenderne la funzione. Questi recentissimi progressi hanno spalancato un mondo di possibili applicazioni per la Medicina e di strumenti di indagine per la Biologia. E ora un gruppo di ricercatori dell'Università di Pisa, in collaborazione con la Scuola Superiore Meridionale di Napoli, ha sviluppato uno strumento ancora più potente: una sorta di rappresentazione "zippata" delle proteine che promette un altro salto di scala nella nostra capacità di confrontare e analizzare le proteine, come per esempio la ricerca di mutazioni pericolose. Ce ne parla Tiziano Tuccinardi, docente del Dipartimento di Farmacia dell'Ateneo Pisano e coordinatore dello studio.
Un gel per rigenerare le lesioni ossee più gravi, quelle che oggi non trovano soluzioni terapeutiche, come i danni da osteoporosi e le lesioni causate da gravi fratture o da tumori ossei rimossi chirurgicamente. Questo è l'obiettivo del progetto STARBONE, finanziato dal MIUR tramite il Fondo Italiano per la Ricerca. Il gel, elettricamente conduttivo e destinato a bio-degradarsi completamente, verrebbe semplicemente iniettato in corrispondenza delle lesioni; e creando, grazie a speciali nano-particelle, un ambiente altamente favorevole all'insediamento di nuove cellule del tessuto osseo, ne favorirebbe la rigenerazione. Ne parliamo con Anna Mariano, Post-doc presso l'Istituto per i Polimeri, Compositi e Biomateriali del CNR.
Pilotare una macchina col pensiero: un robot o magari un avatar in un videogioco; oppure un dispositivo per la riabilitazione dopo un incidente. Sono esempi di possibili applicazioni "brain to computer" (letteralmente "dal cervello al computer"). Infatti è sufficiente immaginare di compiere un gesto perché il nostro cervello si attivi, predisponendosi a dare ai muscoli i comandi necessari a compiere tutti i movimenti. Un po' come quando un computer carica il software prima di eseguirlo; oggi sappiamo leggere questo software direttamente dal cervello. Ma farlo è complicato. Un nuovo metodo sviluppato dal Cognition in Action Lab dell'Università Statale di Milano, chiamato MultiMEP, permette invece di decodificare le azioni immaginate dal cervello in modo più semplice, attraverso i muscoli. Le possibili applicazioni sono, prima di tutto, nel settore medico e sportivo. Ce ne parla Guido Barchiesi, professore del Dipartimento di Filosofia dell'Università Statale di Milano.
Più alberi e più foreste non comportano necessariamente un clima più fresco. Lo dice uno studio guidato dall'ETH di Zurigo, con cui ha collaborato anche l'Istituto per i sistemi agricoli e forestali del Mediterraneo del Consiglio Nazionale delle Ricerche di Perugia. Lo studio mostra come l'effetto delle foreste sulla temperatura locale possa variare in base alle specie arboree. Se infatti tutte le specie vegetali contribuiscono a sequestrare CO2 dall'atmosfera, e quindi a mitigare il riscaldamento globale, non si può dire la stessa cosa del loro effetto sul microclima locale. Tra gli alberi, i faggi garantiscono per esempio un clima più fresco degli abeti rossi, che con le loro chiome dense e scure assorbono tutta la luce. Questa ricerca è rilevante perché ci indica una strada per rendere più efficace la gestione forestale là dove si attuano politiche di rimboschimento, di verde urbano, e nelle attività di silvicoltura. Ne parliamo con Alessio Collalti, primo ricercatore responsabile del Laboratorio di Modellistica Forestale del CNR Isafom.
Il crollo del Ponte Morandi ha acceso l'attenzione sulla possibilità di dotare le grandi infrastrutture di sistemi di monitoraggio in tempo reale, che possano monitorarne lo stato di salute e segnalare eventuali problemi con largo anticipo, ben prima che possano verificarsi cedimenti catastrofici. Le cose stanno ora cambiando, complice anche lo sviluppo, negli ultimi anni, di nuove soluzioni che permettono di dotare le infrastrutture di sensori in modo agile. Molte delle soluzioni che esistevano fino a solo pochi anni fa, infatti, erano lunghe e complesse da installare. Oggi, possiamo dire che non ci sono più scuse. Un esempio ci è offerto dalla start-up Displaid, che ha da poco chiuso un round di finanziamento da 1,2 milioni di euro. Nata da esperienze fatte tra Politecnico di Milano e MIT di Boston, ha sviluppato un sistema di sensori che può essere installato in poche ore senza nemmeno fermare il traffico. Ne parliamo con Lorenzo Benedetti, Founder e Ceo di Displaid.
Generare sequenze di numeri veramente casuali, cioè così causali da essere completamente impredicibili e imprevedibili è dannatamente difficile. Questo perché, per poter funzionare, gli algoritmi di crittografia su cui è basata la sicurezza informatica hanno bisogno di sequenze di numeri casuali impredicibili. Random Power, spin-off dell'Università dell'Insubria di Como e dell'Università di Scienza e Tecnologia di Cracovia, ha messo a punto un dispositivo nato da anni di ricerca sulle particelle subatomiche al CERN, una sorta di "lancia-monete quantistico" sotto forma di un chip convenzionale, facilmente integrabile nell'elettronica esistente, in grado di generare sequenze di numeri del tutto impossibili da prevedere. Ne parliamo con Massimo Caccia, professore di Fisica delle Particelle all'Università dell'Insubria.
Manca una manciata di settimane all'avvio dei giochi Olimpici Invernali di Milano-Cortina, ma è già tempo per i primi bilanci. Anche grazie allo stimolo della società civile, le Olimpiadi Invernali si sono caratterizzate per il tentativo di applicare in modo sistematico a un vasto piano di opere pubbliche una serie di innovazioni amministrative e strumenti digitali con l'obiettivo di coniugare rapidità, legalità e trasparenza. Il portale Open Milano Cortina 2026 ha, per esempio, permesso per la prima volta un monitoraggio effettivo da parte dell'opinione pubblica, sull'avanzamento delle opere, i rispettivi autori e i corrispondenti costi ed impatti. E seppure imperfetto e ancora privo di alcune informazioni rilevanti, rappresenta un passo avanti non da poco rispetto al passato. Tra gli esperimenti più interessanti c'è stata l'introduzione di alcuni strumenti di IA per monitorare i lavori e contrastare il rischio di infiltrazione nei cantieri, tra cui un chatbot a disposizione delle forze dell'ordine che permette loro di ottenere rapidamente numeri, tabelle e informazioni sintetiche di vario tipo.Ospite Veronica Vecchi, professoressa di Relazioni pubblico private alla School of Management dell'Università Bocconi; Presidente del Consiglio di Amministrazione di SiMICO - Società Infrastrutture Milano Cortina 2020 - 2026 S.p.A
A cosa può servire un contatore di atomi capace di enumerarli uno a uno anche quando sono riuniti in piccoli gruppi? Per esempio, a dar vita a nuovi orologi atomici, computer quantistici e simulatori quantistici. Può avere diverse funzionalità, in un momento storico in cui moltissime prospettive di sviluppo, tanto nella ricerca di base che nella ricerca applicata, convergono verso la capacità di manipolare gli atomi singolarmente. Un notizia è che al Laboratorio ArQuS - laboratorio congiunto tra l'Università di Trieste e l'Istituto Nazionale di Ottica del CNR, per la prima volta dei ricercatori sono riusciti a intrappolare, fotografare e contare singoli atomi con con una metodologia che potrebbe aprire la strada ad applicazioni concrete, basata su pinze e manipolatori fatti letteralmente di luce. I risultati degli studi condotti  al Laboratorio ArQuS sono stati pubblicati su Quantum Science and Technology e Physical Review Letters.Ospite Francesco Scazza, professore di Fisica della Materia all'Università di Trieste, direttore del Laboratorio ArQuS.
Abbiamo appena imparato - si fa per dire - a familiarizzare col "qubit", l'unità fondamentale su cui si basa il calcolo quantistico, che già ci tocca fare i conti col fratello maggiore, il "qudit" - con la "D" di "Domodossola". Il qudit sta al qubit come il bit classico sta al byte, l'unità fondamentale di memoria che contiene 8 bit e che perciò può assumere 256 valori diversi, anziché solo due (0 o 1) come il semplice bit. La metafora rende l'idea dell'obiettivo a cui si punta: una specie di super qubit che possa rappresentare un'informazione più complessa, verrebbe da dire multidimensionale, rispetto a quanto già esiste. Perché il problema è proprio qui. I qubit bene o male abbiamo imparato a fabbricarli, mentre i qudit ancora no, e non manca chi pensa che senza qudit non arriveremo mai a computer quantistici come quelli di cui sentiamo spesso parlare.Ospite Francesco Scazza, professore di Fisica della Materia all'Università di Trieste, direttore del Laboratorio ArQuS.
Da tempo a Smart City teniamo d'occhio i numerosi tentativi di trovare qualcosa di più pratico degli odierni computer su cui far girare le reti neurali, ispirate alla struttura del cervello e alla base del recente successo dell'IA. L'architettura interna dei moderni computer è il contrario di una rete neurale, e infatti la simulazione costa un grande dispendio di energia. Mettere a punto nuove architetture di calcolo, intrinsecamente più simili alle reti neurali, per infine arrivare a un vero e proprio computer neuromorfico, è oggi l'obiettivo di un ampia gamma di studi, in cui si inserisce la ricerca di cui parliamo oggi, che ha portato allo sviluppo di un dispositivo chiamato transistor sinaptico fotonico, il quale imita in modo sorprendente il comportamento di una cellula cerebrale, compresa la capacità di modificarsi nel tempo in base agli stimoli ricevuti in passato, la quale a sua volta è alla base della capacità del cervello di apprendere.Ospite Stefano Toffanin - Direttore di ricerca dell'Istituto per lo studio dei materiali nanostrutturati del CNR di Bologna.
Negli ultimi anni la ricerca sullo stoccaggio dell'idrogeno ha aperto un nuovo filone che chiama in causa i cosiddetti clatrati, composti molto simili a ghiaccio formati da una miscela di acqua e metano, stabili ad alta pressione e a bassa temperatura, ma che appena vengono riportati in superficie iniziano a liberare metano. Come spiegato nella puntata precedente, riuscire a fare qualcosa di analogo con l'idrogeno potrebbe rappresentare una soluzione al problema tutt'ora irrisolto di accumulare grandi quantitativi di idrogeno, per lungo tempo, in modo sicuro e a costi accettabili. Il progetto "Alternative Hydrogen Storage by Enclathration", finanziato con 2 milioni di euro dal Fondo Italiano per la Scienza 2022-2023, che tenterà di intrappolare l'idrogeno in una forma cristallina dell'acqua grazie a dei "gasi di aiuto", si inserisce proprio in questo filone di ricerca. Ne parliamo ancora con Federico Rossi, professore di Fisica Tecnica presso il Dipartimento di Ingegneria dell'Università degli Studi di Perugia, Laboratorio di Terni.
Lo stoccaggio dell'idrogeno rappresenta oggi uno dei punti più deboli della costruzione che vuole l'idrogeno nel ruolo di pivot del sistema energetico. E sebbene si lavori sullo stoccaggio sia di breve che di lungo termine, è soprattutto quando si parla di accumulare grandi quantitativi di idrogeno per lungo tempo che le soluzioni scarseggiano. È qui che la ricerca sta ora guardando ai cosiddetti clatrati, dei composti di cui c'è un esempio ben noto in natura: gli idrati di metano, conosciuti anche come "ghiaccio che brucia". Si tratta di un ghiaccio di acqua e metano, stabile alle alte pressioni e basse temperature che si trovano lungo le scarpate oceaniche, ma che una volta portato in superficie inizia a emettere metano tanto che lo si può accendere con un fiammifero. L'idea dei ricercatori è quella di riprodurre qualcosa di simile con l'idrogeno. Ne parliamo in questa e nella puntata successiva con Federico Rossi, professore di Fisica Tecnica presso il Dipartimento di Ingegneria dell'Università degli Studi di Perugia, Laboratorio di Terni.
Oggi è stato presentato a Roma Qolossus 2.0, il primo quantum computer fotonico italiano ideato dalla Sapienza di Roma e realizzato insieme al CNR di Milano e all'Università di Pavia nell'ambito del "Centro Nazionale di Ricerca in High Performance Computing", uno dei 5 Centri nazionali finanziati dal PNRR. Il computer quantistico fotonico è l'ultimo arrivato e offre in prospettiva alcuni vantaggi, il più importante dei quali è che non richiede tecnologie ad hoc e condizioni criogeniche estreme per funzionare, ma può invece stare dentro i cassetti di un armadio a rack come quelli di cui i data-center sono pieni, e le tecnologie per costruirlo sono le stesse dell'industria elettronica. Ce lo spiega Fabio Sciarrino, che guida il Quantum Lab dell'Università Sapienza di Roma.
Una delle più importanti frontiere della chimica guarda oggi non a come realizzare nuovi composti, ma a come smontare quelli vecchi. L'obiettivo è riciclare i materiali a livello molecolare: da un lato per conservare al massimo le proprietà dei materiali da un ciclo all'altro, riducendo al minimo i fenomeni di degrado; dall'altro per rendere possibile il riciclo di materiali misti o compositi, che non possono essere separati. Tra questi ci sono sicuramente i tessuti. L'impatto ambientale del campo della moda è uno dei più rilevanti e i tessuti sono tra i materiali più difficili da riciclare, in quanto la maggior parte dei capi sono composti da fibre miste e inseparabile tra loro. È qui che il "riciclo molecolare" può fare la differenza. Ne parliamo con Elena Rosini, professoressa di Bio-Chimica dell'Università dell'Insubria.
loading
Comments (1)

Fiore 53

07,

Jun 6th
Reply