Discover
Choses à Savoir SCIENCES
Choses à Savoir SCIENCES
Author: Choses à Savoir
Subscribed: 13,676Played: 676,606Subscribe
Share
© Choses à Savoir
Description
Développez facilement votre culture scientifique grâce à un podcast quotidien !
Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
2463 Episodes
Reverse
Quand on imagine la fonte de l’Antarctique, on pense spontanément à une glace qui disparaît par le dessus, sous l’effet de l’air plus chaud. Pourtant, la réalité est plus complexe : l’Antarctique fond en grande partie par le dessous. Et ce processus discret, invisible depuis la surface, joue un rôle majeur dans l’accélération de la perte de glace.La calotte glaciaire antarctique repose sur un socle rocheux irrégulier. Dans de nombreuses régions, ce socle se situe même sous le niveau de la mer. Entre la roche et la glace circule de l’eau liquide, formant un immense réseau de rivières et de lacs sous-glaciaires. Cette eau provient principalement de deux sources : la chaleur géothermique émise par la Terre et la pression énorme exercée par la glace elle-même, qui abaisse le point de fusion.Cette fine couche d’eau agit comme un lubrifiant. Elle réduit la friction entre la glace et le sol, permettant aux glaciers de glisser plus facilement vers l’océan. Plus l’eau est abondante, plus la glace se déplace rapidement. Et lorsque ces glaciers atteignent la mer, ils contribuent directement à l’élévation du niveau des océans.À cela s’ajoute un autre mécanisme clé : l’intrusion d’eaux océaniques relativement chaudes sous les plateformes de glace flottantes. Autour de l’Antarctique, certaines masses d’eau profondes sont quelques degrés plus chaudes que l’eau de surface. Elles s’infiltrent sous les plateformes glaciaires et provoquent une fonte basale, c’est-à-dire par le dessous. Ce phénomène amincit la glace, la fragilise et facilite le détachement d’icebergs.Longtemps, ces processus ont été difficiles à quantifier, car ils se déroulent sous plusieurs kilomètres de glace. Mais des chercheurs ont récemment développé un modèle informatique de nouvelle génération capable de simuler, à l’échelle du continent entier, la circulation de l’eau sous-glaciaire et son interaction avec le mouvement de la glace. Ce modèle combine données satellitaires, topographie du socle, température, pression et dynamique des glaciers.Les résultats montrent que l’eau sous-glaciaire ne s’écoule pas au hasard. Elle suit des chemins organisés, influencés par les pentes du terrain et l’épaisseur de la glace. Ces flux contrôlent directement la vitesse des glaciers. Dans certaines régions, un léger changement dans la distribution de l’eau peut suffire à accélérer fortement l’écoulement vers la mer.En résumé, l’Antarctique ne fond pas seulement en surface : il fond par en dessous, sous l’effet conjoint de la chaleur interne de la Terre et des eaux océaniques plus chaudes. Comprendre ces mécanismes est essentiel, car ils conditionnent la stabilité future de la calotte glaciaire et donc l’ampleur de la montée des océans dans les décennies à venir. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Lorsqu’un objet se brise, notre impression immédiate est celle du chaos : des morceaux de tailles variées, projetés dans toutes les directions, sans logique apparente. Pourtant, qu’il s’agisse d’un verre qui éclate, d’un sucre que l’on écrase ou d’une bulle de savon qui disparaît, ces phénomènes obéissent à des règles étonnamment similaires. C’est ce que révèle une avancée récente en physique : la fragmentation suit une loi universelle.Pour comprendre cela, il faut d’abord s’intéresser à la notion de contraintes internes. Tous les matériaux, même les plus solides, contiennent des défauts microscopiques : fissures invisibles, zones plus fragiles, irrégularités dans leur structure. Lorsqu’une force est appliquée — choc, pression, tension — l’énergie se propage dans l’objet sous forme d’ondes mécaniques. Ces ondes se concentrent naturellement autour des défauts, où la rupture commence.Ce qui est remarquable, c’est que la façon dont l’énergie se répartit dans le matériau détermine directement la taille et le nombre des fragments produits. Un physicien français a récemment proposé une équation capable de décrire cette répartition, quel que soit l’objet étudié. Verre, céramique, sucre, métal mince ou même bulles de liquide : tous suivent la même courbe statistique.Cette courbe montre que les petits fragments sont toujours très nombreux, tandis que les gros morceaux sont beaucoup plus rares. Autrement dit, il existe une relation mathématique stable entre la taille d’un fragment et sa probabilité d’apparition. Ce type de relation est appelé une loi d’échelle : on retrouve la même forme de distribution, que l’on casse un grain de sucre ou un bloc de roche.Pourquoi une telle universalité ? Parce que, au moment de la rupture, le matériau n’« hésite » pas. Dès que la contrainte dépasse un seuil critique, un réseau de fissures se propage à grande vitesse, se ramifie et se croise. Ce processus de propagation est gouverné par des équations fondamentales de la mécanique et de la physique des matériaux, indépendantes de la nature précise de l’objet.Même une bulle de savon suit cette logique. Lorsqu’elle éclate, la fine membrane liquide se déchire en multiples filaments, qui se fragmentent à leur tour en microgouttelettes. Là encore, la distribution des tailles des gouttes correspond à la même loi que celle observée pour des solides.Cette découverte a des implications concrètes. Elle permet d’améliorer la conception de matériaux résistants aux chocs, de mieux comprendre l’érosion des roches, ou encore d’optimiser des procédés industriels comme le broyage et le concassage.En résumé, si un objet semble se briser « toujours de la même façon », ce n’est pas par hasard. Derrière le désordre visible se cache un ordre mathématique profond : une loi universelle de la fragmentation, qui révèle que le chaos, en physique, est souvent bien plus organisé qu’il n’y paraît. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
La question « Où se trouve Dieu dans l’Univers ? » traverse l’histoire humaine depuis des millénaires. Religieuse, philosophique, mais aussi scientifique, elle touche à notre besoin profond de situer l’infini dans un cadre compréhensible. Récemment, un ancien physicien de Harvard, le Dr Michael Guillén, a relancé le débat en avançant une idée spectaculaire : Dieu pourrait avoir une localisation précise dans l’espace.Selon lui, des calculs issus de modèles cosmologiques conduiraient à situer Dieu à environ 439 milliards de milliards de kilomètres de la Terre, une distance vertigineuse qui dépasse largement notre capacité d’imagination. L’argument repose sur une réflexion autour des limites observables de l’Univers et de l’idée qu’au-delà de ce que nous pouvons mesurer, il existerait une frontière ultime, assimilée à un point d’origine ou de transcendance.Cette proposition intrigue, car elle semble donner une « adresse » à une entité traditionnellement décrite comme immatérielle, éternelle et omniprésente. Or, c’est précisément là que le problème apparaît.Du point de vue de la physique moderne, l’Univers n’est pas une structure fixe avec un centre clairement défini. Depuis les travaux d’Edwin Hubble au XXᵉ siècle, nous savons que l’Univers est en expansion : toutes les galaxies s’éloignent les unes des autres. Mais cette expansion ne part pas d’un point central comme une explosion classique. Chaque région de l’espace s’étire, ce qui signifie qu’il n’existe pas de « milieu » absolu de l’Univers.Autrement dit, parler d’un endroit précis où se situerait Dieu pose une difficulté majeure : l’espace lui-même est en mouvement, et ses dimensions évoluent constamment. Une distance calculée aujourd’hui n’aurait donc pas de valeur fixe dans le temps cosmique.De plus, la science ne peut étudier que ce qui est mesurable. Les instruments observent des particules, des champs, de l’énergie. Dieu, par définition théologique, échappe à ces catégories. Le placer quelque part dans l’espace revient à le transformer en objet physique, ce qui contredit la conception dominante des grandes religions, pour lesquelles Dieu est hors de l’espace et du temps.L’hypothèse de Michael Guillén peut alors être comprise moins comme une affirmation scientifique stricte que comme une métaphore : une tentative de traduire en langage mathématique une idée spirituelle, celle d’un principe premier situé au-delà du monde observable.Finalement, la science répond surtout à une chose : elle ne sait pas localiser Dieu. Elle peut décrire l’âge de l’Univers, sa taille approximative, ses lois fondamentales, mais elle s’arrête aux portes du sens ultime.La question « Où est Dieu ? » demeure donc, pour l’instant, du domaine de la foi et de la philosophie. Peut-être que, plutôt que d’être quelque part dans l’Univers, Dieu serait — pour ceux qui y croient — ce qui rend l’Univers possible. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Et si, demain, votre mot de passe le plus sûr n’était plus votre visage, votre doigt… mais votre cerveau ? Cette idée, qui relevait encore récemment de la science-fiction, est en train de devenir une réalité grâce à un nouveau champ de recherche : l’identification neuronale.L’identification neuronale repose sur un principe simple en apparence : chaque cerveau produit une activité électrique unique. Lorsque nous pensons, regardons une image ou réagissons à un stimulus, des milliards de neurones s’activent selon des schémas spécifiques. Or, ces schémas varient d’un individu à l’autre, un peu comme une signature invisible. L’objectif est donc de transformer cette activité cérébrale en identifiant biométrique.Concrètement, cette technologie utilise des capteurs capables d’enregistrer des signaux cérébraux, souvent via des électroencéphalogrammes, ou EEG. L’utilisateur porte un casque ou un dispositif léger qui capte les ondes émises par son cerveau pendant qu’il effectue une tâche simple : regarder une forme, écouter un son, ou se concentrer sur une image. Ces données sont ensuite analysées par des algorithmes d’intelligence artificielle, qui extraient des caractéristiques stables propres à chaque personne.C’est précisément l’approche développée par la start-up française Yneuro avec son système Neuro ID, présenté comme la première solution d’authentification biométrique fondée sur l’activité cérébrale. L’ambition est claire : proposer une alternative aux méthodes actuelles comme les empreintes digitales, la reconnaissance faciale ou l’iris.Pourquoi chercher à dépasser ces technologies déjà très répandues ? Parce qu’elles ont des failles. Un visage peut être copié à partir d’une photo, une empreinte digitale peut être reproduite, et les bases de données biométriques peuvent être piratées. Le cerveau, lui, est beaucoup plus difficile à imiter. Les signaux neuronaux sont dynamiques, complexes, et quasiment impossibles à deviner sans être physiquement la personne concernée.Autre avantage majeur : l’identification neuronale pourrait permettre une authentification dite « vivante ». Autrement dit, le système ne vérifie pas seulement une caractéristique statique, mais une activité cérébrale en temps réel, ce qui réduit fortement les risques d’usurpation.Pour autant, cette technologie ne rendra pas immédiatement obsolètes les méthodes actuelles. Les capteurs doivent encore être miniaturisés, rendus confortables et peu coûteux. Des questions éthiques majeures se posent aussi : que devient la confidentialité des données cérébrales ? Qui les stocke ? Et dans quel but ?L’identification neuronale ouvre donc une nouvelle ère de la biométrie. Une ère fascinante, prometteuse… mais qui exigera des garde-fous solides. Car pour la première fois, ce n’est plus notre corps que l’on utilise comme clé d’accès, mais l’intimité même de notre activité mentale. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Depuis quelques années, on nous promet que l’intelligence artificielle va révolutionner la médecine. Mais jusqu’ici, l’IA restait surtout un outil : pour analyser des images médicales, repérer des cancers, lire des dossiers… Aujourd’hui, un cap est en train d’être franchi : un médicament conçu grâce à de l’IA pourrait devenir le premier traitement commercialisé issu d’un processus de découverte “end-to-end” par IA.Son nom : rentosertib.Rentosertib, auparavant connu sous le code ISM001-055, est développé par la société de biotechnologie Insilico Medicine. Il cible une maladie grave et encore largement incurable : la fibrose pulmonaire idiopathique, ou IPF. C’est une pathologie où le tissu des poumons se transforme progressivement en “cicatrice”, ce qui réduit l’oxygénation et conduit souvent à une insuffisance respiratoire. Les traitements actuels ne guérissent pas : ils ralentissent simplement la progression.Ce qui rend rentosertib unique, c’est son histoire. D’après les informations publiées ces dernières années, l’IA n’a pas servi uniquement à “accélérer” des étapes. Elle aurait été utilisée pour identifier une cible biologique prometteuse (une protéine impliquée dans la maladie), puis pour concevoir chimiquement une molécule capable de l’inhiber. Ici, la cible est une enzyme appelée TNIK. L’algorithme a analysé des masses de données scientifiques, repéré un signal biologique cohérent, puis généré et optimisé des structures moléculaires jusqu’à obtenir un candidat médicament.Rentosertib a déjà franchi des étapes cruciales : des essais initiaux chez l’humain ont montré un profil de sécurité acceptable, puis une étude de phase 2a a donné des signaux encourageants sur l’amélioration ou la stabilisation de certains indicateurs respiratoires après quelques semaines de traitement.Et maintenant, l’enjeu est énorme : la phase 3. C’est la dernière marche avant une éventuelle autorisation de mise sur le marché : un essai long, sur beaucoup de patients, comparant le médicament à un placebo ou au traitement standard. C’est aussi l’étape où la majorité des molécules échouent.Si rentosertib réussit cette phase, il pourrait être le premier médicament réellement “conçu par IA” à arriver en pharmacie — potentiellement avant 2030. Ce ne serait pas seulement une victoire médicale : ce serait la preuve que l’IA peut, concrètement, inventer des traitements plus vite… et peut-être mieux, contre des maladies aujourd’hui sans vraie solution. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
L’épigénétique désigne l’ensemble des mécanismes biologiques qui modifient l’activité de nos gènes… sans changer la séquence de notre ADN. Dit autrement : ton ADN est comme un texte. L’épigénétique, c’est tout ce qui agit comme des post-it, des surlignages ou des interrupteurs pour dire : “ce gène-là, on l’allume”, “celui-là, on le met en veille”.C’est une révolution dans la façon de comprendre le vivant, parce qu’elle montre que gènes et environnement dialoguent en permanence. Nos gènes ne sont pas un destin figé : ils peuvent être exprimés différemment selon notre alimentation, notre stress, notre sommeil, nos toxines, notre activité physique… et même parfois selon ce qu’ont vécu nos parents.Les mécanismes principaux sont au nombre de trois.D’abord, la méthylation de l’ADN : de petits groupes chimiques, appelés “méthyles”, viennent se fixer sur l’ADN et empêchent certains gènes de s’exprimer. C’est comme coller un scotch sur un paragraphe : il est toujours là, mais on ne le lit plus.Ensuite, les modifications des histones. L’ADN n’est pas déroulé en ligne droite : il est enroulé autour de protéines, les histones. Selon la façon dont ces histones sont modifiées, l’ADN devient plus ou moins “accessible”. Si l’ADN est serré, les gènes sont silencieux. Si l’ADN est plus relâché, ils sont actifs.Enfin, il existe des ARN non codants, de petites molécules qui ne fabriquent pas de protéines mais servent à réguler l’expression des gènes, comme des chefs d’orchestre invisibles.Un exemple spectaculaire : les abeilles. Toutes les larves ont le même ADN, mais si une larve est nourrie avec de la gelée royale, elle devient une reine. Sinon, elle devient une ouvrière. Ce n’est pas génétique : c’est épigénétique.Autre exemple célèbre : l’étude de la famine hollandaise (1944-45). Les enfants exposés in utero à cette période de sous-nutrition ont montré, des décennies plus tard, un risque accru de troubles métaboliques. On a observé chez eux des différences épigénétiques sur des gènes liés à la croissance et au métabolisme.C’est tout l’enjeu : l’épigénétique explique pourquoi des jumeaux identiques peuvent vieillir différemment ou développer des maladies différentes. Elle joue aussi un rôle clé dans le cancer, où certains gènes protecteurs sont “éteints” à tort.Conclusion : l’épigénétique, c’est la science qui montre comment l’environnement écrit, au-dessus de nos gènes, une seconde couche d’information. Une couche réversible… mais parfois durable. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Le rasoir de Hitchens est une règle de pensée simple, tranchante… et terriblement efficace. Elle tient en une phrase :« Ce qui est affirmé sans preuve peut être rejeté sans preuve. »Cette maxime est attribuée à Christopher Hitchens, essayiste et polémiste anglo-américain connu pour son style incisif, son goût du débat et son exigence intellectuelle. On parle de “rasoir” par analogie avec d’autres outils logiques comme le rasoir d’Occam : une règle qui “rase” les explications inutiles pour ne garder que l’essentiel. Ici, Hitchens ne rase pas les hypothèses trop compliquées : il rase les affirmations gratuites.Une arme contre les croyances infalsifiablesLe rasoir de Hitchens repose sur une idée fondamentale en rationalité : la charge de la preuve appartient à celui qui affirme. Si quelqu’un prétend quelque chose, c’est à lui de fournir des éléments solides pour le soutenir. Ce n’est pas à l’interlocuteur de démontrer que c’est faux.Et ça change tout. Car dans beaucoup de discussions, surtout sur Internet, la logique est inversée : une personne lance une théorie invérifiable — par exemple “les élites contrôlent tout”, “on nous ment”, “on a caché des preuves” — puis exige que les autres prouvent que c’est faux. Mais si l’affirmation ne repose sur rien de sérieux, on n’a pas à perdre son temps à la réfuter point par point : on peut la rejeter immédiatement.Exemple concretImagine quelqu’un qui dit :“Un esprit invisible hante mon appartement.”S’il n’y a aucune preuve, aucun indice, aucune observation vérifiable, le rasoir de Hitchens permet de répondre :“OK, mais je n’ai aucune raison d’y croire.”Pas besoin d’enquêter pendant trois semaines pour “prouver” qu’il n’y a pas de fantôme.Attention : ce n’est pas du cynismeLe rasoir de Hitchens ne dit pas : “tout est faux jusqu’à preuve du contraire”. Il dit : “je n’accepte pas une affirmation sans base”. C’est une posture intellectuelle saine, qui protège contre les rumeurs, les pseudo-sciences, les théories complotistes… mais aussi contre certaines manipulations politiques ou marketing.En résumé : le rasoir de Hitchens est une règle de bon sens déguisée en principe philosophique. Une règle qui rappelle ceci : si tu veux convaincre, apporte des preuves. Sinon, ton affirmation peut être balayée. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Pour écouter les deux épisodes recommandés:1/ Pourquoi votre opinion change-t-elle sans que vous ne vous en rendiez compte ?Apple Podcast:https://podcasts.apple.com/us/podcast/pourquoi-votre-opinion-change-t-elle-sans-que-vous/id1048372492?i=1000746638428Spotify:https://open.spotify.com/episode/0dzW7snN390LBqxeDluaoW?si=kTTF4LlVSMGVOQ9S_5XAEA2/ Dans quel pays est-il interdit de chanter en playback ?Apple Podcast:https://podcasts.apple.com/us/podcast/dans-quel-pays-est-il-interdit-de-chanter-en-playback/id1048372492?i=1000746550059Spotify:https://open.spotify.com/episode/3Ocem5LLM6sPtRnuyrll6W?si=MEBGO8qeSFGMVpiqLh9_3A--------------------------En 1951, l’explorateur et ethnologue français Jean Malaurie fait une découverte qui va le bouleverser et, surtout, donner une dimension politique à toute sa vie : au Groenland, dans l’extrême Nord, il tombe sur l’existence d’une immense base militaire américaine en cours de construction, que l’on n’avait pas annoncée publiquement. Une base stratégique, secrète, surgie dans un territoire que l’on imagine alors encore largement préservé.À cette époque, Jean Malaurie n’est pas encore l’auteur célèbre qu’il deviendra plus tard avec Les Derniers Rois de Thulé. Il est d’abord un homme de terrain, fasciné par le monde polaire, la géologie, la cartographie, et la vie des Inuits. Il explore le Nord du Groenland, dans la région de Thulé, une zone isolée, rude, mais habitée depuis des siècles. Son projet, au départ, n’a rien de militaire : il observe, il mesure, il marche, il partage le quotidien des habitants.Et puis, au détour de son expédition, il découvre ce qui ressemble à une apparition : une gigantesque infrastructure américaine en train de naître dans la toundra. Ce n’est pas une cabane, ni un petit poste avancé. C’est une véritable ville militaire, avec des engins, des pistes, des bâtiments, un dispositif logistique colossal. Cette base, c’est Thulé : un futur verrou arctique dans la stratégie américaine.Pourquoi l’Arctique ? Parce que nous sommes au début de la Guerre froide. Les États-Unis cherchent alors à sécuriser une position avancée qui permette de surveiller l’Union soviétique, de détecter des attaques, et d’installer des systèmes de défense ou de dissuasion. L’Arctique devient un espace clé : c’est le chemin le plus court entre l’Amérique du Nord et la Russie. Autrement dit : le Groenland, ce n’est plus seulement de la glace et des fjords, c’est un point géopolitique majeur.Mais ce qui frappe Malaurie, c’est surtout le coût humain. L’installation de cette base implique des bouleversements énormes pour les populations inuites locales. Dans ces territoires où tout repose sur l’équilibre fragile entre l’homme et la nature, l’arrivée d’un chantier militaire transforme brutalement l’environnement, le rythme, les déplacements, les ressources. Et surtout, elle annonce un basculement : désormais, les habitants ne sont plus seuls maîtres chez eux.Cette découverte agit comme un réveil. Malaurie comprend que l’exploration n’est pas neutre : elle est traversée par des intérêts de puissance. Dès lors, il ne sera plus seulement un scientifique ou un aventurier. Il deviendra aussi un témoin et un défenseur des peuples arctiques.En résumé : en 1951, Jean Malaurie découvre la base américaine secrète de Thulé au Groenland — un symbole de la Guerre froide — et cette découverte changera le sens de son œuvre, en le plaçant face aux conséquences concrètes de la géopolitique sur les Inuits. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Dans l’espace, une flamme ne ressemble pas du tout à celle qu’on connaît sur Terre. Ici-bas, quand on allume une bougie, le feu forme naturellement une “goutte” étirée vers le haut. Mais en microgravité, le feu devient une boule : une flamme presque parfaitement sphérique. C’est spectaculaire… et c’est surtout une conséquence directe des lois de la physique.Sur Terre, la flamme monte parce que l’air chaud monte. Lors de la combustion, le combustible réagit avec l’oxygène et libère de la chaleur. L’air autour de la flamme est donc chauffé, ce qui le rend moins dense. Résultat : cet air chaud s’élève sous l’effet de la gravité. C’est ce qu’on appelle la convection, liée à la poussée d’Archimède. En montant, l’air chaud emporte les gaz brûlés et “aspire” en bas de la flamme de l’air frais riche en oxygène. Ce flux permanent alimente le feu et étire la flamme verticalement. Le feu n’est donc pas naturellement pointu : il est “tiré” vers le haut par le mouvement de l’air.Mais dans l’espace, ce mécanisme s’effondre. En microgravité, il n’y a pratiquement plus de convection : l’air chaud ne monte pas, car il n’y a plus de force dominante pour séparer “air chaud” et “air froid”. Les gaz brûlés restent autour de la zone de combustion au lieu de s’évacuer vers le haut. Du coup, l’oxygène n’arrive plus par le bas comme sur Terre : il arrive lentement depuis toutes les directions, uniquement par diffusion, c’est-à-dire par le mouvement aléatoire des molécules. Cette alimentation en oxygène étant symétrique, la flamme l’est aussi : elle devient sphérique.Autre effet surprenant : comme l’oxygène arrive plus lentement, la combustion est souvent plus douce. La flamme est généralement plus froide, plus lente et plus “propre”, avec moins de suie. C’est pour cela qu’en microgravité, la flamme paraît parfois bleutée et moins lumineuse.Mais attention : cette beauté est dangereuse. Dans un vaisseau spatial, tout est confiné. Il y a des câbles, des plastiques, des textiles techniques, des mousses isolantes… un environnement très inflammable si une étincelle se produit. Et une flamme sphérique est difficile à gérer : elle peut flotter, se déplacer avec les courants d’air produits par la ventilation ou par les mouvements des astronautes. Sur Terre, le feu “monte”, donc on sait où il va. Dans l’espace, il peut aller partout.Le risque est encore plus critique si l’atmosphère du vaisseau contient davantage d’oxygène. Pour réduire la pression totale et alléger les contraintes sur la coque, certaines configurations de mission envisagent un air enrichi en oxygène. Mais plus l’air est riche en oxygène, plus les matériaux s’enflamment facilement et plus un départ de feu peut devenir violent.C’est pour cela que la maîtrise du feu en microgravité est un enjeu essentiel : comprendre comment une flamme naît, se propage et comment l’éteindre rapidement, c’est littéralement une question de survie pour les missions spatiales longues. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Lorsque l’on parle de « brûler » des graisses, l’image qui nous vient souvent en tête est celle d’un glaçon qui fond. En réalité, la biologie raconte une histoire bien plus surprenante : lorsque nous perdons de la graisse après un effort physique, la majorité de cette graisse quitte notre corps… par la respiration.Tout commence dans nos cellules. Lorsqu’elles ont besoin d’énergie — pendant une séance de sport, une marche rapide ou même une simple montée d’escaliers — elles vont puiser dans leurs réserves : les triglycérides. Ces molécules sont stockées dans les adipocytes, nos cellules graisseuses. Leur rôle est d’emmagasiner de l’énergie sous une forme compacte et stable, en attendant un moment de besoin. Quand l’organisme réclame du carburant, ces triglycérides sont démontés en acides gras et en glycérol.C’est dans les mitochondries que la véritable « combustion » a lieu. Grâce à l’oxygène que nous respirons, ces acides gras sont métabolisés. Et c’est là que survient la révélation : la graisse ne disparaît pas, elle se transforme. Son produit final n’est pas de la chaleur ni de la sueur, mais principalement du dioxyde de carbone (CO₂) et de l’eau.Pour donner une idée concrète : si vous perdez 100 g de graisse, environ 84 g seront transformés en CO₂. À un rythme respiratoire normal, cela représente plusieurs dizaines de litres de CO₂ expirés au fil des heures. La dépense énergétique d’une séance de sport d’intensité modérée peut mobiliser 50 à 150 g de graisse, ce qui signifie que l’on expire littéralement des dizaines de grammes de graisse sous forme de CO₂ après un seul entraînement.Les 16 % restants de la masse initiale sont transformés en eau, éliminée par la sueur, l’urine et même la vapeur d’eau expirée. Contrairement aux idées reçues, la transpiration n’est pas la preuve que nous « brûlons » de la graisse : elle sert surtout à refroidir le corps.Cette découverte — popularisée après une étude publiée en 2014 dans BMJ — a renversé nombre d’idées que l’on croyait acquises : maigrir est avant tout un processus respiratoire. Chaque mouvement accélère la transformation des triglycérides en CO₂, et c’est en expirant que nous perdons réellement du poids.En résumé : pour perdre de la graisse, il faut bouger… et respirer. L’oxygène que nous inspirons, et surtout le CO₂ que nous expirons, portent la signature chimique de notre perte de poids. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Ce phénomène est bien documenté et concerne surtout les accouchements spontanés, c’est-à-dire non déclenchés médicalement. La raison principale est biologique : le corps féminin est naturellement programmé pour accoucher plus facilement pendant la nuit.Le premier élément clé est le rythme circadien, notre horloge biologique interne. Cette horloge régule de nombreuses fonctions physiologiques sur un cycle de vingt-quatre heures, notamment la sécrétion hormonale. Or, plusieurs hormones essentielles au travail de l’accouchement atteignent leur pic durant la nuit.L’hormone la plus importante dans ce processus est l’ocytocine. Elle est responsable des contractions utérines qui permettent la dilatation du col et la naissance du bébé. La production d’ocytocine augmente naturellement la nuit, car elle est inhibée par le stress, la lumière et certaines hormones de l’éveil, comme le cortisol. La nuit, l’environnement est plus calme, plus sombre, et l’organisme est moins stimulé. Les freins hormonaux diminuent, ce qui rend les contractions plus efficaces et plus régulières.Une autre hormone joue un rôle crucial : la mélatonine, souvent appelée hormone du sommeil. Elle est sécrétée en grande quantité dans l’obscurité. Des études ont montré que la mélatonine agit en synergie avec l’ocytocine, en renforçant l’intensité et la coordination des contractions utérines. Autrement dit, la mélatonine ne favorise pas seulement le sommeil, elle participe aussi activement au bon déroulement de l’accouchement.Ce phénomène s’explique également par l’évolution. Pendant la majeure partie de l’histoire humaine, accoucher la nuit offrait un avantage en termes de survie. L’obscurité réduisait l’exposition aux prédateurs, l’activité du groupe était moindre et les conditions étaient plus propices au calme et à la concentration. Le corps humain a conservé cette programmation biologique ancestrale.Enfin, il est important de préciser que cette tendance est aujourd’hui atténuée par la médicalisation des naissances. Les déclenchements programmés et les césariennes planifiées ont déplacé une partie des accouchements vers la journée. Mais lorsque le travail débute spontanément, sans intervention médicale, la physiologie naturelle continue de privilégier la nuit.En résumé, si les femmes accouchent plus souvent la nuit, c’est parce que leur horloge biologique, leurs hormones et leur héritage évolutif s’alignent pour faire de la nuit le moment le plus favorable à la naissance. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
D’abord, rappelons un chiffre : à l’équateur, la surface de la Terre se déplace à environ 465 m/s, soit 1 670 km/h. À Paris, c’est encore autour de 1 100 km/h. Cette vitesse n’est pas “une sensation” : c’est une énergie cinétique réelle, emmagasinée par tout ce qui est posé sur le sol — atmosphère, océans, bâtiments… et nous.1) La catastrophe immédiate : l’inertieSi la Terre s’arrêtait net, tout ce qui n’est pas solidement attaché au socle rocheux continuerait à avancer à sa vitesse actuelle, par inertie. Résultat :des vents supersoniques : l’atmosphère garderait sa vitesse, déclenchant des rafales capables de raser des continents ;les océans se déplaceraient aussi : des mégatsunamis balaieraient les côtes et progresseraient profondément dans les terres ;les objets, les véhicules et les humains seraient littéralement projetés vers l’est.Cette phase serait la plus meurtrière : une conversion brutale d’énergie de rotation en destruction mécanique.2) Le chaos géophysique : réorganisation de la planèteEnsuite, la Terre chercherait un nouvel équilibre. Aujourd’hui, la rotation crée un renflement équatorial : la Terre est plus large d’environ 21 km à l’équateur qu’entre les pôles. Sans rotation, ce renflement n’aurait plus de raison d’être. Le manteau et la croûte se réajusteraient lentement, mais cela impliquerait une forte activité tectonique :séismes massifs,volcanisme accru,redistribution des contraintes dans la lithosphère.3) L’eau migrerait vers les pôlesUn effet contre-intuitif : sans force centrifuge, les océans ne resteraient pas répartis comme aujourd’hui. Ils se dirigeraient davantage vers les pôles, formant deux énormes calottes océaniques, et laissant émerger de vastes zones près de l’équateur.4) Un jour durerait un an… ou presqueSans rotation, la “journée” n’existerait plus au sens habituel. Un point de la surface ferait face au Soleil pendant environ 6 mois, puis serait plongé dans la nuit pendant 6 mois. Les écarts de température deviendraient extrêmes :sur la face éclairée : échauffement intense,sur la face sombre : refroidissement massif, gel généralisé.5) Le champ magnétique se dérègleEnfin, le champ magnétique terrestre dépend en partie de la dynamique interne du noyau (effet dynamo). La rotation joue un rôle crucial dans l’organisation des mouvements conducteurs. Un arrêt brutal pourrait affaiblir fortement le champ magnétique, exposant davantage la surface aux particules solaires.Conclusion : arrêter la Terre, ce n’est pas seulement “supprimer l’alternance jour-nuit”. C’est libérer une énergie colossale, déchaîner l’atmosphère et les océans, et transformer durablement la géographie et le climat. Un arrêt… et le monde tel qu’on le connaît disparaît. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Imaginez la scène : vous êtes dans votre salon, vous discutez avec quelqu’un, vous parlez d’un nouvel objet… et votre chien, tranquillement dans son panier, “enregistre” le mot. Quelques minutes plus tard, vous lui demandez d’aller chercher ce même objet… et il le trouve.Ça ressemble à de la magie. En réalité, c’est de la scienceUne étude publiée le 8 janvier 2026 dans la revue Science montre que certains chiens, très rares, sont capables d’apprendre de nouveaux mots sans être entraînés directement : simplement en observant et en écoutant les interactions humaines. Les chercheurs parlent d’un petit groupe particulier : les “Gifted Word Learners” — littéralement, des chiens “doués” pour l’apprentissage des mots. Ces chiens connaissent déjà beaucoup de noms d’objets, souvent des jouets. Certains en reconnaissent plus de 100 et, dans certains cas, plusieurs centaines. Le point clé : ils ne se contentent pas d’obéir à des ordres (“assis”, “au pied”). Ils comprennent des étiquettes verbales associées à des objets précis : “la balle bleue”, “le kangourou”, “la pizza”, etc.Comment apprennent-ils ?Dans l’expérience, les chercheurs ont testé 10 chiens GWL. Les propriétaires introduisaient deux jouets inconnus, mais selon deux méthodes :1. Apprentissage direct : le maître montre le jouet, répète son nom, joue.2. Écoute passive : le chien n’est pas sollicité. Deux humains discutent, manipulent le jouet, prononcent son nom… mais sans s’adresser au chien.Et là, résultat spectaculaire : après simple écoute, 7 chiens sur 10 ont retrouvé correctement les jouets lors du test. Leur performance atteignait environ 80–83%, très proche de l’apprentissage direct, mesuré autour de 90–92%.Pour réussir, le chien doit faire plusieurs opérations mentales complexes :prêter attention à une conversation humaine,repérer qu’un mot est le nom d’un objet,associer ce mot à un objet précis,mémoriser l’information,et la ressortir plus tard dans un autre contexte.C’est exactement un mécanisme que l’on observe aussi chez l’enfant : vers 18 mois, certains bébés apprennent des mots en “espionnant” les échanges des adultes. Pourquoi c’est important ?Cette découverte suggère que l’apprentissage des mots ne repose pas uniquement sur le langage humain, mais sur des compétences plus générales : attention sociale, mémoire, lecture des intentions.Et elle pose une question fascinante : après des millénaires aux côtés de l’homme, certains chiens auraient-ils développé une forme rare, mais réelle, de “pré-langage” social ?En bref : ces chiens ne parlent pas. Mais certains savent écouter… vraiment. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Le rasoir d’Alder est une règle de bon sens… qui coupe net les débats stériles. Son idée centrale tient en une phrase : si une affirmation ne peut pas être tranchée par l’observation ou l’expérience, alors elle ne vaut pas la peine d’être débattue.On l’appelle aussi, avec un humour très “scientifique”, « l’épée laser flamboyante de Newton » (Newton’s flaming laser sword). Cette formule a été popularisée au début des années 2000 par le mathématicien australien Mike Alder, notamment dans un essai publié en 2004.Et c’est précisément pour cela qu’on parle de rasoir d’Alder : comme pour le rasoir d’Occam, le concept porte le nom de la personne qui l’a formulé et rendu célèbre. Ce n’est pas Newton qui l’a inventé : Newton sert ici de clin d’œil dans le surnom. À noter d’ailleurs qu’on voit parfois “Adler” écrit par erreur, mais l’attribution correcte est bien Alder.Le rasoir d’Alder ne dit pas “c’est faux”. Il dit : “ce n’est pas un bon usage de notre temps de le disputer comme si on pouvait conclure.”Exemple : “Existe-t-il un univers parallèle exactement identique au nôtre, mais inaccessible à jamais ?” Peut-être. Mais si, par définition, aucune mesure ne peut le confirmer ou l’infirmer, alors le rasoir d’Alder conseille de ne pas transformer ça en bataille intellectuelle.C’est une invitation à déplacer la discussion vers des questions testables :Au lieu de débattre “l’intelligence est-elle une essence mystérieuse ?”, on peut demander “quels tests permettent de prédire des performances cognitives, et avec quelle fiabilité ?”Au lieu de “la conscience est-elle immatérielle ?”, on peut demander “quels corrélats neuronaux de l’expérience consciente peut-on mesurer ?”En ce sens, Alder est proche de l’esprit de Karl Popper et de la falsifiabilité : une proposition devient “scientifique” si on peut imaginer ce qui la rendrait fausse. Mais Alder va plus loin en mode pragmatique : si on ne peut pas trancher, ne gaspillons pas l’énergie à polémiquer.Attention : ce rasoir n’est pas une loi de la nature. Il peut être trop strict. Certaines questions paraissent non testables… jusqu’au jour où une nouvelle méthode les rend observables (c’est arrivé souvent dans l’histoire des sciences). Et puis, on peut aussi débattre de valeurs, d’éthique, de sens — sans “expérience” au sens strict.Conclusion : le rasoir d’Alder n’élimine pas les grandes questions. Il vous aide à repérer celles qui, pour l’instant, ne peuvent produire ni preuve ni progrès — juste des joutes verbales. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
La question est fascinante, presque mythique : deux personnes seulement pourraient-elles repeupler la Terre après une catastrophe mondiale ? D’un point de vue scientifique, la réponse courte est non. Et la réponse longue est encore plus intéressante.Commençons par la génétique. Pour qu’une population soit viable à long terme, il faut une diversité génétique suffisante. Cette diversité permet d’éviter l’accumulation de mutations délétères, responsables de maladies graves, de stérilité ou de malformations. Avec seulement deux individus, toute la descendance serait issue de relations incestueuses, génération après génération. Très rapidement, les effets de la consanguinité extrême deviendraient catastrophiques.On appelle cela la dépression de consanguinité. Elle entraîne une baisse de la fertilité, une augmentation de la mortalité infantile et une vulnérabilité accrue aux maladies. Chez les humains, ces effets apparaissent dès les premières générations. Autrement dit, même si deux personnes pouvaient avoir des enfants, leurs petits-enfants et arrière-petits-enfants auraient de très fortes probabilités de ne pas survivre ou de ne pas se reproduire.Les biologistes utilisent souvent un concept appelé population minimale viable. Pour l’espèce humaine, les estimations varient selon les modèles, mais elles convergent vers un minimum de plusieurs milliers d’individus pour assurer une survie à long terme sans assistance technologique. Certains scénarios très optimistes évoquent quelques centaines d’individus, mais jamais deux.Il existe une règle empirique connue sous le nom de règle des 50/500. Elle suggère qu’il faut au moins 50 individus pour éviter une extinction immédiate due à la consanguinité, et environ 500 pour maintenir une diversité génétique stable à long terme. Même cette règle est aujourd’hui jugée trop optimiste pour les humains.Mais la génétique n’est pas le seul problème. Deux personnes devraient aussi assurer la survie matérielle : produire de la nourriture, élever des enfants, se protéger des maladies, transmettre des connaissances, maintenir des outils, et faire face aux accidents. Or une population minuscule est extrêmement vulnérable aux aléas : une infection, une blessure grave ou une complication lors d’un accouchement pourrait suffire à tout faire disparaître.Certains objecteront que la technologie pourrait aider. En théorie, des banques de gamètes, le clonage ou l’édition génétique pourraient augmenter artificiellement la diversité. Mais dans ce cas, on ne parle plus vraiment de “deux personnes”, mais d’un système technologique complexe préservant une population virtuelle.Enfin, les données de la paléogénétique sont claires : même lors des périodes où l’humanité a frôlé l’extinction, comme il y a environ 70 000 ans, la population humaine ne serait jamais descendue en dessous de quelques milliers d’individus.Conclusion : deux personnes ne pourraient pas repeupler la Terre. Le mythe est puissant, mais la biologie est implacable. Pour survivre, une espèce a besoin non seulement de reproduction, mais surtout de diversité, de résilience et de nombre. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Depuis l’explosion des outils d’intelligence artificielle générative, une nouvelle promesse est apparue : celle des détecteurs d’IA, censés distinguer un texte écrit par un humain d’un texte produit par une machine. Ces outils sont désormais utilisés dans l’éducation, le journalisme ou le recrutement. Pourtant, d’un point de vue scientifique, leur fiabilité est profondément limitée. Et un exemple devenu célèbre l’illustre parfaitement : l’un de ces détecteurs a affirmé que la Déclaration d’Indépendance américaine de 1776 avait probablement été écrite par une IA.Pourquoi un tel non-sens est-il possible ? La réponse tient au fonctionnement même de ces détecteurs.La plupart des détecteurs d’IA reposent sur des analyses statistiques du langage. Ils mesurent des critères comme la “prévisibilité” des mots, la régularité syntaxique ou ce que l’on appelle la perplexité. Un texte est jugé “suspect” s’il semble trop fluide, trop cohérent ou trop régulier. Le problème est évident : un bon texte humain peut parfaitement présenter ces caractéristiques, en particulier s’il est formel, structuré ou rédigé avec soin.À l’inverse, un texte généré par une IA peut facilement échapper à la détection s’il est légèrement modifié, paraphrasé ou enrichi d’erreurs volontaires. En pratique, quelques changements stylistiques suffisent à faire basculer le verdict. Cela montre une première faiblesse majeure : ces outils détectent des styles, pas des auteurs.Deuxième problème fondamental : les IA génératives sont elles-mêmes entraînées sur d’immenses corpus de textes humains. Elles apprennent à imiter la façon dont les humains écrivent. Plus elles progressent, plus leurs productions se rapprochent des distributions statistiques du langage humain. Résultat : la frontière mathématique entre texte humain et texte artificiel devient floue, voire inexistante. D’un point de vue théorique, il n’existe aucun “marqueur universel” de l’écriture humaine.Troisième limite : les détecteurs sont souvent entraînés sur des données datées ou biaisées. Ils comparent un texte à ce que “ressemblait” une IA à un instant donné. Mais dès qu’un nouveau modèle apparaît, avec un style différent, la détection devient obsolète. C’est une course perdue d’avance : l’IA évolue plus vite que les outils censés la repérer.L’épisode de la Déclaration d’Indépendance est révélateur. Ce texte, rédigé au XVIIIᵉ siècle, est formel, très structuré, peu émotionnel et linguistiquement régulier. Exactement le type de style que les détecteurs associent — à tort — à une IA moderne. Cela prouve que ces outils confondent classicisme stylistique et artificialité.En résumé, les détecteurs d’IA ne sont pas scientifiquement fiables parce qu’ils reposent sur des heuristiques fragiles, qu’ils confondent forme et origine, et qu’ils tentent de résoudre un problème peut-être insoluble : distinguer deux productions qui obéissent aux mêmes lois statistiques. Leur verdict ne devrait jamais être considéré comme une preuve, mais au mieux comme un indice très faible, et souvent trompeur. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
En 2011, une annonce a fait l’effet d’une bombe dans le monde scientifique : des chercheurs affirmaient avoir mesuré des neutrinos allant plus vite que la lumière. Si cela avait été vrai, cela aurait remis en cause l’un des piliers de la physique moderne, hérité d’Albert Einstein. Mais que s’est-il réellement passé ? Et pourquoi parle-t-on encore aujourd’hui de l’expérience OPERA ?Commençons par les bases. Les neutrinos sont des particules extrêmement légères, presque sans masse, qui interagissent très peu avec la matière. Des milliards d’entre eux traversent votre corps chaque seconde sans que vous ne le sentiez. Ils sont produits en grande quantité dans les réactions nucléaires, comme celles du Soleil ou des accélérateurs de particules.L’expérience OPERA consistait à mesurer le temps de trajet de neutrinos envoyés depuis le CERN, près de Genève, jusqu’à un détecteur situé sous le massif du Gran Sasso, en Italie. Distance : environ 730 kilomètres. Objectif : vérifier que les neutrinos, comme prévu, se déplacent à une vitesse très proche de celle de la lumière, mais sans la dépasser.Or, surprise : les premières mesures indiquaient que les neutrinos arrivaient environ 60 nanosecondes trop tôt. Autrement dit, ils semblaient dépasser la vitesse de la lumière d’environ 0,002 %. Une différence minuscule, mais suffisante pour bouleverser toute la relativité restreinte, qui affirme qu’aucune information ni particule ne peut aller plus vite que la lumière dans le vide.Face à un résultat aussi extraordinaire, les chercheurs ont fait ce que la science exige : ils ont douté. Car en science, une découverte révolutionnaire impose un niveau de vérification exceptionnel. Très vite, d’autres équipes ont tenté de reproduire la mesure, tandis que les ingénieurs ont passé au crible chaque élément du dispositif.Et c’est là que l’explication est apparue. Deux problèmes techniques étaient en cause. D’abord, un câble à fibre optique mal connecté, qui introduisait un décalage dans la synchronisation des horloges. Ensuite, un oscillateur défectueux, utilisé pour mesurer le temps. Pris séparément, ces défauts semblaient insignifiants ; combinés, ils expliquaient parfaitement l’avance apparente des neutrinos.Une fois ces erreurs corrigées, les nouvelles mesures ont confirmé ce que la physique prédisait depuis un siècle : les neutrinos ne dépassent pas la vitesse de la lumière. Ils s’en approchent énormément, mais restent en dessous.Alors pourquoi cet épisode est-il important ? Parce qu’il montre la science en action. Les chercheurs n’ont pas caché un résultat dérangeant. Ils l’ont publié, soumis à la critique, testé, puis corrigé. OPERA n’a pas renversé Einstein, mais elle a rappelé une règle fondamentale : des résultats extraordinaires exigent des preuves extraordinaires.En résumé, non, les neutrinos ne sont pas plus rapides que la lumière. Mais l’expérience OPERA reste un excellent exemple de rigueur scientifique… et d’humilité face aux mesures. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Le principe de réfutabilité est l’une des idées les plus célèbres — et les plus mal comprises — de la philosophie des sciences. Il a été formulé au XXᵉ siècle par le philosophe Karl Popper, avec une ambition claire : définir ce qui distingue une théorie scientifique d’un discours qui ne l’est pas.À première vue, la science semble reposer sur la preuve. On pourrait croire qu’une théorie est scientifique parce qu’elle est confirmée par des expériences. Or, Popper renverse totalement cette intuition. Selon lui, aucune théorie scientifique ne peut jamais être définitivement prouvée vraie. Pourquoi ? Parce qu’une infinité d’observations positives ne garantit jamais que la prochaine ne viendra pas la contredire. En revanche, une seule observation contraire suffit à invalider une théorie.C’est là qu’intervient le principe de réfutabilité. Pour Popper, une théorie est scientifique si et seulement si elle peut, en principe, être réfutée par les faits. Autrement dit, elle doit faire des prédictions suffisamment précises pour qu’on puisse imaginer une expérience ou une observation qui la rende fausse. Si aucune observation possible ne peut la contredire, alors elle sort du champ de la science.Un exemple classique permet de comprendre. L’énoncé « tous les cygnes sont blancs » est réfutable : il suffit d’observer un seul cygne noir pour le contredire. À l’inverse, une affirmation comme « des forces invisibles et indétectables influencent secrètement le monde » n’est pas réfutable, puisqu’aucune observation ne peut la mettre en défaut. Elle peut être intéressante sur le plan philosophique ou symbolique, mais elle n’est pas scientifique.Popper utilise ce critère pour critiquer certaines théories très populaires à son époque, comme la psychanalyse ou certaines formes de marxisme. Selon lui, ces systèmes expliquent tout a posteriori, mais ne prennent jamais le risque d’être démentis par les faits. Quand une prédiction échoue, l’explication est ajustée, ce qui rend la théorie indestructible… et donc non scientifique.Ce point est fondamental : pour Popper, la science progresse par erreurs corrigées, non par accumulation de certitudes. Une bonne théorie n’est pas celle qui se protège contre la critique, mais celle qui s’expose volontairement à la possibilité d’être fausse. Plus une théorie est risquée, plus elle est scientifique.Aujourd’hui encore, le principe de réfutabilité structure la méthode scientifique moderne. Il rappelle que la science n’est pas un ensemble de vérités absolues, mais un processus critique permanent. Une théorie n’est jamais vraie pour toujours ; elle est simplement la meilleure disponible, tant qu’elle résiste aux tentatives de réfutation.En résumé, le principe de réfutabilité de Popper nous apprend une chose essentielle : en science, le doute n’est pas une faiblesse, c’est une condition de progrès. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Le sens de l’humour fait partie de ces traits que l’on aime attribuer à la personnalité, à l’éducation, ou à l’ambiance familiale. Mais une question intrigue depuis longtemps les chercheurs : sommes-nous génétiquement programmés pour avoir de l’humour… ou est-ce uniquement le produit de notre environnement ? Une étude publiée dans la revue scientifique Twin Research and Human Genetics apporte des éléments de réponse particulièrement éclairants.Pour étudier l’origine de traits psychologiques complexes, les scientifiques utilisent souvent une méthode classique : la comparaison entre jumeaux monozygotes, qui partagent 100 % de leur patrimoine génétique, et jumeaux dizygotes, qui n’en partagent qu’environ 50 %, comme de simples frères et sœurs. Si un trait est plus similaire chez les jumeaux identiques que chez les faux jumeaux, cela suggère une influence génétique.Dans cette étude, les chercheurs ont analysé plusieurs dimensions de l’humour : la capacité à produire des blagues, la sensibilité à l’humour des autres, et l’usage de l’humour dans les interactions sociales. Les participants devaient répondre à des questionnaires standardisés évaluant leur style humoristique et leur fréquence d’utilisation de l’humour au quotidien.Résultat principal : le sens de l’humour est partiellement héréditaire. Selon les analyses statistiques, environ 30 à 40 % des différences individuelles liées à l’humour peuvent être expliquées par des facteurs génétiques. Cela signifie que les gènes jouent un rôle réel, mais non dominant. Autrement dit, l’humour n’est ni totalement inné, ni purement acquis.Ce point est essentiel. La majorité de la variabilité observée — 60 à 70 % — est liée à l’environnement : la famille, la culture, l’éducation, les expériences de vie, mais aussi le contexte social. Grandir dans un milieu où l’humour est valorisé, pratiqué et encouragé compte donc davantage que l’ADN seul.Les chercheurs soulignent également que toutes les formes d’humour ne sont pas égales face à la génétique. Par exemple, l’humour affiliatif — celui qui sert à créer du lien social — semble plus influencé par l’environnement, tandis que certains traits cognitifs liés à la compréhension des jeux de mots ou de l’ironie pourraient avoir une composante génétique plus marquée, via des capacités comme la flexibilité mentale ou le langage.Enfin, cette étude rappelle un point fondamental en sciences du comportement : les gènes ne déterminent pas des comportements précis, mais des prédispositions. Avoir une base génétique favorable ne garantit pas d’être drôle, pas plus qu’en être dépourvu n’empêche de développer un excellent sens de l’humour.En conclusion, le sens de l’humour est bien en partie héréditaire, mais il se façonne surtout au fil des interactions, des cultures et des expériences. Une bonne nouvelle : même sans “gène de l’humour”, il reste largement… cultivable. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Depuis quelques mois, un acronyme revient de plus en plus souvent dans les débats agricoles et scientifiques européens : NGT, pour New Genomic Techniques. Derrière ce terme un peu technique se cachent ce que l’on appelle parfois, à tort ou à raison, les « nouveaux OGM ». Mais que sont réellement les NGT, et pourquoi l’Union européenne a-t-elle décidé de les autoriser plus largement ?Les NGT regroupent des techniques de modification ciblée du génome, comme l’édition génétique par CRISPR-Cas9. Contrairement aux OGM dits « classiques », développés à partir des années 1990, il ne s’agit plus d’introduire dans une plante un gène provenant d’une autre espèce — par exemple une bactérie — mais de modifier ou désactiver un gène déjà présent dans l’ADN de la plante. En clair, on intervient comme un chirurgien de précision, là où les anciens OGM fonctionnaient plutôt comme un greffon.C’est cette différence qui a conduit l’Union européenne à revoir sa position. Jusqu’ici, toutes les plantes issues de modification génétique étaient soumises à une réglementation très stricte, héritée d’une directive de 2001. Or, en 2024, les institutions européennes ont estimé que certaines NGT produisent des plantes indiscernables de celles obtenues par sélection naturelle ou par croisements traditionnels. Résultat : une partie des NGT est désormais autorisée sous un régime réglementaire allégé.Les défenseurs de ces technologies mettent en avant plusieurs arguments. D’abord, les enjeux climatiques : grâce aux NGT, il serait possible de développer plus rapidement des plantes résistantes à la sécheresse, à la chaleur ou à certaines maladies, sans augmenter l’usage de pesticides. Ensuite, un argument économique : l’Europe accuse un retard face aux États-Unis et à la Chine, où ces techniques sont déjà largement utilisées. Pour les partisans des NGT, les refuser reviendrait à affaiblir la souveraineté agricole européenne.Mais ces « nouveaux OGM » restent très controversés. Les ONG environnementales et certains syndicats agricoles dénoncent un habillage sémantique : selon eux, modifier l’ADN reste une modification génétique, quelle que soit la technique utilisée. Ils craignent une concentration accrue du marché des semences entre les mains de grands groupes, ainsi qu’un manque de recul sur les effets à long terme sur les écosystèmes.L’Union européenne a donc tenté un compromis. Les plantes issues de NGT considérées comme « équivalentes au naturel » pourront être cultivées plus librement, tandis que les modifications plus complexes resteront encadrées comme des OGM classiques. Reste une question centrale, loin d’être tranchée : les consommateurs accepteront-ils ces nouveaux végétaux, même sans étiquette OGM ?Derrière les NGT, c’est une interrogation plus large qui se dessine : comment nourrir une population croissante dans un monde bouleversé par le changement climatique, sans sacrifier la confiance du public ni la biodiversité ? Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.






toujours des doublons du podcast sciences
sounds dress episodes science !!
continuer 😊🌹
merci merci merci, un vrai plaisir de vous écouter. J'ai une question : quel est la raison d'un bégaiement ? comment ça se déclenche/ fonctionne ?
Que Dieu aïe pitié de tous les utilisateurs de cette appli.
le contenu du podcast est erroné
j'adore! un seul reproche : l'accélération de l'enregistrement est très souvent exagéré, et nuit au plaisir de l'écoute.
g5y nth. h
👏🏻
C'est peut-être une question bête mais... pourquoi partir du principe que Hercule et la tortue courent à la même vitesse ? C'est peu vraisemblable
je les ecoutent tous. vous avez 3 podcasts cesr bien ça?
Mon rituel du matin, pendant que je me lave ! Très instructif et ludique. J'écoute également Choses à savoir Culture générale et Choses à savoir Santé.