Discover
The Uptime Wind Energy Podcast
The Uptime Wind Energy Podcast
Author: Allen Hall, Rosemary Barnes, Joel Saxum & Yolanda Padron
Subscribed: 109Played: 7,248Subscribe
Share
© Copyright 2024, Weather Guard Lightning Tech
Description
Uptime is a renewable energy podcast focused on wind energy and energy storage technologies. Experts Allen Hall, Rosemary Barnes, Joel Saxum and Yolanda Padron break down the latest research, tech, and policy.
634 Episodes
Reverse
Allen and Joel are joined by Mathieu Cōté from CanREA to preview the upcoming Operators Summit in Toronto. With many Canadian wind projects reaching 17-20 years old, the industry faces critical decisions about extending, repowering, or decommissioning assets. Register now!
Sign up now for Uptime Tech News, our weekly newsletter on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on YouTube, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary’s “Engineering with Rosie” YouTube channel here. Have a question we can answer on the show? Email us!
Welcome to Uptime Spotlight, shining Light on Wind. Energy’s brightest innovators. This is the Progress Powering tomorrow.
Allen Hall: Matt, welcome to the program. Thanks for having me. Well, the theme of this Year’s Operator Summit is coming of age and. There’s a lot of things happening in the renewable side up in Canada. What does that mean for Canadian renewable energy operators right now?
Mathieu Cōté: Well, we came up with coming of age because, um, the fleet in Canada is in a bit of a different space than it is in the States where, uh, right now we’ve got a lot of projects that are on the cusp of coming to their end of initial lifetime.
Right. They’re in that. 17 to 20 year range. There’s some that are a little bit past, and so you, as an operator, you gotta be asking yourself, is this the time to extend this project? What do I have to do [00:01:00] if I need to extend? Um, or am I repowering, am I taking things down, putting them up? And I mean, there’s a lot of different variables there.
Sometimes it’s just a re topping, sometimes it’s everything down to ground level and go again. Or it’s, maybe it’s a decommissioning and those decisions are on the cusp of being made in the operation space in Canada. So that’s, that’s a super important part of it. But the other side of it, and the reason we liked, uh, coming of age is from the industry perspective itself.
We are no longer the new kid on the block, right? We are now a reliable, uh, professional industry that can deliver power when you need it. Uh, so that’s what we’re trying to, to convey with this coming of age. And, and we’ve got some really good speakers who are gonna talk about that, uh, from. The grid operator’s perspective saying, why is it that renewables are one of the first things they reach for now when they realize they need more power?
Joel Saxum: I think it’s an interesting space and I think to, to [00:02:00]comment more deeply on that, right? That you guys are in that, you
Mathieu Cōté: know,
Joel Saxum: 2005, six you started installing a
Mathieu Cōté: lot of the, a lot of wind assets. There was a curve of, as it as every year you get more and more. Trickle and then becomes a flood quite quickly.
Joel Saxum: Yeah. And, and, and you know, from, from the operation standpoint, we deal with some of the wind farms in Canada. We love working with, uh, the operators up there because they do exude that professionalism. They’re on top of their game. They know they’ve gotta maintain these things. Whereas in the states, we’ve been a little bit nascent sometimes and, oh, we got PTC coming so we don’t have to do these certain things.
Little bit more cowboy. Yeah. Yeah. And up in Canada, they’re, they’re, they’ve been doing the right things for a long time. Um, and I think it’s a good, good model to follow, but you’re a hundred percent correct. We’re coming to that time when it’s like decision time to be made here. And I think we, in our, in our uh, kind of off air chat, you had mentioned that, you know, repower in Canada is.
Pretty early stages. I
Mathieu Cōté: only know about
Joel Saxum: one,
Mathieu Cōté: to [00:03:00] be honest, and I try and keep track of these things,
Joel Saxum: but that’s coming down the pipeline,
Mathieu Cōté: right? So there’s gonna be more and more of these happening. And I mean, there are a lot of operators that have one foot on either side of the border, so some people have some operational experience on what steps you need to take, but it’s also from the regulatory side, like what is your grid operator gonna insist on?
So on and so on. But, uh, so we’ve got some panels to talk about things like, one of my favorites is, uh, how much life is left in your machine? And that’s sort of a deeper dive from an engineering standpoint. Like what math do the engineers do to assess, is this foundation good to go for another 10 years?
Is this tower gonna stand up to whatever? Should we replace the blades and all those components? We, we’ve got a foundation expert, uh, someone who does. Digital twin sort of things as well as, um, a panelist from, uh, Nordex, so the OEM sort of perspective as well, and how they assess how much [00:04:00] life is left in a machine.
So like that’s the sort of panels that we’re trying to put together that we’re pretty excited about.
Joel Saxum: Well, I think that’s a good one too, because I know Alan and I we’re talking around the industry globally. A lot of it is around CMS. And when we say CMS, we’re not just talking drive train anymore, we’re talking everything you can in the turbine, right?
So the, the concept of remaining useful life, r ul, that always comes up, where are we at with this, right? Because from a global perspective in Europe, they have, you know, in Spanish wind farms are all, a lot of ’em are at that 25 year mark. What are we doing here? So you guys are bringing that conversation to the Canadian market at this operator summit in Toronto here in February.
It’s, it’s timely, right? Because it’s February and everybody’s getting ready for spring, so you got a little bit of time to come to the conference.
Mathieu Cōté: Well, and that’s one of the things that we actually used to do is show in April and we’ve moved it back after hearing feedback from our, from our audience that April’s almost too late, right?
Like, if you’re doing your assessments for your [00:05:00] blades, it where? Where’s your manpower coming up? Coming from in the summertime? Those contracts are already signed. By the time you hit April, February, you’ve still got time. Your RFP might be out so you can meet all the proponents on site at once. It, it just makes a lot more sense for us to do it in February.
Allen Hall: Well, there’s a wide range of technology in Canada in regards to wind to energy. That adds to the complexity where a lot of turbines, unlike the United States, are maybe even sub one megawatt, and with new turbines coming online, they’re gonna be in the five, six, maybe even seven megawatt range. That’s a huge dispersed.
Industry to try to maintain massive range. Yeah. Right. And I, and, and I think one of the dilemmas about that is trying to find people who understand that tho all those different kinds of machines and the intricacies of each one of them and how to operate them more efficiently, which is where Canada is.
Quite honestly. The, the thing [00:06:00] about that and the challenge for Canada Head, and this is why the conference is so important, is. If there’s someone in Canada that has the answer, as Joel and I have talked to a number of Canadian operators, you may not know them. I know it’s a smaller marketplace in general, but unless you’re talking to one another, you probably, uh, don’t realize there’s, there’s help within Canada.
And these conferences really highlight that quite a bit. Wanna talk about some of the, sort of the interactions you guys create at the conference?
Mathieu Cōté: Yeah. Oh, well, it’s one of the things that can RIA tries to do is play that connector role, right? Like, we don’t know everything, but like you say, we know someone who knows something and we can put you in touch with all.
I know a guy who knows a guy. Um, but we’re, we’re always able to, to, to connect those dots. And I mean, we, we do a lot of, uh. Things like working groups and uh, regional meetings. And, uh, we’ve even got, uh, different summits for different things. Getting a little bit outside of operations, but like we [00:07:00] have an Atlantic operators group that gathers together and has a chat just sometimes, usually there’s a focus topic, but then we have, oh, how do you guys deal with the storm that came through?
Or that sort of thing, or what, what do you do for if you need a new blade or has anyone got a good vendor for this thing or that thing? Those sorts of things always happen in the margins. And I mean, the ops summit is the, the best one of those because it’s the entire Canadian industry that gets together.
We’ve got folks from bc, we’ve got folks from Atlantic Canada, there’s gonna be people from Quebec, and there’s vendors from all those places as well. Right? So. It’s covering all your bases and it’s the one place that you can talk to everybody and meet everybody in like a 48 hour period.
Joel Saxum: Well, I think that if, you know, just doing a little bit of deep dive into the agenda and the program here, that’s one of the things that you guys are focusing on.
Targeted networking. So morning breakfasts, evening receptions, there, you know, structured and informal, uh, opportunities to actually connect with the o and m [00:08:00] community. Um, one of them that you had mentioned was kind of, um. Hands-on demonstrations and, and for me, when, when I see these things, ’cause I’ve seen them kind of slightly not, I don’t think I’ve ever seen anybody do it perfectly well.
I’m excited to see what you guys do. But you get, you get a group of people standing around, like you get people kind of standing around. Rubbing elbows going, like, what do you think about that? What is, does this, is this gonna work? And, and those to me are great, great conversations for networking and kind of figuring things out together.
The collaboration part.
Mathieu Cōté: Absolutely. Uh, well on those two points, the, the n
Allen, Joel, Rosemary, and Yolanda cover major offshore wind developments on both sides of the Atlantic. In the US, Ørsted’s Revolution Wind won a court victory allowing construction to resume after the Trump administration’s suspension. Meanwhile, the UK awarded contracts for 8.4 gigawatts of new offshore capacity in the largest auction in European history, with RWE securing nearly 7 gigawatts. Plus Canada’s Nova Scotia announces ambitious 40 gigawatt offshore wind plans, and the crew discusses the ongoing Denmark-Greenland tensions with the US administration.
Sign up now for Uptime Tech News, our weekly newsletter on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on YouTube, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary’s “Engineering with Rosie” YouTube channel here. Have a question we can answer on the show? Email us!
The Uptime Wind Energy Podcast brought to you by Strike Tape, protecting thousands of wind turbines from lightning damage worldwide. Visit strike tape.com. And now your hosts, Alan Hall, Rosemary Barnes, Joel Saxon and Yolanda Padron. Welcome to the Uptime Wind Energy Podcast. I’m Allen Hall, along with Yolanda, Joel and Rosie.
Boy, a lot of action in the US courts. And as you know, for weeks, American offshore wind has been holding its breath and a lot of people’s jobs are at stake right now. The Trump administration suspended, uh, five major projects on December 22nd, and still they’re still citing national security concerns.
Billions of dollars are really in balance here. Construction vessels for most of these. Sites are just doing nothing at the minute, but the courts are stepping in and Sted won a [00:01:00] key victory when the federal judge allowed its revolution wind project off the coast of Rhode Island to resume construction immediately.
So everybody’s excited there and it does sound like Osted is trying to finish that project as fast as they can. And Ecuador and Dominion Energy, which are two of the other bigger projects, are fighting similar battles. Ecuador is supposed to hear in the next couple of days as we’re recording. Uh, but the message is pretty clear from developers.
They have invested too much to walk away, and if they get an opportunity to wrap these projects up quickly. They are going to do it now. Joel, before the show, we were talking about vineyard wind and vineyard. Wind was on hold, and I think it, it may not even be on hold right now, I have to go back and look.
But when they were put on hold, uh, the question was, the turbines that were operating, were they able to continue operating? And the answer initially I thought was no. But it was yes, the, the turbines that were [00:02:00] producing power. We’re allowed to continue to produce powers. What was in the balance were the remaining turbines that were still being installed or, uh, being upgraded.
So there’s, there’s a lot going on right now, but it does seem like, and back to your earlier point, Joel, before we start talking and maybe you can discuss this, we, there is an offshore wind farm called Block Island really closely all these other wind farms, and it’s been there for four or five years at this point.
No one’s said anything about that wind farm.
Speaker: I think it’s been there, to be honest with you, since like 2016 or 17. It’s been there a long time. Is it that old? Yeah, yeah, yeah, yeah. So when we were talk, when we’ve been talking through and it gets lost in the shuffle and it shouldn’t, because that’s really the first offshore wind farm in the United States.
We keep talking about all these big, you know, utility scale massive things, but that is a utility scale wind farm as well. There’s fi, correct me if I’m wrong, Yolanda, is it five turbos or six? It’s five. Their decent sized turbines are sitting on jackets. They’re just, uh, they’re, they’re only a couple miles offshore.
They’re not way offshore. But throughout all of these issues that we’ve had, um, with [00:03:00] these injunctions and stopping construction and stopping this and reviewing permits and all these things, block Island has just been spinning, producing power, uh, for the locals there off the coast of Rhode Island. So we.
What were our, the question was is, okay, all these other wind farms that are partially constructed, have they been spinning? Are they producing power? And my mind goes to this, um, as a risk reduction effort. I wonder if, uh, the cable, if the cable lay timelines were what they were. Right. So would you now, I guess as a risk reduction effort, and this seems really silly to have to think about this.
If you have your offshore substation, was the, was the main export cable connected to some of these like revolution wind where they have the injunction right now? Was that export cable connected and were the inter array cables regularly connected to turbines and them coming online? Do, do, do, do, do. Like, it wasn’t like a COD, we turned the switch and we had to wait for all 62 turbines.
Right. So to our [00:04:00] knowledge and, and, uh, please reach out to any of us on LinkedIn or an email or whatever to our knowledge. The turbines that are in production have still have been spinning. It’s the construction activities that have been stopped, but now. Hey, revolution wind is 90% complete and they’re back out and running, uh, on construction activities as of today.
Speaker 2: It was in the last 48 hours. So this, this is a good sign because I think as the other wind farms go through the courts, they’re gonna essentially run through this, this same judge I that. Tends to happen because they have done all the research already. So you, you likely get the same outcome for all the other wind farms, although they have to go through the process.
You can’t do like a class action, at least that’s doesn’t appear to be in play at the minute. Uh, they’re all gonna have to go through this little bit of a process. But what the judge is saying essentially is the concern from the Department of War, and then the Department of Interior is. [00:05:00] Make believe. I, I don’t wanna frame it.
It’s not framed that way, the way it’s written. There’s a lot more legalistic terms about it. But it basically, they’re saying they tried to stop it before they didn’t get the result they wanted. The Trump administration didn’t get the result they wanted. So the Trump administration ramped it up by saying it was something that was classified in, in part of the Department of War.
The judge isn’t buying it. So the, the, the early action. I think what we initially talked about this, everybody, I think the early feeling was they’re trying to stop it, but the fact that they’re trying to stop it just because, and just start pulling permits is not gonna stand outta the court. And when they want to come back and do it again, they’re not likely to win.
If they would. Kept their ammunition dry and just from the beginning said it’s something classified as something defense related that Trump administration probably would’ve had a better shot at this. But now it just seems like everything’s just gonna lead down the pathway where all these projects get finished.
Speaker: Yeah, I think that specific judge probably was listening to the [00:06:00] Uptime podcast last week for his research. Um, listen to, to our opinions that we talked about here, saying that this is kind of all bs. It’s not gonna fly. Uh, but what we’re sitting at here is like Revolution Wind was, had the injunction against it.
Uh, empire Wind had an injunction again, but they were awaiting a similar ruling. So hopefully that’s actually supposed to go down today. That’s Wednesday. Uh, this is, so we’re recording this on Wednesday. Um, and then Dominion is, has, is suing as well, and their, uh, hearing is on Friday. In two, two days from now.
And I would expect, I mean, it’s the same, same judge, same piece of papers, like it’s going to be the same result. Some numbers to throw at this thing. Now, just so the listeners know the impact of this, uh, dominion for the Coastal Virginia Offshore Wind Project, they say that their pause in construction is costing them $5 million a day, and that is.
That’s a pretty round number. It’s a conservative number to be honest with you. For officer operations, how many vessels and how much stuff is out there? That makes sense. Yep. [00:07:00] 5 million. So $5 million a day. And that’s one of the wind farms. Uh, coastal, Virginia Wind Farm is an $11 billion project. With, uh, it’s like 176 turbines.
I think something to that, like it’s, it’s got enough power, it’s gonna have enough production out there to power up, like, uh, like 650,000 homes when it’s done. So there’s five projects suspended right now. I’m continuing with the numbers. Um, well, five, there’s four now. Revolution’s back running, right? So five and there’s four.
Uh, four still stopped. And of those five is 28. Billion dollars in combined capital at risk, right? So you can understand why some of these companies are worried, right? They’re this is, this is not peanuts. Um, so you saw a little bump in like Ted stock in the markets when this, this, uh, revolution wind, uh, injunction was stopped.
Uh, but. You also see that, uh, Moody’s is a credit [00:08:00] rating. They’ve lowered ORs, Ted’s um, rating from stable to negative, given that political risk.
Speaker 2: Well, if you haven’t been paying attention, wind energy O and m Australia 2026 is happening relatively soon. It’s gonna be February 17th and 18th. It’s gonna be at the Pullman Hotel downtown Melbourne.
And we are all looking forward to it. The, the roster and the agenda is, is nearly assembled at this point. Uh, we have a, a couple of last minute speakers, but uh, I’m looking at the agenda and like, wow, if you work in o and m or even are around wind turbines, this is the place to be in Fe
Allen covers court victories allowing Empire Wind and Revolution Wind construction to resume, while Vineyard Wind joins the legal fight. In the UK, EnBW walks away from Mona and Morgan with a $1.4B write-off, even as KKR and RWE announce a $15B partnership for Norfolk Vanguard. Plus Ørsted’s leaked “Project Dragon” reveals the offshore giant is considering Chinese turbines, and Fortescue breaks ground on Australia’s Nullagine Wind Project using Nabrawind’s self-erecting tower technology.
Sign up now for Uptime Tech News, our weekly newsletter on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on YouTube, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary’s “Engineering with Rosie” YouTube channel here. Have a question we can answer on the show? Email us!
Last week I told you about Equinor’s ultimatum. Resume construction by January sixteenth… or cancel Empire Wind forever. Well… the courts have spoken.
Last Thursday, Judge Carl Nichols issued his ruling. Empire Wind can resume construction. The harm from stopping, he said, outweighs the government’s concerns. One day earlier, Ørsted won the same relief for Revolution Wind. And now Vineyard Wind has joined the fight in Massachusetts. Three projects. Three courtrooms. Two victories and one victory yet to come.
Meanwhile in Britain… a different kind of drama. German utility EnBW announced Thursday it is walking away from two major UK projects. Mona and Morgan. Three gigawatts of potential capacity. The cost of leaving? One point four billion dollars in write-offs. Eight hundred forty million pounds already paid… gone. Rising costs. Lower electricity prices. Higher interest rates. Their partner, Jera Nex BP, says they still see good pathways forward. But EnBW has had enough.
Yet in the very same week… Investment giant KKR and German utility RWE announced a fifteen billion dollar partnership. Norfolk Vanguard East and West. Three gigawatts. One hundred eighty-four turbines. Power for three million British homes. Big winners and losers. In the same market. In the same week.
Danish media outlet Berlingske obtained a confidential report from Ørsted’s procurement department. The world’s largest offshore wind developer… is exploring whether to buy turbines from China. They call it Project Dragon. The plan covers twenty-twenty-six through twenty-twenty-eight. CEO Rasmus Errboe told reporters they continuously evaluate all technologies and suppliers. Quality. Technical capabilities. Commercial conditions. He did not deny the report. For years, European developers have resisted Chinese turbines. Fear of losing their industry to China… just like they lost solar manufacturing a decade ago. But Ørsted is under pressure.
In Australia, Fortescue has broken ground on its first wind project in the Pilbara. The Nullagine Wind Project. One hundred thirty-three megawatts. Seventeen turbines. But here is what makes it special. Nabrawind’s self-erecting tower technology. Hub height of one hundred eighty-eight meters. A new global benchmark for onshore wind. No giant cranes required. Fortescue plans two to three gigawatts of renewable energy across the Pilbara by twenty-thirty. Wind. Solar. Batteries. To power their mining trucks. Their drills. Their processing plants.
Last week we talked about Equinor’s deadline. About Ørsted losing one and a half million euros every single day. About billions in limbo. This week… the courts stepped in. Empire Wind resumes. Revolution Wind continues. Vineyard Wind fights on. All while the North Sea quietly crossed a milestone. One hundred one operational wind farms. Thirty gigawatts of clean power. More than any body of water on Earth. Some companies are walking away. Others are doubling down with fifteen billion dollar bets. The wind industry is evolving very quickly.
And that’s the state of the wind industry for the 19th of January 2026. Join us tomorrow for the Uptime Wind Energy Podcast.
Allen and Joel are joined by Pete Andrews, Managing Director at EchoBolt. They discuss the company’s new BoltWave inspection device, the shift from routine retightening to condition-based monitoring, and how ultrasonic technology helps operators manage blade stud and tower bolt integrity throughout the turbine lifecycle.
Sign up now for Uptime Tech News, our weekly newsletter on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on YouTube, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary’s “Engineering with Rosie” YouTube channel here. Have a question we can answer on the show? Email us!
Welcome to Uptime Spotlight, shining light on wind. Energy’s brightest innovators. This is the Progress Powering tomorrow.
Pete Andrews: Pete, welcome to the program. Good to be back. Yeah. See you face to face. Yeah. Yes. This is wonderful. It’s a really great event to catch it with loads of the. UK innovation that are happening in the supply chain. So it’s, yeah, really nice to be here.
Allen Hall: This is really good to meet in person because we have seen a lot of bolt issues in the us, Canada, Australia, yeah.
Uh, all around the world and every time bolt problems come up, I say, have you called Pete Andrews and Echo Bolt and gotten the kit to detect bolt issues? And then who’s Pete? Give me Pete’s phone number. Okay, sure. Uh, but now that we’re here in person, a lot has changed since we first talked to you probably two years ago.[00:01:00]
You’re a bootstrap company based in the UK that has global presence, and I, I think it’s a good start to explain what the technology is and why Echo Bolt matters so much in today’s world.
Pete Andrews: Yeah, absolutely. So, um, as you said, we’re a uk, um, SME, there’s a team of 13 of us based here in the uk. Yeah. But we do deliver our services internationally, but really focused on Northern Europe.
Yeah. But increasingly we’ve done more in the US and North America, a little bit in Canada. Um, but our big offering really is to help wind turbine operators and owners reduce the need to routinely retire in bulks. So we have a quick and simple inspection technology that people can deploy, find out the status of their bolt connections, and then.
Reti them if necessary, but the vast majority of the time we find that they’re static and absolutely fine and can be left [00:02:00] alone. So it’s a real big efficiency boost for wind operators.
Joel Saxum: Well, you’re doing things by prescription now, right? Instead of just blanket cover, we’re gonna do all of this. It’s like, let’s work on the ones that actually need to be worked on.
Let’s do the, the work that we actually need to, and instead of lugging, like we’re looking at the kit right here, and I can, you can hold the case in one hand, let alone the tools in a couple of fingers. As opposed to torque tensioning tools that are this big, they weigh a hundred kilos, and those come with all of their own problems.
So I know that you guys said you’re, you’re focused here. You do a lot of work, um, in the offshore wind world as well. Yeah. I mean, offshore wind is where you add a zero right? To zeros. Yeah. Everything else is that much more complicated. It costs that much more. It’s you’re transitioning people offshore to the transition pieces.
Like there’s so much more HSE risk, dollar risk, all of these different spend things. So. The Echo Bolt systems, these different tools that you have being developed and utilized here first make absolute sense, but now you guys are starting to go to onshore as well.
Pete Andrews: Yeah, that’s right. So I mean, as as you said, that there’s really [00:03:00] three main benefit areas we focus on.
The first one is the health and safety of technicians, right? As you said, some of the fasteners used offshore now are up to MA hundred. So a hundred millimeter diameter bolts,
Joel Saxum: four inches for our American friends. Yeah, absolutely.
Pete Andrews: And they probably weigh. 30 kilos plus per bolt. Yeah. Um, so just the physical manual handling of that sort of equipment and the tightening equipment for those bolts is a huge risk for people.
If you think 150 bolts lifting or maneuvering, the tooling around on on its own can cause all the problems. So as well as the inherent risk of the hydraulic kit failing. So occasionally we see catastrophic tool failure. Is, which have really high potential severity, you know, sort of tensioner heads ejecting or crush injuries from Tor.
So that is really a key focus for our customers, just to [00:04:00] keep their teams safe, but also you have to be the cost effective and the the major cost benefit we allow is that we don’t have to revisit every bolt and every turbine like you’d have to do if you were retyping. So we believe there’s something of the order of a million pounds per installed gigawatt saving.
By moving from a routine REIT uh, maintenance strategy to a focused condition based inspection, you significantly reduce the amount of intervention you make and keep your turbines running more and reduce the boots on the ground on the turbine. So three real kind of, um, key. Benefits for people adopting our technology
Allen Hall: because we routinely see tower bolts being reworked or retention depending on who the manufacturer is.
And I’m watching this go on. I’m like, why are [00:05:00] we doing this? It seems, or the 10% rule, we’re tighten 10% this year, and they’ll come back and see how it’s going. That’s a little insane, right, because you’re just kind of. Tensioning bolts up to see if one of them has a problem and then you just do more of them and we’re wasting so much time because echo bolts figured this out years ago.
You don’t need to do that. You can tell what the tension is in a bolt ultrasonically, which was the original technology, the first gen I’ll call it, uh, that you could tell the length of the bolt. If the length of the bolt is correct within certain parameters, you know that it is tension properly. If it’s shrunk, that probably means it’s not tensioned properly.
That’s a huge advantage because you can’t physically see it. And I know I’ve seen technicians go, oh, I could take a hammer and I can tell you which ones are not tensioned properly wrong. Wrong. And I think that’s where equitable comes in because you’re actually applying a a lot of science simply [00:06:00] to a complex problem because the numbers are so big.
Pete Andrews: Yeah, I mean that, that, that’s been the real. Driving force between our offering is to simplify it. So ultimately we’re based on a non-destructive testing technique. It’s an ultrasonic thickness checking technique, but when from the non-destructive testing background, it’s crack detection, people have time, they can be, it’s a very precision measurement.
People have to be trained in the wind industry. We’re trying to inspect. A thousand, 2000 bolts a day at scale. It’s a completely different, um, ask of the technology and the way the technology has been developed historically has required too much technician expertise, too much configuration and set up time, and hasn’t delivered on the, on the speed that’s needed to be efficient in wind.
And that’s where our bolt wave [00:07:00] unit we’ve, that we’ve developed over the last. 18 months, let’s say, where all of our focus has gone to make it as slick and as easy for a client technician to pick up with minimal training. It’s through an iOS interface. Everyone understands it intuitively. Um, it’s a bit like using the camera app on your phone.
You know, you’re just hitting measure, measure, measure, measure, measure 10 seconds a bolt as you move the, um, ultrasonic transducer across, and then the data gets moved. Automatically to the cloud, to our bolt platform. And customers can view it in near real time. The engineer in the office can see the inspections happened.
They can see if there are any anomalous bolts, and then there can be communication there and then whether an intervention is necessary. So it’s sort of really changed the way our customers think about managing their, um. They’re bolted joints.
Joel Saxum: Well, I think these are, these are the kind of innovations that we love to see, right?
Because [00:08:00] we regularly talk about a shortage of technicians, and this isn’t, I was just learning this this week too, like this is not a wind problem. This is a everywhere problem. No matter what industry you’re in. Use are short of technicians. But we’re seeing like a tool like this is developed to be able to scale that workforce as well.
Right. You don’t need to be an NDT level three expert to go and do these things. ’cause there’s a very few of those people out there. Right? Right. We know the NDT people, a lot of NDT people, and that’s a hard skillset to come by. Yeah. This can be put in the hands of any technician. Yeah, a quick training course.
Just, Hey, this is how you use your iPhone. You can check Instagram, right? Yeah. Okay. You can off figure. Yeah, have fun. See you at lunch. Um, but they can, they can make this happen, right? They can go do these inspections and you’re getting that, that, uh, data collected in the field. Centralized back to an SME that’s looking at it and you don’t have to put that SME in the field and try to scale their ability to go and travel and do all these things.
They can be in the office making sure that the, the QA, QC is done correctly. I love it. I think that that’s the way we need to go with a lot of things. [00:09:00]Uh, and you’re making it happen.
Pete Andrews: Yeah. And it’s a real kind of. F change in mindset for us. So originally when we started Ebot, we were using third party hardware.
Yeah. Which required a bit of that specialism. Yeah. A bit of care about the setup of the project, getting multiple parameters configured before you got going. And it wasn’t really something
Allen, Joel, Rosemary, and Yolanda discuss the ongoing federal halt on US offshore wind projects and mounting lawsuits from Equinor, Ørsted, and Dominion Energy. Plus Japan’s Goto floating wind farm begins commercial operation with eight Hitachi turbines on hybrid SPAR-type foundations, and Finnish investigators seize a vessel suspected of severing Baltic Sea cables.
Sign up now for Uptime Tech News, our weekly newsletter on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on YouTube, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary’s “Engineering with Rosie” YouTube channel here. Have a question we can answer on the show? Email us!
The Uptime Wind Energy Podcast brought to you by Strike Tape, protecting thousands of wind turbines from lightning damage worldwide. Visit striketape.com. And now your hosts, Allen Hall, Rosemary Barnes, Joel Saxum and Yolanda Padron. Welcome to the
Allen Hall: Uptime Wind Energy Podcast. I’m your host, Alan Hall. I’m here with Rosie Barnes, Joel Saxum, and Yolanda Padron.
Many things on the docket this week. The, the big one is the five US offshore wind projects that are facing cancellation after the federal halt. And on December 22nd, as we all know, the US Department of Interior ordered construction halted on every offshore wind project in American waters. Uh, the recent given and still given is national security.
Uh, developers see it way differently and they’ve been going to court to try to. Get this issue resolved. Ecuador, Ted and Dominion Energy have all filed lawsuits at this point. EOR says [00:01:00] a 90 day pause, which is what this is right now, will likely mean cancellation of their empire. Project Dominion is losing more than about $5 million a day, and everybody is watching to see what happens.
Orton’s also talking about taking some action here. Uh, there’s a, a lot of moving pieces. Essentially, as it stands right now, a lot of lawsuits, nothing happening in the water, and now talks mostly Ecuador of just completely canceling the project. That will have big implications to US. Electricity along the east coast,
Joel Saxum: right Joel?
Yeah. We need it. Right? So I, I hate to beat a dead horse here because we’ve been talking about this for so long. Um, but. We’ve got energy demand growth, right? We’re sitting at three to 5% year on year demand growth in the United States, uh, which is unprecedented. Since, since, and this is a crazy thing. Since air [00:02:00] conditioning was invented for residential homes, we have not had this much demand for electricity growth.
We’ve been pretty flat for the last 20 years. Uh, so we need it, right? We wanna be the AI data center superpower. We wanna do all this stuff. So we need electrons. Uh, these electrons are literally the quickest thing gonna be on the grid. Uh, up and down that whole eastern seaboard, which is a massive population center, a massive industrial and commercial center of the United States, and now we’re cutting the cord on ’em.
Uh, so it is going to drive prices up for all consumers. That is a reality, right? Um, so we, we hear campaign promises up and down the things about making life more affordable for the. Joe Schmo on the street. Um, this is gonna hurt that big time. We’re already seeing. I think it was, um, we, Alan, you and I talked with some people from PGM not too long ago, and they were saying 20 to 30% increases already early this year.
Allen Hall: Yeah. The, the increases in electricity rates are not being driven by [00:03:00] offshore wind. You see that in the press constantly or in commentary. The reason electricity rates are going up along the east coast is because they’re paying for. The early shutdown of cold fire generation, older generation, uh, petroleum based, uh, dirty, what I’ll call dirty electricity generation, they’re paying to shut those sites down early.
So that’s why your rates are going up. Putting offshore wind into the equation will help lower some of those costs, and onshore wind and solar will help lower those costs. But. The East Coast, especially the Northeast, doesn’t have a lot of that to speak of at the minute. So, uh, Joel, my question is right now, what do you think the likelihood is of the lawsuits that are being filed moving within the next 90 days?
Joel Saxum: I mean, it takes a long time to put anything through any kind of, um, judicial process in the United States, however. There’s enough money, power [00:04:00] in play here that what I see this as is just like the last time we saw an injunction happen like this is, it’s more of a posturing move. I have the power to do this, or we have the power to do this.
It’s, it’s, uh, the, it’s to get power. Over some kind of decision making process. So once, once people come to the table and start talking, I think these things will be let, let back loose. Uh, I don’t, I don’t think it will go all the way to, we need to have lawsuits and stuff. It’ll just be the threat of lawsuits.
There’ll be a little bit of arbitration. They’ll go back to work. Um, the problem that I see. One of the problems, I guess, is if we get to the point where people, companies start saying like, you know what, we can’t do this anymore. Like, we can’t keep having these breaks, these pauses, these, this, you know, if it’s 90 days at $5 million a day, I mean that’s 450 million bucks.
That’s crazy. But that nobody, nobody could absorb that.
Allen Hall: Will they leave the mono piles and transition pieces and some [00:05:00] towers just sitting in the water. That’s what
Joel Saxum: I was gonna say next is. What happens to all of the assets, all of the steel that’s in the water, all the, all the, if there’s cable, it lays if there’s been rock dumps or the companies liable to go pick them up.
I don’t know what the contracts look like, right? I don’t know what the Boem leases say. I don’t know about those kind of things, but most of that stuff is because they go back to the oil field side of things, right? You have a 20 year lease at the end of your 20 year lease. You gotta clean it up. So if you put the things in the water, do they have 20 years to leave ’em out there before they plan on how they’re gonna pull ’em out or they gotta pull ’em out now?
I don’t know.
Allen Hall: Would just bankrupt the LLCs that they formed to create these, uh, wind
Joel Saxum: farms. That’s how the oil field does it bankrupt. The LC move on. You’ve, you’ve more than likely paid a bond when you, you signed that lease and that, but that bond in like in a lot of. Things is not enough. Right. A bond to pull mono piles out would have to be, [00:06:00] I mean, you’re already at billions of dollars there, right?
So, and, and if you look again to the oil and gas world, which is our nearest mirror to what happens here, when you go and decommission an old oil platform in the Gulf of Mexico, you don’t pull the mono piles out. You go down to as close to the sea floor as you can get, and you just cut ’em off with a diamond saw.
So it’s just like a big clamp that goes around. It’s like a big band saw. And you cut the foundations off and then pull the steel back to shore, so that can be done. Um, it’s not cheap.
Allen Hall: You know what I would, what I would do is the model piles are in, the towers are up, and depending on what’s on top of them, whether it’s in the cell or whatever, I would sure as hell put the red flashing lights on top and I would turn those things on and let ’em run just so everybody along the East coast would know that there could be power coming out of these things.
But there’s not. So if you’re gonna look at their red flashy lights, you might as well get some, uh, megawatts out of them. That’s what I would do.
Joel Saxum: You’d have to wonder if the contracts, what, what, what it says in the contracts about. [00:07:00] Uh, utilization of this stuff, right? So if there’s something out there, does the FAA say, if you got a tower out there, it’s gotta have a light on it anyways.
Allen Hall: It has to or a certain height. So where’s the power coming from? I don’t know. Solar panel. Solar panel. That’s what it have to be, right? Yeah. This is ridiculous. But this is the world we live in today.
Speaker 4: Australia’s wind farms are growing fast, but are your operations keeping up? Join us February 17th and 18th at Melbourne’s Pullman on the park for Wind energy o and M Australia 2026, where you’ll connect with the experts solving real problems in maintenance asset management.
And OEM relations. Walk away with practical strategies to cut costs and boost uptime that you can use the moment you’re back on site. Register now at W OM a 2020 six.com. Wind Energy o and m Australia is created by wind professionals for wind professionals. Because this industry needs solutions, not speeches, [00:08:00]
Allen Hall: the dominoes keep falling.
In American offshore wind, last year it was construction halts this year, contract delays. Massachusetts has pushed back the signing of two offshore wind agreements that were supposed to be done. Months ago, ocean Winds and Berroa won their bids in September of 2024. The paperwork is still unsigned more than a year later, a year and a half later.
State officials blame Federal uncertainty. Uh, the new target is June and offshore wind for these delays are really becoming a huge problem, especially if you don’t have an offtake agreements signed, Joel.
Joel Saxum: I don’t see how the, I mean, again, I’m not sitting in those rooms. I’m not a fly on the wall there, but I don’t see how you can have something sitting out there for, it’s just say September 24.
Yeah. Yeah. You’re at 18 months now, right? 17, 18 months without an agreement signed. Why is, why is Massachusetts doing this? What’s, what’s the, what’s the thing there? I mean, you’re an, [00:09:00] you are, uh, an ex Massachusetts, Massachusett
Allen covers the deepening US offshore wind crisis as Ørsted reports losing €1.5 million daily on American projects and Equinor sets a January 16 deadline to resume or cancel Empire Wind. Meanwhile, onshore wind thrives with Invenergy’s 2GW Oklahoma project and AES repowering Buffalo Gap in Texas with Vestas turbines.
Sign up now for Uptime Tech News, our weekly newsletter on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on YouTube, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary’s “Engineering with Rosie” YouTube channel here. Have a question we can answer on the show? Email us!
Danish energy giant Ørsted said it is losing one and a half million euros on US offshore projects. Every. Single. Day. Norwegian company Equinor has drawn a line in the sand. January sixteenth. Resume construction on Empire Wind… or cancel the whole thing. 3.5 billion euros invested. Sixty percent complete. And now… a deadline. As we all know, the Bureau of Ocean Energy Management issued stop-work orders on December twenty-second. Just before Christmas. A gift nobody wanted. Ørsted has filed complaints. First on Revolution Wind. Then Sunrise Wind. Court documents reveal the Danish company stands to lose more than 5 billion euros if forced to abandon both projects. Meanwhile… President Trump signed an executive order withdrawing America from sixty-six international organizations. Many focused on energy cooperation. On climate. Ole Rydahl Svensson of Green Power Denmark calls it a sad development. But not surprising. Ole says America is abdicating from renewable energy… in favor of energy forms of the past. The empty seats will be filled quickly, he predicts. By China. By Europe. I personally get asked every week by my European friends, is US onshore wind also under attack?? I think the answer is not yet. While offshore wind projects sit paralyzed by federal orders… Out in the Oklahoma Panhandle… something different is happening. Invenergy is planning a three hundred wind turbine wind farm. Two gigawatts of power. Enough electricity for eight hundred fifty thousand American homes. According to recent filings the turbines will be supplied by GE Vernova. Invenergy already operates wind farms in ten Oklahoma counties. They’ve already built the largest single-phase wind park in North America outside of Oklahoma City. Four billion dollars of investment. Five hundred construction jobs. Thirty permanent positions. No stop-work orders. No court battles. No international incidents. And down near Abilene Texas, AES is repowering its Buffalo Gap wind farm – the existing 282 turbines will be replaced with 117 new Vestas V150 4.5MW turbines. $94 million in tax revenue for local counties and schools over its lifetime. It will also create 300 jobs during peak construction and 17 long-term operations jobs. So while the US oceans remain off-limits… While billions evaporate in legal fees and idle vessels… The wind industry continues to move forward. And that’s the state of the wind industry for January 12, 2026. Join us for the Uptime Wind Energy Podcast tomorrow.
Allen and Joel are joined by Nathan Davies from Lloyd Warwick to discuss the world of wind energy insurance. Topics include market cycles, the risks of insuring larger turbines, how critical spares can reduce downtime and costs, why lightning claims often end up with insurers rather than OEMs, and how AI may transform claims data analysis.
Sign up now for Uptime Tech News, our weekly newsletter on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on YouTube, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary’s “Engineering with Rosie” YouTube channel here. Have a question we can answer on the show? Email us!
Welcome to Uptime Spotlight, shining light on wind. Energy’s brightest innovators. This is the Progress Powering tomorrow.
Allen Hall: Nathan, welcome to the program. Thank you for having me. So you are, you’re our link to the insurance world, Nathan, and there’s been so many changes over the past 12, 24 months, uh, not just in the United States but worldwide. Before we get too deep into any one subject, can you just give us a top level like, Hey, this is what’s happening in the insurance world that we need to know.
So there’s
Nathan Davies: obviously a lot of scope, a lot of development, um, in the wind world. Um, you know, there’s the race to scale. Um, and from an insurance perspective, I think everybody’s pretty tentative about where that’s going. Um. You know, the, the theory that are we trying to [00:01:00] run before we can walk? Um, what’s gonna happen when these things inevitably go wrong?
Uh, and what are the costs gonna be that are associated with that? ’cause, you know, at the moment we are used to, to claims on turbines that are circa five megawatts. But when we start seeing 15 megawatt turbines falling over. Yeah, it’s, it’s not gonna be a good day at the office. So, um, in the insurance world, that’s the big concern.
Certainly from a win perspective at least.
Joel Saxum: Well, I think it’s, it’s a valid, uh, I don’t know, valid bad, dream. Valid, valid risk to be worried about. Well, just simply because of like the, the way, uh, so I’ve been following or been a part of the, that side of the industry for a little while here the last five, six years.
Um. You’ve seen The insurance world is young in renewables, to be honest with you. Right. Compared to a lot of other places that like say the Lord Lloyd’s market, they’ve been writing insurance for hundreds of years on certain [00:02:00] things that have, like, we kind of know, we know what the risks are. We, and if it develops something new, it’s not crazily new, but renewables and in wind in specific haven’t been around that long.
And the early stuff was like, like you said, right? If a one megawatt turbine goes down, like. That sucks. Yeah. For everybody, right? But it’s not the end of the world. We can, we can make this thing happen. You’re talking, you know, you may have a, you know, your million, million and a half dollars here, $2 million here for a complete failure.
And then the business interruption costs as a, you know, with a one megawatt producing machine isn’t, again, it’s not awesome, but it’s not like it, uh, it doesn’t break the books. Right. But then when we’re talking 3, 4, 5, 6. Seven megawatts. We just saw Siemens cesa sell the first of their seven megawatt onshore platforms the other day.
Um, that is kind of changing the game and heightening the risk and makes things a little bit more worrisome, especially in light of, I mean, as we scaled just the last five, [00:03:00] 10 years, the amount of. Failures that have been happening. So if you look at that and you start expanding it, that, that, that hockey stick starts to grow.
Nathan Davies: Yeah, yeah, of course. And you know, we, we all know that these things sort of happen in cycles, right? It’s, you go, I mean, in, in the insurance world, we go through soft markets. We go through hard markets, um, you know, deductibles come up, the, the clauses, the restrictions, all those things get tighter. Claims reduce.
Um, and then you get sort of disruptors come into the market and they start bringing in, you know, challenging rates and they start challenging the big players on deductibles and preferential rates and stuff like that. And, and then you get a softening of the market, um, and then you start seeing the claims around up again.
But when you twin that with the rate of development that we see in the renewables worlds, it’s, it’s fraught for all sorts of. Weird and wonderful things happening, and most of them are quite expensive.
Joel Saxum: Where in that cycle are we, in [00:04:00] your opinion right now? So we, like when I first came into the market and I started dealing with insurance, it was very, we kept hearing hardening, market hardening, market hardening market.
But not too long ago, I heard from someone else that was like, Hey, the market’s actually getting kind of soft right now. What are your thoughts on that? And, and or may, and maybe we let, let’s precursor that there’s a lot of people that are listening right now that don’t know the difference. What is a hard market?
What is a soft market? Can you give us that first?
Nathan Davies: When you’re going through a soft market, it’s, it’s a period where they’ve either been, um, a limited volume of claims or the claim values have been quite small. Um, so, you know, everybody gets. It’s almost like becoming complacent with it, right? It’s like, oh, you know, things are going pretty well.
We’re having it. It looks like the operators, it looks like the maintainers are, are doing a pretty good job and they know all of the issues that are gonna be working through in the lifetime of these products. So for the next however many years, we can anticipate that things are gonna gonna go pretty well.
But as you see those [00:05:00] deductibles come down, you start getting more of the attritional claims, like the smaller values, um, the smaller downtime periods, all that sort of thing, start coming in as claims. And all of a sudden insurers are like, well, hang on a second. All of a sudden we’ve got loads and loads of claims coming in.
Um. All of the premium that we were taking as being bled dry by, by these, these attritional claim. Um, and then you get like a big claim coming. You get a major issue come through, whether it’s, you know, a, a serial issue with a gearbox or a generator or a specific blade manufacturer, and all of a sudden the market starts to change.
Um, and insurers are like, well, hang on a second. We’ve got a major problem on our hands here. We’re starting to see more of this, this specific piece of technology being rolled out, um, worldwide. Um, we are in for a lot of potential claims on this specific matter in the future, and therefore we need to protect ourselves.
And the way that insurers do that is by [00:06:00] increasing or deductibles, um, increasing their premiums, all that sort of thing. So it’s basically that. Uh, raises the threshold at which a claim can be presented and therefore minimizes the, the outlay for insurers. So that’s sort of this, this cycle that we see. Um, I mean, I can’t, I’ve, I’ve only been in loss adjusting for six years, so I can’t say that I’ve seen, you know, um, multiple cycles.
I’ve, I’m probably at the end of my first cycle from a hardening to a softening market. Um. But also, again, I’m not in the underwriting side of things. I’m on the claims side of things, so I own, I’m only seeing it when it’s gone wrong. I don’t know about everything else that the insurance market sees.
Joel Saxum: Yeah, the, the softening part, I think as well from a macro perspective, when there’s a softening market, it tends to bring in more capital.
Right. You start to see more, more and more companies coming in saying, Hey, I’ve got, [00:07:00] and when I say companies, I mean other capital holders to beat for insurance, right? Like these, the big ones you see, the big Swiss and German guys come in and going, like, I got, I got $500 million I’ll throw into renewables.
It seems like to be a good, pretty good bet right now. And then the market starts to change and then they go, uh, oops. Yeah.
Nathan Davies: And that’s it. You know, you’ve got the, the StoreWatch of the renewable insurance market like your G cubes and, and companies like that who’ve been in the game for a very long time.
They’ve got a lot of experience. They’ve been burned. Um, they know what they want to touch and what they don’t want to touch. And then you get. Renewables, everybody wants to be involved. It covers their ESG targets. It’s, it’s a good look to move away from, you know, your, your oil and your coal and all the rest of it.
So, of course, companies are gonna come into it. Um, and if they’re not experienced.
Allen Hall: They will get banned. How much reliance do operators have at the moment on insurance? Because it does seem like, uh, Joel and I talk [00:08:00]to a lot of operators that insurance is part of their annual revenue. They depend upon getting paid a certain amount, which then opens up the door to how sort of nitpicky I’ll describe it as the claim.
They’ll file. Are you seeing more and more of that as, uh, some of the operators are struggling for cash flow, that there are going after more kind of questionable claims? Um, I think it depends on
Nathan Davies: the size of the operator. So you’ve, you’ve obviously got your, your big players, you’ve got your alls and your rws and all of those sort of guys who, the way that they manage their insurance, they’ve probably got, you know, special purpose vehicles.
They’ve got, um, sites or clusters of sites that they manage finances independently. They don’t just have the one big or pot. It’s, it’s, it’s managed sort of subdivisions. Um. Those, those guys, we don’t typically tend to see like a big push for a [00:09:00] paymen
Allen, Joel, and Yolanda examine TPI Composites’ Chapter 11 proceedings, including the Oaktree Capital secured debt controversy and Vestas’ acquisition of two Mexican factories. With remaining assets heading to auction in January, they discuss what operators should consider as blade supply uncertainty grows.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
The Uptime Wind Energy Podcast brought to you by Strike Tape, protecting thousands of wind turbines from lightning damage worldwide. Visit strike tape.com. And now your hosts, Allen Hall, Rosemary Barnes, Joel Saxum and Yolanda Padron. Welcome to the Uptime Wind Energy
Allen Hall: Podcast. I’m your host, Allen Hall. I’m here with Yolanda Padron and Joel Saxum.
Rosemary Barnes is on holiday. We’re here to talk about the TPI composites, uh, bankruptcy hearings, and there’s been so much happening there behind the scenes. It’s hard to keep track of, but we’ve done a deep dive and wanted to give everybody at least a highlight of what has happened over the last couple of months.
So, uh, if you do own vessels or GE turbines, you understand what the situation is. As we all know, TPI composites, gee, was the world’s largest independent of wind blade manufacturing. Uh, they [00:01:00] were, it, they built blades for renova, Vestas, Nordex. They built blades for almost everybody, uh, names that basically power the global energy transition.
And then, uh, if, and a lot of people don’t know this, but back in December of 2023, uh, TPI struck a deal that is drawing some fire. Right now, TPI swapped $436 million in preferred stock for. $393 million in secure debt held by Oak Tree Capital and by August of last year, just a couple of months ago, TPI filed for Chapter 11.
Now the Blade Makers assets are being carved up and sold, and two of wind energy’s biggest players are stepping in to keep production running while the bankruptcy plays out. Now, Joel and Yolanda, I, I think the bankruptcy of. TPI sort of came to the industry as a little bit of a shock. Obviously [00:02:00] the, the price had fallen quite a bit.
Uh, if you’ve watched the stock price of TPI composites had been dropping for a while and didn’t have a lot of of market value. However, uh, GE and Vestas both have manufacturing facilities basically with uh, TPI composites and, and needs them to produce those blades. So the filing of the bankruptcy, I’m sure was a nervous point for Vestus and GE being really the, the two main ones.
Joel Saxum: Well, I think we talked about this a little bit off air. Is it, it shouldn’t just be Vestus and GE nervous about this now. It should be every operator that’s in either in development or still has blades under warranty. Uh, so, and this is a not a US problem, this is a global problem. ’cause TPI is a global company that serves, uh, global industry all over the place, right?
We know that a large percentage of their throughput was GE and Vestas, but also Siemens ESAs in there, you name it, right? The, any major operator’s gonna have some blades built [00:03:00] by TPI or op major, OEM. So. There isn’t gonna be much of a, uh, dark corner of the wind industry that this issue doesn’t touch. So I think they, the, one of the issues here is, um, we’ve, we’ve, we’ve heard about some issues going on with TPI, but it was almost like a, ah, they’re not, they’ll, they’ll be okay.
They, so, so something will happen. I mean, Yolanda, you had said. What was it that you said ear earlier? Like, uh, the kind of the, the, the feeling about it.
Yolanda Padron: They’ll take care of it. You know, OEMs will take care of it and we’ll be fine.
Joel Saxum: Someone’s gonna support this thing.
Yolanda Padron: Yeah. I, I think teams, you’re, you’re definitely right.
Teams really do need to at least think of a, of a plan B or a plan C to have when the dust settles so you’re not scrambling.
Allen Hall: Yeah. And it hasn’t really played out that way. Uh, Vestas has stepped in a little bit and GE has stepped in. Not in terms of acquiring any of the major assets, but I think the first question is what is Oaktree Capital’s, [00:04:00] uh, role in all this?
And that is being played out right now in front of the bankruptcy court. Uh, so when you go to bankruptcy, there’s obviously a lot of oversight that happens there, uh, and. When TPI composites entered bankruptcy, the accreditors committee had a bunch of questions about that transaction. Uh, they pointed to a December, 2023 refin refinancing deal with Oaktree and in which creditors were really suspicious of basically saying that TPI was already insolvent in 2023 and Oaktree exchanged equity for secure debt jumping ahead of everybody else in line to get paid.
So because they Oaktree has secured debt, they’re first in line to get paid. If, uh, weather Guard was involved selling parts to TPI, which thank goodness we weren’t, we would be unsecured. They wouldn’t have to pay us. So Oaktree would get paid first and everybody else is unsecured, gets paid [00:05:00] later. Uh, that’s okay.
I mean, that’s the way they, uh, they structured it. But this has led to a problem, right? So that oak tree. Uh, was supposed to release about $20 million in funding to keep the factories open, and that, that happened just a couple of weeks ago, and Oaktree refused to do it. So the amount of cash flow to keep the factories open was a real issue.
TPI was in front of the court saying, we’re in trouble. We’re gonna become insolvent. We don’t have cash flow to keep the doors open. So the blade factories nearly shut down a couple of weeks ago. However, there was a, the settlement, uh, just after that, uh, in regards to Oaktree about when the payouts happen, what Oaktree will receive, and which basically it’s, most of whatever’s gonna happen here.
So whatever, uh, TPI decides to sell or can sell, Oaktree is gonna be the recipient of those funds for most of it. I think the
Joel Saxum: difficult thing here for. The [00:06:00] general listener, me included, is understanding that this is a very complicated legal process that’s governed and it’s global, right? So it’s governed in certain court systems in different places.
And because there is also the idea of like say in the, in the United States, the SEC Securities Exchanges Commission, that kind of regulates these. Publicly traded companies. There’s a lot of lights and there’s a lot of lawyers and there’s a lot of jargon involved in this thing. And, but basically what what we’re saying is, is the way the process works when you have a, uh, a bankruptcy and insolvency, if a company has debt to certain people, there may be a list of a hundred people.
There may be a list of two, doesn’t matter. There’s certain classes of debt, right? And Oaktree has secured debt, which means. If they get paid first, if there’s anything, right? If this bankruptcy goes and, and gets, sell this, sell that, sell this, whatever’s left, goes to the secured debt and then it goes to unsecured debt.
And [00:07:00] there’s sometimes there can be different classes of unsecured debt as well. And, but if there’s not, some of it just goes by like date or value or everybody gets a percentage, it just kind of all depends on how it works out in the specific court system that the stuff takes care of. But that person.
That is the top. Um, in this case, Oaktree Capital, right? Based out of la but offices all over the world, they got about $200 billion in real estate equity and debt assets or, uh, I guess valuation. I wouldn’t say assets. Um, they are the debtor in possession, so they’re the one that’s kind of like top of the heap.
They’re kind of controlling how the. The restructuring and or sale goes alongside the court system.
Allen Hall: And the trouble is, is that when you have unsecured and secured debt, everybody that’s unsecured wants to get paid. So any material supplier that has been for in selling product to TPI over the years [00:08:00] usually has a 30, 60, 90, maybe 120 days of, of after they deliver the product to they get paid.
In that timeframe, if bankruptcy happens, all that product that’s sitting on the floor at TPI, you sort of lost it. You know, you can’t get it back and you’re not gonna get paid for it for if, if, if ever, what do you do? And so you start, you know, you start filing claims, but those, those claims most likely will never get paid.
Or if they will, they’re going to get pennies on the dollar.
Joel Saxum: Yeah. And I would imagine like, so, you know, when we, when we sit here and say from the weather guard hat, right? We put a. They go to a client, net 15, net 30, we expect to get paid in that amount of time. That’s kind of how our, basically US forwarding credit to someone else.
That’s how it works. And if you work within the wind industry, you know that the OEMs, because they are the OEMs, they have a heavier hand. Sometimes they’re net 90, net one 20. Um, once they, once they’re cool with your invoice. So you could see that some of these people that have, [00:09:00] uh, and TPI falls within that OEM category, right?
Um, you can see that they more than likely will have had longer, more favorable terms for themselves with some of these sub-suppliers. And the sub-suppliers are, think about TPI blades. It is composites, it is fabric, it’s resins, it’s all of those supply companies. Um, and you know, there may be, uh, some other.
Dead in there that you’re not, we’re not sure of. We saw some stuff with some OEMs, maybe they have some exchange agreements you paid up front for some blades or something of that sort. You didn’t get ’em. I don’t know. But there is also, and this is the
Allen covers the Trump administration’s suspension of five East Coast offshore wind leases on national security grounds, and the wave of lawsuits from developers like Equinor and Ørsted calling the reasoning pretextual. Plus Bill Gates-backed startup Airloom showcases its low-profile turbine design at CES 2026, and Brazil opens consultation on curtailment compensation for renewables.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
Five major offshore wind projects sit idle today. Billions of dollars in equipment. Thousands of workers. All waiting.
President Trump has made no secret of his feelings about wind power.
He has called offshore wind a scam. He has said these projects cost too much. He has compared them unfavorably to natural gas.
Big ugly windmills, he calls them.
His administration has moved aggressively to stop them.
First came executive orders suspending federal approvals. Then stop-work orders on projects already under construction.
In December, the Bureau of Ocean Energy Management took the boldest step yet.
It suspended the federal leases for five East Coast projects.
The reason given: national security risks identified by the Department of War in recently classified reports.
Interior Secretary Doug Burgum explained that wind turbine blade movement can interfere with radar systems. He pointed to vulnerabilities created by large-scale projects near population centers.
The companies building these projects see it differently.
Empire Wind called the reasoning hollow and pretextual.
In court filings, the company pointed to statements from the Secretary of Interior and the White House. The real motivation, they argued, relates to the administration’s opposition to offshore wind energy.
Not national security.
Politics.
These are not small projects.
Empire Wind is sixty percent complete. Four billion dollars invested. Nearly four thousand workers employed during construction. When finished, it would power half a million New York homes.
Its parent company, Norwegian energy giant Equinor, says it has coordinated closely with federal officials on national security reviews since twenty-seventeen. It has complied with every requirement.
Revolution Wind is eighty-seven percent finished. A five billion dollar venture between Danish company Ørsted and Global Infrastructure Partners.
The project went through more than nine years of federal review before approval in twenty-twenty-three. National security considerations were comprehensively addressed, the company says.
Workers sat waiting on the water when construction was halted in August. A federal judge allowed them to resume in September.
Now they’re stopped again.
Both companies warn that the ninety-day suspension will likely result in cancellation. Offshore wind construction depends on highly choreographed specialized vessels. Complex sequencing. Narrow weather windows.
You cannot simply pause and restart.
Dominion Energy has also filed suit over its Coastal Virginia Offshore Wind project. The company calls the suspension arbitrary and capricious.
The legal battles are piling up.
In December, a federal judge in Massachusetts declared an earlier stop-work order illegal. Seventeen states had sued.
New York Attorney General Letitia James led the coalition.
As New Yorkers face rising energy costs, she said, we need more energy sources, not fewer. Wind energy is good for our environment, our economy, and our communities.
She called the administration’s actions a reckless and unlawful crusade against clean energy.
Four East Coast governors issued a joint statement. New York’s Kathy Hochul. Massachusetts’ Maura Healey. Connecticut’s Ned Lamont. Rhode Island’s Daniel McKee.
Coastal states are working hard to build more energy, they said. These projects have created thousands of jobs. They have injected billions in economic activity into our communities.
The National Ocean Industries Association is calling for an end to the pause.
Offshore wind improves national security, says president Erik Milito. It shifts economic, infrastructure, and geopolitical advantages to the United States.
The Interior Department has declined to comment on the lawsuits.
Meanwhile, at CES twenty-twenty-six in Las Vegas, a different kind of wind power is making news.
A startup called Airloom is showcasing a radical new turbine design.
Backed by Bill Gates.
No towering blades reaching for the sky. Instead, a low-profile system about sixty-six to ninety-eight feet high.
Picture a loop of adjustable wings traveling along a track. More roller coaster than windmill.
The company claims forty percent less material. Forty-seven percent lower cost. Eighty-five percent faster deployment.
They say projects can be built in under a year instead of five.
And unlike traditional turbines, these can go places conventional wind farms cannot. Remote islands. Mountainous terrain. Near airports. Even military bases.
Places where spinning blades would be impractical.
The company broke ground on a pilot site last June. Commercial demonstrations are planned for twenty-twenty-seven.
Down in Brazil, the government is tackling a different wind energy challenge.
What happens when you generate more power than the grid can handle?
Brazil’s Ministry of Mines and Energy has opened a public consultation. The question: how should wind and solar generators be compensated when their output gets curtailed?
The government wants to balance legal certainty for investors against excessive costs for electricity consumers.
Stakeholders have until January sixteenth to weigh in.
So there you have it.
The near future of US offshore wind will be decided in court rooms over the next few weeks.
The curtailment of Brazilian renewables will be bandied about in January.
And a Bill Gates supported wind company is going to try it’s hand at power remote locations.
I hope you had new year’s celebration. 2026 is going to be an interesting ride.
And that’s the wind energy news for the 5th of January, 2026.
Join us tomorrow for the Uptime Wind Energy Podcast
Allen and Joel are joined by Jeremy Heinks of CICNDT to discuss the critical need for pre-installation blade inspections, especially as safe-harbored blades from years past are rushed into service. They cover advanced NDT technologies including robotic CT scanning, blade bolt inspection for cracking issues, and how operators can extend turbine life beyond the typical 10-year repower cycle.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
Welcome to Uptime Spotlight, shining Light on Wind. Energy’s brightest innovators. This is the Progress Powering Tomorrow.
Allen Hall: Jeremy, welcome back to the show. Thanks for having me. Well, the recent changes in the IRA bill are. Pushing a lot of projects forward very quickly at the moment, and as we’re learning, there’s a number of safe harbor blades sitting in yards and a rush to manufacture blades to get them up and meet the, uh, treasury department’s criteria for, for being started, whatever that means.
At the moment, I think we’re gonna see a big question about the quality of the blades, and it seems to me. The cheapest time to quickly [00:01:00] look at your blaze before you start to hang them is while they’re still on the ground. And to get some n DT experience out there to make sure that what you’re hanging is appropriate.
Are you starting to see that push quite yet? No, not not at
Jeremy Heinks: the level we’d like to see it. Um, as far as getting the inspections in, yeah, we have been seeing the push to get the, get these blades out. Uh, but, uh, the, the, the few that we have been able to get our eyes on aren’t looking good. The quality definitely down.
And we’ve just had a customer site come back with some, some findings that were surprising for a brand new blade that hasn’t been the up tower yet and in use. So, um, it is much easier for us to get the, uh, technology and the personnel to a blade that’s on the ground. It’s cheaper, it’s quicker. We can go through many, many more blades, uh, with inspections.
Uh, it’s just access is just easier. Always comes down to access.
Joel Saxum: That customer that you had there, like what was their [00:02:00]driver? Right? Did they feel the pain at some point in time? Did they, did they have suspicions of something not right? New factory? Like, I don’t know. Why would some, why is someone picking that over someone?
Not because like you said, overwhelmingly. The industry doesn’t really do this. You know, even just getting visual inspections of blades on the ground before they get hung is tough sometimes with construction schedules and all these different things, moving parts. So you had someone that actually said, Hey, we want to NDT these blades.
What was their driver behind that?
Jeremy Heinks: So we, uh, we had done a previous, uh, route of inspections on some older ative of theirs that were,
Speaker 5: um,
Jeremy Heinks: getting. Kinda along in the tooth, if you will. Uh, so they’ve added some experience. They saw what we could bring to the table as far as results and, and, and information and data on those blades.
Uh, and it all turned out to be, um, pretty reliable. So, um, you know, we educated them on, you know, if you have new blades coming in or even use the blades coming in for replacement, that it’s not a bad idea to get at least a, a sample it. And, uh, [00:03:00] basically that’s what they call us in to do. They had some brand new blades come in.
For some new turbines they’re putting up. And, uh, they wanted the sampling. We did a sampling and the sample showed that, uh, they have an issue of these, these brand new blades.
Joel Saxum: So, okay, so what happens then? Right? Because I’ve been a part of some of these factory audits and stuff, and when you catch these things in the factory, you’re like, Hey, where we got these 30 defects?
And then the factory goes back against their form, their form, you know, their forms and they go, okay, material checklist is a, we’ll fix 24 of ’em. The other six are on you or whatever that may be. What happens when you find these things in the field at a construction site right? Then does that kick off a battle between the, the new operator and that OEM or, or what’s the action there?
Jeremy Heinks: Yeah, so we’ve been on the OEM side and been through what you just explained, um, multiple times and helped a bunch of the OEMs on that stuff, that stuff. But unfortunately, when you’re in the field and you find the same thing, it’s, it’s a whole different ball game. Um, they typically. We won’t see any of that.
We don’t, we won’t be able to [00:04:00] see what the OEM actually does unless we have informa, you know, information or channels that, that are a little bit different, uh, than normal to, uh, get that information. So, um, but yeah, so we, we’ll give this information over to the customer. Uh, they’ll go to their supplier and then that’ll turn into a.
To a dance and, uh, where everybody’s trying to pass the buck, basically, right? So, um, unfortunately that’s the way it’s been. We will see how this one turns out. It, it all depends on, on the relationship between that OEM and the customer and the end user.
Joel Saxum: So, so this is my, my last question about this and, and then I want to, of course, jump topics we have a lot of talk about here today.
But the question being, okay, so say they do repairs. Is it then a good idea to bring you guys back in after those repairs are done to say NDT? Everything looks good here. Um, basically clear to fly.
Jeremy Heinks: Yeah. [00:05:00] So, uh, post inspection on repairs is always a good idea. Um, the aviation side is, it’s commonplace to, uh, post in inspect repair.
So yeah, definitely, uh, we’d wanna come back. Um, you know, and that’s something we’re working on too in-house as a, uh, working on a new training. Syllabus to where we can give some of the basic NDT tools to, uh, end users so that if a repair company would come in, they would be able to have their technicians do a quick, you know, quick test.
Uh, it’s what we used to call like an operator level inspection. And then if they saw some of the stuff we trained ’em to that we could come back and, and bring in a level three or a level two and look at their information and then maybe do a reinspection if they thought they saw something that was bad.
Allen Hall 2025: Joel, you and I had discussed a couple of months ago with an operator in the United States and the Midwest that was gonna be building a repowering, a wind farm with turbines, uh, that were a couple of years old. Remember that discussion about what version of [00:06:00] the blade are those? And it was an early version.
I was surprised how long those blades had been sitting in the yard, and we said, well, it’s gonna have a B and C problem. You need to get somebody out there to inspect those blades before you hang them. That’s the perfect case for NDT to get out there and look because it wasn’t like every blade had a serial defect.
It was just kind of a random thing that was happening. Do you remember that situation?
Joel Saxum: Yeah, and it was really interesting too because you know, we’re on like that specific blade. We’re on like version nine of it out in the field right now. But since I think those were like in 20 19, 20 20, they had been safe harbored from they, those blades have the advantage of now having 3, 4, 5, 6 years of.
History within the market of all of the issues that pop up. So we were able to tell that operator, Hey, since these things haven’t flown yet, we know it’s this, this, this, and this. You should have NDT come out here and do this. You should do this. This basically preemptive repair, this proactive measure before you fly these [00:07:00] things.
Um, and I think what we see right now, Alan, like you said, just to open the episode with IRA bill changes and. And these new legislation coming up, there’s a lot of stuff coming out of Safe Harbor that’s gonna get flown.
Allen Hall 2025: Oh, it’s gonna have a huge, uh, amount of blades that have been sitting there for a couple of years.
And, but if you, the operator haven’t used those blades or don’t know the service history of those blades, it’s kind of a mystery and you better be calling other operators that are using them. But ultimately, when it gets down to it, before you hang those blades, and I know everybody’s in a rush to hang blades.
You better take a look at ’em with NDT, especially if there are known issues with those blades. And the the problem is you can’t just do a walk down, which is what I think a lot of operators are doing right now. Send a technician down to make a look. Make sure the blade’s all in one piece, like I guess that’s where they’re at.
Or we’ll walk inside and kick the tires and make sure all the bond lines are there. It’s a lot more complicated than that, and particularly if you know there’s a source of problem on a particular [00:08:00] blade, you can’t see it. It can be buried deep inside. How are you gonna know without having somebody with NDT experience?
Joel Saxum: This is the interesting thing too, here with that specific case that that developer will call ’em. They said, I talked with the OEM. They said there’s nothing wrong with these blades. And they like, that was like, they’re like, they’re like, yeah, we checked with them. They said, there’s no issues. I said, you must have been talking to a sales guy because anybody from that engineering team is gonna tell you that.
Or maybe they don’t want to, right? They, of course they don’t want to come clean with this, but that’s why we, that’s why we have the, like the uptime network an
Allen, Joel, and Rosemary break down the Trump administration’s sudden halt of five major offshore wind projects, including Coastal Virginia Offshore Wind and parts of Vineyard Wind, over national security claims the hosts find questionable. They also cover the FCC’s ban on new DJI drone imports and what operators should do now, plus Fraunhofer’s latest wind research featured in PES Wind Magazine.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
The Uptime Wind Energy Podcast brought to you by Strike Tape, protecting thousands of wind turbines from lightning damage worldwide. Visit strike tape.com. And now your hosts, Alan Hall, Rosemary Barnes, Joel Saxon, and Yolanda Padron. Welcome to the Uptime Wind Energy
Allen Hall: Podcast. I’m your host, Alan Hall, and I’m here with.
Rosemary Barnes in Australia and Joel Saxon is down in Austin, Texas. Yolanda Padron is on holiday, and well, there’s been a lot happening in the past 24 hours as we’re recording this today. If you thought the battle over offshore wind was over based on some recent court cases, well think again. The Trump administration just dropped the hammer on five major offshore wind projects.
Exciting. National security concerns. The Secretary of the Interior, Doug Bergham announced. The immediate pause affecting projects from Ted Eor, CIP and Dominion Energy. So Coastal [00:01:00] Virginia, offshore wind down in Virginia, right? Which is the one we thought was never gonna be touched. Uh, the Department of War claims classified reports show these giant turbines create radar interference that could blind America’s defenses.
Half of vineyard winds, turbines are already up and running, producing power, by the way. Uh, and. I guess they, it sounds like from what I can see in more recent news articles that they turn the power off. They just shut the turbines off even though those turbines are fully functioning and delivering power to shore.
Uh, so now the question is what happens? Where does this go? And I know Osted is royally upset about it, and Eor obviously along with them, why not? But the whole Denmark us, uh, relationship is going nuclear right now.
Joel Saxum: I think here’s a, here’s a technical thing that a lot of people might not know. If you’re in the wind industry in the United States, you may know this.
There’s a a few sites in the northern corner of Colorado that are right next to Nebraska, [00:02:00] and that is where there is a strategic military installations of subsurface, basically rocket launches and. And in that entire area, there is heavy radar presence to be able to make sure that we’re watching over these things and there are turbines hundreds of meters away from these launch sites at like, I’ve driven past them.
Right? So that is a te to me, the, the radar argument is a technical mute point. Um, Alan, you and I have been kind of back and forth in Slack. Uh, you and I and the team here, Rosemary’s been in it too, like just kind of talking through. Of course none of us were happy. Right. But talking through some of the points of, of some of these things and it’s just like basically you can debunk almost every one of them and you get down to the level where it is a, what is the real reasoning here?
It’s a tit for tat. Like someone doesn’t like offshore wind turbines. Is it a political, uh, move towards being able to strengthen other interests and energy or what? I don’t know. ’cause I can’t, I’m not sitting in the Oval Office, but. [00:03:00] At the end of the day, we need these electrons. And what you’re doing is, is, is you’re hindering national security or because national security is energy security is national security, my opinion, and a lot of people’s opinions, you’re hindering that going forward.
Allen Hall: Well, let’s look at the defense argument at the minute, which is it’s, it’s somehow deterring, reducing the effectiveness of ground radars, protecting the shoreline. That is a bogus argument. There’s all kinds of objects out on the water right now. There’s a ton of ships out there. They’re constantly moving around.
To know where a fixed object is out in the water is easy, easy, and it has been talked about for more than 15 years. If you go back and pull the information that exists on the internet today from the Department of Defense at the time, plus Department of Interior and everybody else, they’ve been looking at this forever.
The only way these turbines get placed where they are is with approval from the Department of Defense. So it isn’t like it didn’t go through a review. It totally did. They’ve known about this for a long, long time. So now to bring up this [00:04:00] specious argument, like, well, all of a sudden the radar is a problem.
No, no. It’s not anybody’s telling you it’s a classified. Piece of information that is also gonna be a bogus argument because what is going along with that are these arguments as well, the Defense Department or Department of War says it’s gonna cause interference or, or some degradation of some sort of national defense.
Then the words used after it have nothing to do with that. It is, the turbines are ugly, the turbines are too tall. It may interfere, interfere with the whales, it may interfere with fishing, and I don’t like it. Or a, a gas pipeline could produce more power than the turbines can. That that has nothing to do with the core argument.
If the core argument is, is some sort of defense related. Security issue, then say it because it, it can’t be that complicated. Now, if you, if you knew anything about the defense department and how it operates, and also the defenses around the United States, of which I know a little bit about, [00:05:00] having been in aerospace for 30 freaking years, I can tell you that there are all kinds of ways to detect all kinds of threats that are approaching our shoreline.
Putting a wind turbine out there is not
Joel Saxum: gonna stop it. So the, at the end of the day, there is a bunch, there’s like, there’s single, I call them metric and intrinsic, right? Metric being like, I can put data to this. There’s a point here, there’s numbers, whatever it may be. And intrinsic being, I don’t like them, they don’t look that good.
A pipeline can supply more energy. Those things are not necessarily set in stone. They’re not black and white. They’re, they’re getting this gray emotional area instead of practical. Right. So, okay. What, what’s the outcome here? You do this, you say that we have radar issues. Do we do, does, does the offshore substation have a radar station on it for the military or, or what does that, what does that look like?
Allen Hall: Maybe it does, maybe it doesn’t, but if the threat is what I think it is, none of this matters. None of this matters. It’s already been discussed a hundred times with the defense [00:06:00] department and everybody else is knowledgeable in this, in this space. There is no way that they started planted turbines and approve them two, three years ago.
If it was a national security risk, there is no chance that that happened. So it really is frustrating when you, when you know some of the things that go on behind the scenes and you know what, the technical rationales could be about a problem. And that’s not what’s being talked about right now that I don’t like being lied to.
Like, if you want to have a, a political argument, have a political argument, and the, if the political argument is America wants Greenland from Denmark, then just freaking say it. Just say it. Don’t tie Massachusetts, New York, Connecticut, new J, all, all these states up until this nonsense, Virginia, what are we doing?
What are we doing? Because all those states approved all those projects knowing full well what the costs were, knowing how tall the turbines were, knowing how long it was gonna take to get it done, and they all approved them. This [00:07:00] is not done in a vacuum. These states approve these projects and these states are going to buy that power.
Let them, you wanna put in a a, a big gas pipeline. Great. How many years is that gonna take, Doug? How many years is that gonna take? Doug Bergham? Does anybody know? He, he doesn’t know anything about that.
Joel Saxum: You’re not getting a gas pipeline into the east coast anytime soon whatsoever. Because the, the east, the east coast is a home of Nimbyism.
Allen Hall: Sure, sir. Like Massachusetts. It’s pretty much prohibited new gas pipelines for a long time. Okay. That’s their choice. That is their choice. They made that choice. Let them live with it. Why are you then trying to, to double dip? I don’t get it. I don’t get it. And, but I do think, Joel, I think the reason. This is getting to the level it is.
It has to do something to do with Greenland. It has something to do with the Danish, um, uh, ambassador or whoever it was running to talk to, to California and Newsom about offshore tournaments. Like that was not a smart move, my opinion, but [00:08:00] I don’t run international relations with for Denmark. But stop poking one another and somebody’s gotta cut this off.
The, the thing I think that the Trump administration is at risk at is that. Or instead, Ecuador has plenty of cash. They’re gonna go to court, and they are most likely going to win, and they’re going to really handcuff the Trump administration to do anything because when you throw bull crap in front of a judge and they smell it, the the pushback gets really strong.
Well, they’re gonna force all the discussion about anything to do with offshore to go through a judge, and they’re gonna decide, and I don’t think that’s what the Trump administrati
Allen delivers the 2025 state of the wind industry. For the first time, wind and solar produced more electricity than coal worldwide. The US added 36% more wind capacity than last year, Australia’s market hit $2 billion, and China extended its 25-year streak of double-digit growth. But 2025 also brought challenges: the Trump administration froze offshore wind projects, Britain paid billions to curtail turbines, and global wind growth hit its lowest rate in two decades.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
Allen Hall: 2025, the year the wind industry will never forget. Let me tell you about a year of records and reversals of triumphs and a bunch of turbulence. First, the good news. Renewable energy has done something historic for the first time ever. Wind and solar produce more electricity than coal worldwide. The energy think tank embers as global electricity.
Demand grew 2.6% in the first half of the year. Solar generation jumped by 31%, wind rose nearly 8%. Together they covered 83% of all new demand. Coal share of global electricity fell to 33.1%. Renewables rose to 34.3. A [00:01:00]pivotal moment they called it. And in the United States, turbines kept turning wood.
McKinsey and the American Clean Power Association report America will add more than seven gigawatts of wind this year. That is 36% more than last year in the five year outlook. 46 gigawatts of new capacity through 2029. Even Arkansas by its first utility scale wind project online through Cordio crossover Wind, the powering market remains strong.
18 projects will drive 2.5 gigawatts of capacity additions over the next three years. And down under the story is equally bright. Australia’s wind energy market reached $2 billion in 2024 by. 2033 is expected to reach $6.7 billion a growth rate of nearly 15% per year. In July, Australian regulators streamlined permitting for wind farms, and in September remote mining operations signed [00:02:00] long-term wind power agreements while the world was building.
China was dominating when power output in China is on track for more than 10% growth for the 25th year in a row. That’s right, 25 years in a row. China now accounts for more than 41% of all global wind power production a record. And China’s wind component exports up more than 20%. This year, over $4 billion shipped mainly to Europe and Asia, but 2025 was not smooth sailing, as we all know.
In fact, global wind generation is on track for its smallest growth rate in more than 20 years. Four straight months of year over year. Declines in Europe, five months of declines in North America and even Asia registered rare drops in September and October. The policy wind shifted too in the United States.
The Trump administration froze offshore wind project work in the Atlantic. The interior [00:03:00] Department directed five large scale projects off the East Coast to suspend activities for at least 90 days. The Bureau of Ocean Energy Management cited classified national security information.
That’s right. Classified information. Sure. Kirk Lippold, the former commander of the USS Coal. Ask the question on everyone’s mind. What has changed in the threat environment? Through his knowledge, nothing. Democratic. Governors of Connecticut, Rhode Island, Massachusetts, and New York issued a joint statement.
They called the pause, a lump of dirty coal for the holiday season, for American workers, for consumers, for investors. Meanwhile, in Britain, another kind of problem emerged the cost of turning off wind farms when the grid cannot cope, hit 1.5 billion pounds. This year, octopus Energy, Britain’s biggest household supplier is tracking it payments to Wind farms to switch off 380 [00:04:00]million pounds.
The cost of replacing that wasted power with. Gas 1.08 billion pounds. Sam Richards of Britain remade called it a catastrophic failure of the energy system. Households are paying the price. He said, we are throwing away British generated electricity and firing up expensive gas plants instead. In Europe, the string of dismal wind power auctions also continued some in Germany and Denmark received no bids at all.
Key developers pushed for faster permitting and better auction terms. Orsted and Vestas led the charge. And in Japan soaring cost estimates cause Mitsubishi to pull out of three offshore projects. Projects that were slated to start operations by 2030. Gone. The Danish shore Adapting Ted, the world’s largest offshore wind developer sold a 55% stake in its greater Chiang two offshore Wind Farm in Taiwan.
The Buyer [00:05:00] Life Insurance Company Cafe, the price around $789 million. With that deal, Ted has signed divestments, totaling 33 billion Danish crowns during 2025. The company is trying to restore investor confidence amid rising costs, supply chain disruptions, and uncertainty from American policy shifts.
Meanwhile, the International Energy Agency is sounding the alarm director, Fadi Beal says Solar will account for 80% of renewable capacity growth through the end of the decade. And that sounds about right. So it’s got a bunch of catch up to do, but policymakers need to pay close attention. Supply chain, security grid integration challenges and the rapid rise of renewables is putting increasing pressure on electricity systems worldwide.
Curtailment and negative price events are appearing in more markets, and the agency is calling for urgent [00:06:00] investments in grid energy storage and flexible generation. And what about those tariffs? We keep reading about wood McKenzie projects.
Tariffs will drive up American turbine costs in 2026 in total US onshore wind capital expenditure is projected to increase 5% through 2029. US wind turbine pricing is experiencing obviously unprecedented uncertainty. Domestic manufacturing over capacity would normally push down prices, but tariff exposure on raw materials is pushing them up.
And that’s by design of course. So where does this leave us? The numbers tell the story. Renewables overtook Coal. America will install 36% more turbines. This year, Australia’s market is booming. China continues. Its 25 year streak of double digit growth, but wind generation growth worldwide is at its lowest in two decades.
And policy reversals in America have stalled. [00:07:00] Offshore development and Britain is paying billions to turn off turbines because the grid cannot handle the power. Europe’s auctions are struggling and Japan’s developers are pulling back and yet. The turbines keep turning. You see, wind energy has had good years and bad years, but 20 25, 20 25 may be one of the worst.
The toxic Stew Reuters called it major policy reversals, corporate upheaval, subpar generation in key markets, and yet the industry sees reasons to expect improvement changes to auction incentives, supply chain adjustments, growing demand for power from all sources. The sheer scale of China’s expansion means global wind production will likely keep hitting new highs, even if growth grinds to a halt in America, even if it stays weak.
In Europe, 2025 was a year of records and reversals. The thing to remember through all of this [00:08:00] is wind power is low cost power. It is not a nascent industry. And it is time to deliver more electricity, more consistency. Everyone within the sound of my voice is making a difference. Keep it up. You are changing the future for the better.
2025 was a rough year and I’m looking forward to 2026 and that’s the state of the wind industry for December 29th, 2025. Have a great new year.
Allen, Joel, Rosemary, and Yolanda break down the TPI Composites bankruptcy fallout. Vestas is acquiring TPI’s Mexico and India operations while a UAE company picks up the Turkish factories. That leaves GE in a tough spot with no clear path to blade manufacturing. Plus the crew discusses blade scarcity, FSA availability floors, and whether a new blade manufacturer could emerge.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
Allen Hall: [00:00:00] Welcome to the Uptime Wind Energy Podcast. I’m your host, Allen Hall. I’ve got Yolanda Padron and Joel Saxum in Texas. And Rosemary Barnes is back from her long Vacation in Australia and TPI. Composites is big in the news this week, everybody, because they’re in bankruptcy hearings and they are selling off parts of the business.
Vestas is, at least according to News Reports positioned to acquire. A couple of the LLCs down in Mexico. So there’s uh, two of them, TPI in Mexico, five LLC, and TPI in Mexico, six LLC. There are other LLCs, of course involved with this down in Mexico. So they’re buying, not sure exactly what the assets are, but probably a couple of the factories in which their blades were being manufactured in.
Uh, this. Is occurring because Vestas stepped in. They were trying to have an auction and Vestas stepped forward and just ended up buying these two LLCs. [00:01:00] Other things that are happening here, Joel, is that, uh, TPI evidently sold their Turkish division. Do you recall to who they sold? That, uh, part of the
Joel Saxum: business too, two companies involved in that, that were TPI Turkey, uh, and that was bought by a company called XCS composites.
Uh, and they are out of the United Arab Emirates, so I believe they’re either going to be Abu Dhabi or Dubai based. Uh, but they took over the tube wind blade manufacturing plants in Isme, uh, also a field service and inspection repair business. And around 2,700 employees, uh, from the Turkish operation. So that happened just, just after, I mean, it was a couple weeks after the bankruptcy claim, uh, went through here in August, uh, in the States.
So it went August bankruptcy for TPI, September, all the Turkish operations were bought and now we’ve got Vestas swooping in and uh, taking a bunch of the Mexican operations.
Allen Hall: Right. And [00:02:00] Vestas is also taking TPI composites India. Which is a part of the business that is not in bankruptcy, uh, that’s a, a separate business, a separate, basically LLC incorporation Over in India, the Vestus is going to acquire, so they’re gonna acquire three separate things in this transaction.
The question everybody’s asking today after seeing this Vestus move is, what is GE doing? Because, uh, GE Renova has a lot of blades manufactured by TPI down in Mexico. No word on that. And you would think if, if TPI is auctioning off assets that GE renova would be at the front of the line, but that’s not what we’re hearing on the ground.
Joel Saxum: Yeah, I mean it’s, the interesting part of this thing is for Vestas, TPI was about 35% of their blade capacity for manufacturing in 2024. If their 30, if, if Vestas was 35%, then GE had to be 50%. There [00:03:00] demand 60. So Vesta is making a really smart move here by basically saying, uh, we’ve gotta lock down our supply chain for blades.
We gotta do something. So we need to do this. GE is gonna be the odd man out because, I mean, I think it would be a, a cold day in Denmark if Vestas was gonna manufacture blades for ge.
Allen Hall: Will the sale price that Vest has paid for this asset show up in the bankruptcy? Hearings or disclosures? I think that it would, I haven’t seen it yet, but eventually it’ll, it must show up, right?
All, all the bankruptcy hearings and transactions are, they have an overseer essentially, what happens to, so TPI can’t purchase or sell anything without an, um, getting approved by the courts, so that’ll eventually be disclosed. Uh, the Turkish sale will be, I would assume, would be disclosed. Also really curious to see what the asset value.
Was for those factories.
Joel Saxum: So the Turkish sale is actually public knowledge right now, and [00:04:00] that is, lemme get the number here to make sure I get it right. 92.9 million Euros. Uh, but of, of course TPI laden with a bunch of non-convertible and convertible debt. So a ton of that money went right down to debt.
Uh, but to be able to purchase that. They had to assu, uh, XCS composites in Turkey, had to assume debt as is, uh, under the bankruptcy kind of proceedings. So I would assume that Vestas is gonna have to do the same thing, is assume the debt as is to take these assets over and, uh, and assets. We don’t know what it is yet.
We don’t know if it’s employees, if it’s operations, if it’s ip, if it’s just factories. We don’t know what’s all involved in it. Um, but like you said, because. TPI being a publicly traded company in the United States, they have to file all this stuff with SEC.
Allen Hall: Well, they’ll, they’re be delisted off of. Was it, they were
Joel Saxum: in Nasdaq?
Is that where they were listed? The India stuff that could be private. You may ne we may not ever hear about what happened. Valuation there.
Allen Hall: Okay, so what is the, the [00:05:00] future then for wind blade production? ’cause TPI was doing a substantial part of it for the world. I mean, outside of China, it’s TPI. And LM a little bit, right?
LM didn’t have the capacity, I don’t think TPI that TPI does or did. It puts
Joel Saxum: specifically GE in a tight spot, right? Because GEs, most of their blades were if it was built to spec or built to print. Built to spec was designed, uh, by LM and built by lm. But now LM as we have seen in the past months year, has basically relinquished themselves of all of their good engineering, uh, and ability to iterate going forward.
So that’s kind of like dwindling to an end. TPI also a big side of who makes blades for ge if Vestas is gonna own the majority of their capacity, Vestas isn’t gonna make blades for ge. So GEs going to be looking at what can we, what can we still build with lm? And then you have the kind of the, the odd ducks there.
You have the Aris, [00:06:00] you have the MFG, um, I mean Sonoma is out there. This XCS factory is there still in Turkey. Um, you may see some new players pop up. Uh, I don’t know. Um, we’ll see. I mean, uh, Rosemary, what’s, what’s your take? Uh, you guys are starting to really ramp up down in Australia right now and are gonna be in the need of blades in general with this kind of shakeup.
Rosemary Barnes: What do we say? My main concern is. Around the service of the blades that we’ve already got. Um, and when I talk to people that I know at LM or XLM, my understanding is that those parts of the organization are still mostly intact. So I actually don’t expect any big changes there. Not to say that the status quo.
Good enough. It’s not like, like every single OEM whose, um, FSAs that I work with, uh, support is never good enough. But, um, [00:07:00] it shouldn’t get any worse anyway. And then for upcoming projects, yeah, I, I don’t know. I mean, I guess it’s gonna be on a case by case basis. Uh, I mean, it always was when you got a new, a new project, you need a whole bunch of blades.
It was always a matter of figuring out which factory they were going to come from and if they had capacity. It’ll be the same. It’s just that then instead of, you know, half a dozen factories to choose from, there’s like, what, like one or two. So, um, yeah, I, that’s, that’s my expectation of what’s gonna happen.
I presumably ge aren’t selling turbines that they have no capability to make blades for. Um, so I, I guess they’re just gonna have a lot less sales. That’s the only real way I can make it work.
Allen Hall: GE has never run a Blade factory by themselves. They’ve always had LM or somebody do it, uh, down in Brazil or TPI in Mexico or wherever.
Uh, are we thinking that GE Renova is not gonna run a Blade Factory? Is that the thought, or, or is [00:08:00] that’s not in the cards either.
Rosemary Barnes: I don’t think it’s that easy to just, just start running a Blade Factory. I mean, I know that GE had blade design capabilities. I used to design the blades that TPI would make.
So, um, that part of it. Sure. Um, they can, they can still do that, but it’s not, yeah, it’s, it’s not like you just buy a Blade factory and like press start on the factory and then the, you know, production line just starts off and blades come out the other end. Like there is a lot of a, a lot of knowhow needed if that was something that they wanted to do.
That should have been what they started doing from day one after they bought lm. You know, that was the opportunity that they had to become, you know, a Blade factory owner. They could have started to, you know, make, um, have GE. Take up full ownership of the, the blade factories and how that all worked. But instead, they kept on operating like pretty autonomously without that many [00:09:00] changes at the factory level.
Like if they were to now say, oh, you know, hey, it’s, uh, we really want to. Have our own blade factories and make blades. It’s just like, what the hell were you doing for the last, was it like seven years or something? Like you, you could easily have done what? And now you haven’t made it as hard for yourselves as possible.
So like I’m not ruling out that that’s what they’re gonna try and do, because like I said, I don’t think it’s been like executed well, but. My God, it’s like even stupid of the whole situation. If that’s where we end up with them now scrambling to buil
Allen covers forecasts for 46 GW of new US wind capacity by 2029, driven by data centers and reshoring. Plus Equinor’s Empire Wind project stays on track for late 2026, RWE gets approval for the Five Estuaries offshore wind farm in the UK, and a Scottish startup raises funding for modular multi-rotor turbines.
Sign up now for Uptime Tech News, our weekly Substack newsletter on all things wind technology. This episode is sponsored by StrikeTape by Weather Guard Lightning Tech. Follow us on YouTube, Linkedin and visit Weather Guard on the web. And subscribe to Engineering with Rosie on YouTube! Have a question we can answer on the show? Email us!
There is an old saying about the wind. You cannot see it. You cannot hold it. But you can harness it. And right now, people around the world are doing exactly that.
After years of sluggish growth, American wind power is waking up. Wood Mackenzie reports the United States will add more than seven gigawatts of new wind capacity in 2025. That is a thirty-six percent jump from this year. And by 2029? Forty-six gigawatts of new capacity coming online.
Why now? Because after a decade of flat electricity demand, America is hungry for power again. Data centers. Electric vehicles. Factories returning home. Demand is growing three percent annually now, up from less than one percent before.
Out West, they are leading the charge. Wyoming. New Mexico. Colorado. Pattern Energy’s three-point-five gigawatt SunZia project in New Mexico alone will make them the top wind installer in 2026. And Invenergy’s Towner Energy Center in Colorado? Nine hundred ninety-eight megawatts. The single largest project expected to come online in 2027.
But here is where it gets interesting. Off the coast of Long Island, a different kind of story is unfolding. The Empire Wind project. Eight hundred ten megawatts of offshore wind power. Enough to power half a million homes in Brooklyn. Norwegian energy giant Equinor is building it. And despite the political headwinds blowing against offshore wind, New York is standing firm. First electricity expected by late 2026.
Across the Atlantic, Britain just gave the green light to something bigger. The Five Estuaries offshore wind farm. Seventy-nine turbines off the coast of Suffolk and Essex. At least twenty-three miles from shore. German energy company RWE is building it. When complete, it will power one million British homes. One million.
Meanwhile, Europe is putting its money where the wind blows. Austria’s Erste Group just signed a two hundred million euro deal with the European Investment Bank. Part of an eight billion euro program to strengthen European wind turbine manufacturers. As Karl Nehammer, the bank’s vice president, put it: Europe is serious about keeping wind manufacturing jobs at home.
Now… You might think wind power is all about going big. Massive offshore farms. Turbines taller than skyscrapers. But in Stirling, Scotland, three entrepreneurs have a different idea. Adam Harris. Paul Pirrie. Peter Taylor. They founded a company called Myriad Wind Energy Systems.
Their invention? Small modular wind turbines. Multiple rotors mounted in a framework. No cranes needed. No special roads. Install them on a farm. On a factory. On a remote site where traditional turbines could never go. This week, they secured eight hundred sixty-five thousand pounds in seed funding. Led by Tricapital Angels. Their first prototype? A fifty-kilowatt unit scheduled for 2026.
From Wyoming to New York. From Essex to Austria. From the North Sea to the Scottish Highlands. Wind energy is not waiting for permission. It is happening. Forty-six gigawatts in America alone by decade’s end. Billions of euros flowing in Europe. Innovators in Scotland proving that sometimes, smaller is smarter.
You cannot see the wind. But you can see what it is building.
That’s the wind industry news for the 22nd of December 2025. Happy Holidays folks, wherever you may be.
Allen and Joel are joined by Gregory Kocsis, lifting technology expert, to discuss the gap between European and US crane operations. They cover multi-brand blade handling tools, up-tower cranes, and why the aftermarket service sector is driving innovation in major component replacements.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
Welcome to Uptime Spotlight, shining light on wind. Energy’s brightest innovators. This is the Progress Powering tomorrow.
Allen Hall: Greg, welcome to the program.
Joel Saxum: Thank you guys. Nice to meet you.
Allen Hall: we have a lot to talk about today. there’s so many heavy lifts. Complex lifts on ships, lifts on, and mountaintops lifts in really odd places. it’s getting more complicated as we go along, and obviously Joel and I talked to a lot of operators and one of the things they complain about more recently is, Hey, we’re having trouble with lifts and we’re having damage that we didn’t have in the past.
And it’s complicated, and the access to cranes is more complicated. Everything’s become more complicated. What are some of the issues that you see on the other end of the spectrum, being in that [00:01:00] business?
Gregory Kocsis: Yeah. Basically what I see that, so I, I work both, in the last decade in both US and Europe.
and I can see that there’s no lack of technologies. there’s a lot of tech that’s, solving a lot of issues. but mostly what you can see that there’s a slight gap. I would say that, There’s two, two prong. the US it seems, some of the farm are really big, and that’s good for scale.
but the, technologies are a little bit behind, I would say 10, 15 years sometimes. so that also means that the. The solutions that they use to, to change a blade or change a gearbox or how to lower a full, rotor, it’s always, lower tech and based on practicalities.
Joel Saxum: Greg, why do you think that is?
Do you think it’s just simply because, yeah, like the eu, so you’ve done a lot of work in the eu, of course, onshore, offshore, and globally. But in the EU it [00:02:00] seems like tighter quarters maybe, harder to get around some of the wind farms. Is, does that drive some of the difference in innovation?
Because like you said, you there’s the innovation is there, the tooling is there. The EU has been doing it for a while. It’s just that in the states it seems like we’re more, for lack of a better term, like agricultural about things. It’s kinda Hey, this has worked for 40 years, so this is what’s how we’re gonna do it.
Gregory Kocsis: Yeah, it’s always some, nature driven forces are there. So in the, in, for example, if you look at Germany, there’s, a lot of owners and the size of sites are three turbines, four turbines. And if you look at the platform that’s available around turbine is very limited. I was also on a site last year in, North Germany where basically, the truck could park right next to the turbine, but they had to clear some trees, in order to, make sure that they can put the full rotor down. Because since, since they installed it, forest grew, [00:03:00] much, much more. That was another case in, Rotterdam when we were right next to the channel and they had to, close the road.
that was, docking. To the ships, back and forth every, half an hour when they had to lift the blade and it was going across the road. So when you’re in situations like this and there’s not a lot of space around the turbines, you have to start thinking that, how can we do this quicker?
How can we do this safer? Because you can see that there’s a lot of planning that goes, with this as well. And then you need to make sure that, it’s more predictable, what you’re doing. So I think that. That’s one of the main driver for these technologies. if I put it simple terms that the more single crane operation for MCRs, and technologies that allow a single crane exchange, is, more pushed because of this rather than in the US where you can get maybe two smaller, cranes and then you just sling it, [00:04:00] and then take it down with two cranes.
Joel Saxum: Yeah, you’ve got all kinds of space, right? Half of our wind farms are in pasture or farm fields. I wouldn’t say half. We say the majority of our wind farms are in pa pasture, and you’ve got space. The only thing limiting you is, how big the pad is really Right. And bring some cribbing in. You can basically get done with the same technology you’ve been using for cranes for years and years and with that as well, I think that, one of the things we talked about in our kind of, chat off air was. the workforce over here is a little bit different as well. So the workforce over here is sometimes a, a slinger or someone who’s holding a tagline. They got a green hard hat on, and they’re a warm body because they need people, they need help.
because we’re doing things at such scale. Whereas in the eu, that’s just not the case. you’re not gonna be allowed to be around operations like that unless you’ve been thoroughly trained for a couple years. And, so, that situation with the workforce is a little bit different. So it’s almost easier to not be [00:05:00]consistently and continuously innovating and training people on new things.
But with that, we’re, leaving ourselves behind in the game, right? There’s cost savings to be had, there’s time savings to be had that we’re just not harvesting.
Gregory Kocsis: Yeah, absolutely. And as you mentioned that the, benefits in, Europe at these, lower scale, that also allows that, some of these smaller ISPs, they can excel what they’re doing.
So they can have a crew of 10, 15 people and they focus on, some turbines, but they. When they do a campaign, that doesn’t mean that they have to go through a hundred turbines. They, do one disassembly or two disassembly or three, and it just stays at that scale. So they can actually manage to get by with the smaller crew and then really, get really experienced, on this.
While I think in the US there’s quite a lot of push on. We cannot just do one. Because if you look at the size of sites, there’s [00:06:00] also one site consists between 80 and 120 turbines. And if you draw an an area that, let’s say a two hour driving range that can summarize 2000 turbines. And that also means that when something happens there, you also wanna do it at scale.
So you cannot get away with 10, 15 people you need. 30, or you need five, five different crews. And then where can you get these people? How quickly can you train them? And I think that’s actually the good thing is that if we could manage to, to, pull the experience that we have in Europe, that would be good to scale it up because that’s the drawback of Europe, that when you, once you have something great.
You cannot scale it up and then put a specialized tool cost above or across, 2000 turbine exchanges.
Allen Hall: Is there a movement to bring more technology over from the eu, particularly because, the tools are a little more specialized, [00:07:00] but you’re reducing risk. Is it just that, the larger wind farms, be it in the United States, be it in Australia or there’s a lot of places on the planet where the wind farms are big Brazil.
Another case in point, are there cases where it needs to have more technology transfer? They’re doing it a certain way. In Germany, it’s cleaner, more efficient. It takes those people to do it. It’s safer, it’s repeatable. Have we just not broached that yet? Because it doesn’t seem like there’s a lot of technology transfer in terms of lifts from the EU to many other places.
Gregory Kocsis: I think the main, if you look at it that what is the driver on this is who’s responsible for an MCR operation. And if you look at the turbine’s lifetime, it’s all about. Who’s, responsible for the service. And in us, typically the turbine, especially next era, likes to buy new turbines with zero, zero involvement from the OEMs they want to [00:08:00] take over from the get go.
and then typically in, in Europe we have, 10, 15 or whole, lifetime service contracts. if you look at a pie that who, takes care of the turbine? I would say that. 40% is, in the hands of, the asset owners or ISPs. and that’s also growing. So I think it was, would make that estimated that 40% will, will shift towards, 60.
So that, that is the drive that I can see that more of this chunk is getting, getting bigger. And you can see players that are already globally existing, like Deutsche intech, that. That’s quite big in the US and Europe that they started to do that transition, and then take that technology that they could experience in different sites and then put this to the service side.
But that’s, the difficult part, that even though that slice is [00:09:00] fairly big, it’s spread across small companies. And as a small company, if you pick one in Denmark or you pick one in the Netherlands, for them to collaborate on a project or assist on a project in US or Australia or Brazil, it’s quite costly.
So then the question comes at who’s. Who’s footing the bill? is it the service company? Is it the asset owner? Is the crane company chipping in? Or how is the collaboration working? And there’s no rule of thumb that applies everywhere for these. So it’s case by case that how, big is it? How many turbines are we talking about?
What kind of turbines, how far are we out in the service contract?
Joel Saxum: It brings in a couple of questions, right? Why are we having this block of, lifting and crane operation innovations? Is it when the OEMs are responsible? They have, they know their say blade types, they know their hub types. They know their MCE, they know their drivetrain component
Allen, Joel, and Yolanda recap the UK Offshore Wind Supply Chain Spotlight in Edinburgh and Great British Energy’s £1 billion manufacturing push. Plus Ørsted’s European onshore wind sale, Xocean’s unmanned survey tech at Moray West, and why small suppliers must scale or risk being left behind.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
You are listening to the Uptime Wind Energy Podcast brought to you by build turbines.com. Learn, train, and be a part of the Clean Energy Revolution. Visit build turbines.com today. Now, here’s your host. Allen Hall, Joel Saxon, Phil Totaro, and Rosemary Barnes.
Allen Hall: Welcome to the Uptime Wind Energy Podcast. I’m your host Allen Hall in Charlotte, North Carolina, the Queen City.
I have Yolanda Pone and Joel Saxon back in Austin, Texas. Rosemary Barnes is taking the week off. We just got back from Scotland, Joel and I did, and we had a really great experience at the UK offshore wind supply chain spotlight 2025 in Edinburgh, where we met with a number of wind energy suppliers and technology advocates.
A
Joel Saxum: lot going on there, Joel. Yeah. One of the really cool things I enjoyed about that, um, get together the innovation spotlight. [00:01:00] One, the way they had it set up kind of an exhibition space, but not really an exhibition. It was like just a place to gather and everybody kind of had their own stand, but it was more how can we facilitate this conversation And then in the same spot, kind of like we’ve seen in other conferences, the speaking slots.
So you could be kind of one in ear, oh one in year here, listening to all the great things that they’re doing. But having those technical conversations. And I guess the second thing I wanted to share was. Thank you to all of the, the UK companies, right? So the, all the Scottish people that we met over there, all the people from, from England and, and around, uh, the whole island there, everybody was very, very open and wanting to have conversations and wanting to share their technology, their solutions.
Um, how they’re helping the industry or, or what other people can do to collaborate with them to help the industry. That’s what a lot of this, uh, spotlight was about. So from our, our seat, um, that’s something that we, you know, of course with the podcast, we’re always trying to share collaboration, kind of breed success for everybody.
So kudos to the ORE [00:02:00] Catapult for putting that event on.
Allen Hall: Yeah, a big thing. So, or Catapult, it was a great event. I’ve met a lot of people that I’ve only known through LinkedIn, so it’s good to see them face to face and. Something that we’ve had on the podcast. So we did a number of podcast recordings while we’re there.
They’ll be coming out over the next several weeks, so stay tuned for it. You know, one of the main topics at that event in Edinburg was the great British Energy announcement. This is huge, Joel. Uh, so, you know, you know, the United Kingdoms has been really pushing offshore wind ambitions for years, but they don’t have a lot of manufacturing in country.
Well, that’s all about the change. Uh, great British energy. Which is a government backed energy company just unveiled a 1 billion pound program called Energy Engineered in the uk, and their mission is pretty straightforward. Build it in the uk, employ people in the uk, and keep the economic benefits of the clean energy transition on British soil.
300 million pounds of that is really [00:03:00] going to be focused on supply chain immediately. That can happen in Northern Ireland, Scotland, Wales, and England. It’s a big promotion for the UK on the wind energy side. I see good things coming out of this. What were your thoughts when you heard that
Joel Saxum: announcement, Joel?
The offshore wind play. Right. It’s like something like this doesn’t happen to economies very often. Right. It’s not very often that we have like this just new industry that pops outta nowhere. Right. We’re, we’re not making, you know, it’s like when, when. Automotive industry popped up in the, you know, the early 19 hundreds.
Like that was this crazy new thing. It’s an industrial revolution. It’s all this new opportunity. So offshore wind in, in my idea, same kind of play, right? It’s this new thing or newer thing. Um, and as a government, um, coming together to say, Hey, this is happening. We have the resources here. We’re gonna be deploying these things here.
Why would we not take advantage of building this here? I mean. Any politician that says I’m bringing jobs or I’m bringing in, you [00:04:00] know, um, bringing in funds to be able to prop up an industry or to, uh, you know, start a manufacturing facility here or support an engineering department here, um, to be able to take advantage of something like this.
Absolutely right. Why offshore this stuff when you can do it Here, you’ve got the people, you have the engineering expertise. It’s your coastline. You’ve operated offshore. You know how to build them, operate ’em, all of these different things. Keep as much of that in-house as you can. I, I mean, we’ve, we’ve watched it in the US over the last few years.
Kind of try to prop up a supply chain here as well. But, you know, with regulations and everything changing, it’s too risky to invest. What the, it looks like what the UK has seen over there is, well, we might as well invest here. We’ll throw the money at it. Let’s, let’s make it happen on our shores. The
Allen Hall: comparison’s obvious to the IRA Bill Yolanda and the IRA bill came out, what, A little over two years ago, three years ago, roughly.
We didn’t see a lot of activity [00:05:00] on the manufacturing side of building new factories to do wind. In fact, there was a lot of talk about it initially and then it. It really died down within probably a year or so. Uh, you know, obviously it’s not a universal statement. There were some industries model piles and some steelworks and that kind of thing that would would happen.
But sometimes these exercises are a little treacherous and hard to walk down. What’s your thoughts on the UK government stepping in and really. Putting their money where the mouth is.
Yolanda Padron: I think it’s, I mean, it’s, it’s great, right? It’s great for the industry. It’ll, it’ll be a great case, I think, for us to look at just moving forward and to, like you said, government’s putting their money where their mouth is and what exactly that means.
You know, not something where it’s a short term promise and then things get stalled, or corporations start looking [00:06:00] elsewhere. If every player works the way that they’re, it’s looking like they’re going to play right now, then it, it could be a really good thing for the industry.
Allen Hall: Well, the, the United States always did it in a complicated way through tax policy, which means it runs through the IRS.
So any bill that passes Congress and gets signed by the president, they like to run through the IRS, and then they make the tax regulations, which takes six months to 12 months, and then when they come out, need a tax attorney to tell you what is actually written and what it means. Joel, when we went through the IRA bill, we went through it a couple of times actually, and we were looking for those great investments in new technology companies.
I just remember seeing it. That isn’t part of the issue, the complexity, and maybe that’s where GB Energy is trying to do something different where there’s trying to simplify the process.
Joel Saxum: Yeah. The complexity of the problem over here is like that. With any. Business type stuff, right? Even when you get to the stage of, um, oh, this is a write off, this is this [00:07:00] for small businesses and those things, so it’s like a delayed benefit.
You gotta plan for this thing. Or there’s a tax credit here, there. Even when we had the, um, the electric vehicle tax credits for, uh, individuals, right? That wasn’t not something you got right away. It was something you had to apply for and that was like later on and like could be. 15 months from now before you see anything of it.
And so it’s all kind of like a difficult muddy water thing in the i a bill. You’re a hundred percent correct. Right. Then we passed that thing. We didn’t have the, the rules locked down for like two years. Right. And I remember we had, we had a couple experts on the podcast talking about that, and it was like, oh, the 45 x and the 45 y and the, the C this and the be that, and it was like.
You needed to have a degree in this thing to figure it out, whereas the, what it sounds like to me, right, and I’m not on the inside of this policy, I dunno exactly how it’s getting executed. What it sounds like to me is this is more grant based or, and or loan program based. So it’s kinda like, hey, apply and we’ll give you the money, or we’ll fund a loan that supports some money of with low interest, zero [00:08:00] interest, whatever that may be.
Um, that seems like a more direct way, one to measure ROI. Right, and or to get things done. Just just to get things done. Right. If someone said, Hey, hey, weather guard, lightning Tech. We have a grant here. We’d like to give you a hundred grand to do this. Or it was like, yeah, if you put this much effort in and then next year tax season you might see this and this and this.
It’s like, I don’t have time to deal with that.
Yolanda Padron: Yeah. We might also just change the rules on you a little bit, and then maybe down the line we’ll see where we go. Yeah. It does seem like they’re, they’re setting up the dominoes to fall in place a bit better. Th
Allen covers a federal judge striking down the US wind energy moratorium, calling it arbitrary and capricious. Plus Maryland opens offshore wind bids for 8.5 gigawatts, Great British Energy announces a £1 billion supply chain investment, and Nordex lands its largest US turbine deal in 25 years with Alliant Energy in Iowa.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
You know… they said wind power was finished.
On day one of the new administration, an executive order landed on desks across Washington.
Stop the turbines. Halt the permits. Shut it down.
Seventeen states watched their clean energy investments… billions of dollars… suddenly frozen.
The order called it a pause. Critics called it a burial.
But here is what happened next.
Federal Judge Patti Saris of Massachusetts looked at that order. She called it arbitrary. She called it capricious. And on December ninth… she threw it out.
Wind energy… is back.
The very next day after that federal judge struck down the wind moratorium… Maryland issued a new invitation for offshore wind bids. The state wants eight-point-five gigawatts of offshore wind by twenty thirty-one. Deadline for proposals… January sixteenth.
You see… wind power now provides ten percent of America’s electricity. It is the United States’ largest source of renewable energy.
Now… three thousand miles across the Atlantic… something else was stirring.
In Britain, a state-owned company called Great British Energy unveiled a one billion pound plan. That is more than one-point-two billion dollars. Three hundred million pounds available right now… for turbine blades, transmission cables, and converter stations.
The goal… not just to install clean energy… but to build it. On British soil. With British workers.
CEO Dan McGrail put it simply. We are investing in British industry.
Now… back here at home… in the cornfields of Iowa.
The Nordex Group just announced the largest turbine deal in its twenty-five-year American history.
Up to one hundred ninety wind turbines. Manufactured in West Branch, Iowa. That facility reopened just this past July.
The customer… Alliant Energy. The capacity… more than one thousand megawatts. Enough electricity to power hundreds of thousands of homes.
CEO Lisa Barton said they chose a local provider on purpose. “This decision promotes substantial economic development throughout our service area.”
Development continues in the US for onshore and offshore wind — although it will take more time offshore wind to grow.
But pay attention to what is happening in the UK with GB Energy as offshore and onshore wind production is being built within its borders.
Having attended the UK Offshore Wind Supply Chain Spotlight 2025 event in Edinburgh last week, there is massive capability in the UK.
And the rest of the world should learn from their efforts.
That’s the wind energy news for the 15th of December 2025.
Join us tomorrow for the Uptime Wind Energy Podcast.
Morten Handberg, Principal Consultant at Wind Power LAB, returns to discuss blade damage categorization. From transverse cracks and leading edge erosion to carbon spar cap repairs, he explains what severity levels really mean for operators and why the industry still lacks a universal standard.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
Welcome to Uptime Spotlight, shining Light on Wind. Energy’s brightest innovators. This is the Progress Powering tomorrow.
Morten, welcome back to the program. Thanks, Allen. It’s fantastic to be back again. Boy, we have a lot to discuss and today we’re gonna focus on categorization of damage, which is a super hot topic across the industry. What does a cat five mean? What does a category three mean? What does a category 5.9 I’ve I’ve seen that more recently.
Why do these defect categories matter?
Morten Handberg: Well, it matters a lot because it really tells you as, uh, either an OEM or as an operator, how should you respond to your current blade issue. So you need to have some kind of categorization about what the defect type is and what the severity is. The severity will tell you something about the repairability and [00:01:00] also something about the part of the blade that is affected.
The type of the defect tells you something about what is the origin From an operational point of view, it doesn’t make as much sense in a way because you really just wanna know, can this be repaired or not? You know? And you know, what does it need to repair? That’s what you need, what you really need to focus on as an operator, whether it’s then del elimination, erosion, peeling.
Uh, transverse cracks, it’ll all come down to repairs. It does matter for you because it will tell you an underlying, you know, are there reason why I’m keep seeing all these damages? So that’s why you need to know the category as well. But purely operational. You just need to know what is the severity side know, what does it take to repair it?
Allen Hall: So as the operator, a lot of times they’re getting information from different service providers or even the OEM. They’re getting multiple inputs on what a damage is in terms of a category. Are we getting a lot of conflicting information about this? Because the complaint from [00:02:00] I hear from operators is the OE EMM says this is a category four.
The ISP says is a category five. Who am I to believe right
Morten Handberg: now? Well, there is a lot of, a bit different opinions of that. It almost becomes a religious issue question at some point, but it, it really dives down to that, you know, there is no real standardization in the wind industry. And we’ve been discussing this, uh, I wanna say decades, probably not that much, but at least for the past 11 years I’ve been, been hearing this discussion come up.
Uh, so it’s, it’s something this was just been struggling with, but it also comes down to that. Each OEM have their own origin. Uh, so that also means that they have trended something from aeronautics, from ship building industry, from, you know, uh, from, from some other composite related industry, or maybe not even composite related.
And that means that they are building their own, uh, their own truth about what the different defects are. There is a lot of correlation between them, but there is still a lot of, lot of tweaks [00:03:00] and definitions in between and different nomenclature. That does add a a lot of confusion.
Allen Hall: Okay,
Morten Handberg: so
Allen Hall: that explains, I mean, because there isn’t an industry standard at the moment.
There is talk of an industry standard, but it does seem like from watching from the outside, that Europe generally has one, or operators specifically have one. Uh, EPRI’s been working on one for a little while. Maybe the IEC is working on one, but there isn’t like a universal standard today.
Morten Handberg: There is not a universal standard.
I mean, a lot of, a lot of OEMs or service providers will, will, will claim that they have the standard, they have the definition in wind power lab. We have our own. That we have derived from the industry and in, in general. But there is not an, uh, an industry agreed standard that everyone adheres to. That much is true.
You could say in Europe, a lot of owners have come together, uh, in the Blade Forum, and they have derived, there’s a standard within that. Um, uh, and with a lot of success, they’d written, the [00:04:00] Blade Hamburg I think was very helpful because it was operator driven, um, approach.
Allen Hall: So there is a difference then between defects that are significant and maybe even classified as critical and other defects that may be in the same location on the blade.
How are those determined?
Morten Handberg: The way that I’ve always approached is that I will look at firstly what kind of blades type it is. So how is it structured? Where are the load carrying elements of the blade? That’s very important because you can’t really say on a business V 90 and a Siemens, uh, 3.6 that the defect in the same position will mean the same thing.
That’s just not true because they are structured in very different ways. So you really need to look at the plate type just to start with. Then you need to look at, is it in a. In a loaded part of the blade, meaning is it over the, the load carrying part, um, uh, laminates? Is it in a, in a shell area? And you know, what is the approximate distance from the roof?
Is that, that also tells you something [00:05:00] about the general loads in the area. So you know, you need to take that into consideration. Then you also need to look at how much of the blade is actually affected. Is it just surface layers? Is it just coating or is it something that goes, uh, through the entire laminate stack?
And if that is on the, on the beam laminate, you’re in serious trouble. Then it will be a category five. If the beam laminate is vectored. And if you’re lucky enough that your blade is still sitting on the turbine, you should stop it, uh, to avoid a complete BA bait collapse. Uh, so, so you need, so, so that, you know, you can, that, that is very important when you’re doing defect categorizations.
So that means that you need
Allen Hall: internal inspections on top of external
Morten Handberg: inspections. If you see something, uh, that is potentially critical, then yeah, you should do an internal inspection as well to verify whether it’s going through, um, the entire lemonade stack or not. That that’s a, that’s a good, good, good approach.
Um, I would say often, you know, if you see something that is potentially critical, uh, but there is still a possibility that could be repaired. Then I might even also just send up a repair [00:06:00] team, uh, to see, you know, look from the outside how much of the area is actually affected, because that can also pretty quickly give you an indication, do we need to take this blade down or not?
Sometimes you’ll just see it flat out that, okay, this crack is X meters long, it’s over sensitive area of the blade. You know, we need to remove this blade. Uh, maybe when, once it’s down we can determine whether it’s repairable or not, but. We, but it’s not something that’s going to be fixed up tower, so there’s not a lot of need for doing a lot of added, um, add added inspections to verify this, this point.
Allen Hall: Let’s talk about cracks for a moment, because I’ve seen a lot of cracks over the last year on blades and some of them to me look scary because they, they are going transverse and then they take a 90 degree and start moving a different direction. Is there a, a rule of thumb about cracks that are visual on the outside of the blade?
Like if it’s how, if they’re [00:07:00] closer to the root they’re more critical than they’re, if they’re happening further outers or is there not a rule of thumb? You have to understand what the design of the blade is.
Morten Handberg: Well, I mean the general rule of thumb is transfers cracks is a major issue that’s really bad.
That’s, uh, you know, it’s a clear sign, something. Severely structural is going on because the transverse crack does not develop or develop on its own. And more likely not once it starts, you know, then the, uh, the, the strain boundaries on the sides of the cr of the crack means that it requires very little for it to progress.
So even if in a relatively low loaded area with low strain, once you have a, a transverse crack, uh, present there, then it will continue. Uh, and you mentioned that it’s good during a 90 degree. That’s just because it’s doing, it’s, it’s taking the least path of the path of least resistance, because it’ll have got caught through the entire shell.
Then when it reaches the beam, the beam is healthy. It’s very stiff, very rigid laminate. So it’s easier for it to go longitudinal towards the [00:08:00] root because that’s, that, that, that’s how it can progress. That’s where it has the, uh, you know, the, the, the strain, uh, um, the, the strain high, high enough strain that it can actually, uh, develop.
That that’s what it would do. So transverse cracks in general is really bad. Of course, closer to root means it’s more critical. Um, if there is a crack transverse crack, uh, very far out in the tip, I would usually say, you know, in the tip area, five, 10 meter from the tip, I would say, okay, there’s something else going on.
Something non load related. Probably causes, could be a lightning strike, could be an impact damage. That changed the calculation a little bit because then, you know, it’s not a load driven issue. So that might give you some
Allen, Joel, Rosemary, and Yolanda discuss a German study finding 99.8% of birds avoid wind turbines, challenging long-standing collision risk models. They also cover Pattern Energy’s SunZia project nearing completion as the Western Hemisphere’s largest renewable project, lightning monitoring strategies for large-scale wind farms, and offshore flange alignment technology.
Register for Wind Energy O&M Australia 2026!Learn more about CICNDTDownload the latest issue of PES Wind Magazine
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
You are listening to the Uptime Wind Energy Podcast brought to you by build turbines.com. Learn, train, and be a part of the Clean Energy Revolution. Visit build turbines.com today. Now, here’s your host. Alan Hall, Joel Saxon, Phil Totaro, and Rosemary Barnes.
Allen Hall: Welcome to the Uptime Wind Energy Podcast. I’m your host Alan Hall in the queen city of Charlotte, North Carolina, where a cold front is just blown through, but we’re not nearly as cold as Joel was up in Wisconsin, Joel, you had a bunch of snow, which is really the first big storm of the season.
Joel Saxum: Yeah, the crazy thing here was the Wind Energy Podcast. So since that storm I, we, we got up in northern Wisconsin, 18 inches of snow, and then we drove down on last Saturday after US Thanksgiving through Iowa, there’s another 18 inches of snow in Des Moines. I talked to a more than one operator that had icing and snow issues at their wind farms all through the northern Midwest of these states.
So from [00:01:00] North Dakota. All the way down to Nebraska, Northern Missouri, over into Indiana. There was a ton of turbines that were iced up and or snowed in from that storm,
Allen Hall: and Rosemary was in warm Australia with other icing knowledge or de-icing knowledge while the US has been suffering.
Rosemary Barnes: But you know, on the first day of summer here, a couple of days ago, it was minus one here overnight.
So. Um, yeah, it’s, uh, unseasonable and then tomorrow it’ll be 35.
Allen Hall: The smartest one of us all has been Yolanda, down in Austin, Texas, where it doesn’t get cold.
Yolanda Padron: Never. It’s so nice. It’s raining today and that’s about it. Traffic’s going crazy.
Joel Saxum: Rain is welcome for us, isn’t it though, Yolanda?
Yolanda Padron: It’s sweet. It doesn’t happen very often, but when it does.
Very rainy for like 24 hours.
Allen Hall: We’ve been saving a story for a couple of weeks until Rosemary is back and it has to do with birds and a year long study over [00:02:00] in Germany. And as we know, one of the most persistent arguments against wind energy has been the risk to birds and permitting and operation shutdowns have been the norm, uh, based on models and predicted collision risks.
Well. A new study comes, has just come out that says, what if the models are all wrong? And the new German study suggests that they may be wrong. The Federal Association of Offshore Wind Energy, known by its German acronym, BWO Commission Research to examine. Actual collision risk at a coastal wind farm in Northern Germany.
The study was conducted by Biocon Consult, a German research and consulting firm, and funded by eight major offshore wind operators, including Sted, Vattenfall, RWE, and E, roa, and. Rosemary using some of the newer technology. They were able to track bird movements with radar [00:03:00] and AI and stereo vision cameras to, to watch birds move through and around, uh, some of these wind farms.
And it analyzed more than 4 million bird movements and over 18 months, and they searched for collision victims and what they found was pretty striking more than 99.8% of both day migrating and night migrating birds. Avoided the turbines entirely. The study found no correlation between migration intensity and collision rates.
And BD and BWO says The combination of radar and AI based cameras represents a methodological breakthrough. Uh, that can keep turbines moving even when birds are in transit. This is pretty shocking news, honestly, Rosemary, I, I haven’t seen a lot of long-term studies about bird movements where they really had a lot of technology involved to, besides binoculars, to, to look at bird movement.
The [00:04:00] 99.8% of the migrating birds are going around The turbines. No, the turbines are there. That’s. Really new information.
Rosemary Barnes: I think. I mean, if you never heard anything about wind turbines and birds, I don’t think you’d be shocked like that. Birds mostly fly around obstacles. That’s probably an intuitive, intuitive answer.
Because we’ve had it shoved down our throat for decades now. Wind turbines are huge bird killers. It’s kind of like, it’s been repeated so often that it kind of like sinks in and becomes instinctive, even though, yeah, I do think that, um, it’s. Not that, that shocking that an animal with eyes avoids a big obstacle when it’s flying.
Um, but it is really good that somebody has actually done more than just trying to look for bird deaths. You know, they’ve actually gone out, seen what can we find, and then reported that they found mostly nothing. We already knew the real risks for birds, like hundreds or thousands, even millions of times [00:05:00] more, um, deadly to birds are things like.
Cats. Cars, buildings, even power lines kill more birds than, um, wind turbines do. In fact, like when you look at, um, the studies that look at wind, um, bird deaths from wind turbines, most of those are from people driving, like workers driving to site and hitting a bird with their cars. Um, you know, that’s attributed to wind energy.
Not a surprise maybe for people that have been following very closely, but good to see the report. Nonetheless.
Joel Saxum: I think it’s a win for like the global wind industry, to be honest with you, because like you said, there’s, there’s no, um, like real studies of this with, that’s backed up by metric data with, like I said, like the use stereo cameras.
Radar based AI detection and, and some of those things, like if you talk with some ornithologists for the big OEMs and stuff, they’ve been dabbling in those things. Like I dabbled in a project without a DTU, uh, a while back and it, but it wasn’t large scale done like this. A [00:06:00] particular win this study in the United States is there’s been this battle in the United States about what birds and what, you know, raptors or these things are controlled or should have, um, controls over them by the governments for wind installations.
The big one right now is US Fish and Wildlife Service, uh, controls raptors, right? So that’s your eagle’s, owls, hawks, those kind of things. So they’ll map out the nests and you can only go in certain areas, uh, or build in certain areas depending on when their mating seasons are. And they put mild buffers on some of them.
It’s pretty crazy. Um, but the one rule in the United States, it’s been kind of floated out there, like, we’re gonna throw this in your face, wind industry. Is the Federal Migratory Bird Act, which is also how they regulate all like the, the hunting seasons. So it’s not, it’s the reason that the migratory birds are controlled by the federal government as opposed to state governments is because they cross state lines.
And if we can [00:07:00] prove now via this study that wind farms are not affecting these migratory bird patterns or causing deaths, then it keeps the feds out of our, you know, out of the permitting process for. For birds,
Rosemary Barnes: but I’m not sure this is really gonna change that much in terms of the environmental approvals that you need to do because it’s a, you know, a general, a general thing with a general, um, statistical population doesn’t look at a specific wind farm with a specific bird and you’re still need to go.
You’re still going to have to need to look at that every time you’re planning an actual wind farm. That’s it’s fair.
Yolanda Padron: And it’s funny sometimes how people choose what they care or don’t care about. I know living in a high rise, birds will hit the window like a few a month. And obviously they will pass away from impact and the building’s not going anywhere.
Just like a turbine’s not going anywhere. And I’ve never had anybody complain to [00:08:00] me about living and condoning high rises because of how they kill the birds. And I’ve had people complain to me about wind turbines killing the birds. It’s like, well, they’re just there.
Joel Saxum: If we’re, if we’re talking about energy production, the, if everybody remembers the deep water horizon oil spill 2010 in the Gulf of Mexico.
That oil spill killed between 801.2 million birds. Just that one.
Speaker 6: Australia’s wind farms are growing fast, but are your operations keeping up? Join us February 17th and 18th at Melbourne’s Poolman on the park for Wind energy o and M Australia 2026, where you’ll connect with the experts solving real problems in maintenance asset management.
And OEM relations. Walk away with practical strategies to cut costs and boost uptime that you can use the moment you’re back on site. Register now at W om a 2020 six.com. Wind Energy o and m Australia [00:09:00] is created by wind professionals for wind professionals because this industry needs solutions, not speeches
Allen Hall: well in the high desert of Central New Mexico, near a lot of what were ghost towns that were abandoned during the Great Depression.
If there is a flurry of activity pattern, energy sunzi, a project is near completion after 20 years of planning and permitting. When. It’s supposed to be finished in 2026. It’ll be the largest renewable ene
Allen covers Ecowende’s first monopile installation in the Netherlands, designed to be the most ecological offshore wind farm ever built. Plus Ireland’s offshore potential proves far smaller than hoped, Australia cancels its third offshore project in recent months, LiveLink Aerospace solves radar clutter in Scotland, GE Vernova secures a Romanian turbine deal, and Canadian tariffs threaten BC Hydro wind development.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
If you want to see the future of offshore wind… look to the Netherlands.Off the Dutch coast near IJmuiden… about fifty-threekilometers out to sea… something special is rising from the waves.They call it ECOWENDE.VAN OORD’s installation vessel BOREAS just planted the firstmonopile there on December third. Fifty-one more will follow. And whencomplete… this seven hundred sixty megawatt wind farm will become… themost ecological offshore wind project ever built.Why most ecological?The monopiles come in two sizes. Research shows taller turbines givebirds more room to fly safely between the blades. Some turbines will sportred blades… to make them even more visible to passing flocks. The seabedgets eco-friendly scour protection. And those massive VESTAS fifteen-megawatt turbines? They will sit atop foundations built by SIFand SMULDERS.Power for the Netherlands by end of twenty-twenty-six.Meanwhile… across the North Sea in Scotland…At ABERDEEN Offshore Wind Farm… LIVELINK AEROSPACE just solveda problem that has plagued the industry for years.You see… wind turbines create radar clutter. Their spinning blades confusemilitary and civilian radar systems alike. But LIVELINK’s Air IntelligenceSystem… mounted on the nacelle… eliminates that clutterwithout emitting any signals of its own.The UK’s Department for Energy Security funded the test through the onebillion pound Net Zero Innovation Portfolio.BEN KEENE of LIVELINK says the technology unlocks offshore wind’s fullpotential… while strengthening national security.
Clean energy AND defense. Together.But not every nation is celebrating.IRELAND just discovered… its offshore wind dreams may be smaller thanhoped.Energy Minister DARRAGH O’BRIEN receivedconfidential maps this spring. The assessment initially found potential forforty-eight gigawatts offshore.The realistic number?Between three and eighteen gigawatts.Deep waters. Shipwrecks. Arms dumps. Undersea cables. Protectedhabitats. All these stand in the way.The Irish government had targeted five gigawatts by twenty-thirty. Theyface fines of up to twenty billion euros if they miss their climate goals.Social Democrats spokeswoman JENNIFER WHITMORE says she issurprised detailed mapping took this long.Four years from the deadline… and they are only now learning which siteswill not work.Down Under… the news is worse.AGL Energy just cancelled GIPPSLAND SKIES… a two-and-a-half gigawattoffshore wind project in Victoria, Australia.That makes three offshore wind farms scrapped in recent months offAustralia’s south coast. German company RWE abandonedits two-gigawatt KENT project in October. BLUEFLOAT ENERGY droppedGIPPSLAND DAWN in July.
AGL says it will focus on onshore wind… batteries… and pumped hydroinstead.But there is bright news from Eastern Europe.GE VERNOVA just signed a deal with GREENVOLT POWER to supplyforty-two turbines for the GURBANESTI wind farm inROMANIA.Each turbine… six-point-one megawatts. Combined with another recentproject… these two farms will bring five hundred megawatts online…powering more than one hundred ten thousand Romanian homes.Turbines start arriving in twenty-twenty-six.And in British Columbia… Premier DAVID EBY has a fight on hishands.A twenty-five percent tariff on imported wind towers threatens BC HYDRO’selectricity supply.PATRICIA LIGHTBURN of the Canadian Renewable Energy Associationsays the tariff could derail projects already announced. BC HYDRO iscounting on those wind farms to close an impending power gap.Canada’s Energy Regulator expects wind to fill seventy percent ofrenewable demand growth through twenty-thirty.The tariff? Nobody saw it coming.Now… for those of you heading to Edinburgh this week…The UK Offshore Wind Supply Chain Spotlight takes place Thursday.
JOEL SAXUM and I will be there… meeting with innovating companies andentrepreneurs who are building the future of this industry.If you are attending… come say hello. We’d love to hear from youAnd that is the state of the wind energy industry on December 8, 2025.Join us tomorrow for the Uptime Wind Energy Pocast.





