Discover
Daily Paper Cast

Daily Paper Cast
Author: Jingwen Liang, Gengyu Wang
Subscribed: 6Played: 287Subscribe
Share
© 2025 Jingwen Liang, Gengyu Wang
Description
We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com
Creator:
Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/
Gengyu Wang, LLM ML, http://wanggengyu.com
Listen on:
Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL
Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236
Cover Image by Kawen Kuang https://kawen.art
Creator:
Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/
Gengyu Wang, LLM ML, http://wanggengyu.com
Listen on:
Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL
Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236
Cover Image by Kawen Kuang https://kawen.art
1184 Episodes
Reverse
🤗 Upvotes: 95 | cs.LG, cs.CL
Authors:
Guochao Jiang, Wenfeng Feng, Guofeng Quan, Chuzhan Hao, Yuewei Zhang, Guohua Liu, Hao Wang
Title:
VCRL: Variance-based Curriculum Reinforcement Learning for Large Language Models
Arxiv:
http://arxiv.org/abs/2509.19803v1
Abstract:
Policy-based reinforcement learning currently plays an important role in improving LLMs on mathematical reasoning tasks. However, existing rollout-based reinforcement learning methods (GRPO, DAPO, GSPO, etc.) fail to explicitly consider LLMs' learning ability for samples of different difficulty levels, which is contrary to the human cognitive process of mathematical reasoning tasks from easy to difficult. Intuitively, we find that the variance of the rollout group's reward in RLVR partly reflects the difficulty of the current sample for LLMs. Samples that are too easy or too difficult have a lower variance, while samples with moderate difficulty have a higher variance. Based on this, we propose VCRL, a curriculum reinforcement learning framework that dynamically controls the difficulty of training samples based on the variance of group rewards. Experiments on five mathematical benchmarks and two models reveal the advantages of VCRL over the current LLM RL baselines.
🤗 Upvotes: 76 | cs.CL
Authors:
Yizhou Wang, Chen Tang, Han Deng, Jiabei Xiao, Jiaqi Liu, Jianyu Wu, Jun Yao, Pengze Li, Encheng Su, Lintao Wang, Guohang Zhuang, Yuchen Ren, Ben Fei, Ming Hu, Xin Chen, Dongzhan Zhou, Junjun He, Xiangyu Yue, Zhenfei Yin, Jiamin Wu, Qihao Zheng, Yuhao Zhou, Huihui Xu, Chenglong Ma, Yan Lu, Wenlong Zhang, Chunfeng Song, Philip Torr, Shixiang Tang, Xinzhu Ma, Wanli Ouyang, Lei Bai
Title:
SciReasoner: Laying the Scientific Reasoning Ground Across Disciplines
Arxiv:
http://arxiv.org/abs/2509.21320v1
Abstract:
We present a scientific reasoning foundation model that aligns natural language with heterogeneous scientific representations. The model is pretrained on a 206B-token corpus spanning scientific text, pure sequences, and sequence-text pairs, then aligned via SFT on 40M instructions, annealed cold-start bootstrapping to elicit long-form chain-of-thought, and reinforcement learning with task-specific reward shaping, which instills deliberate scientific reasoning. It supports four capability families, covering up to 103 tasks across workflows: (i) faithful translation between text and scientific formats, (ii) text/knowledge extraction, (iii) property prediction, (iv) property classification, (v) unconditional and conditional sequence generation and design. Compared with specialist systems, our approach broadens instruction coverage, improves cross-domain generalization, and enhances fidelity. We detail data curation and training and show that cross-discipline learning strengthens transfer and downstream reliability. The model, instruct tuning datasets and the evaluation code are open-sourced at https://huggingface.co/SciReason and https://github.com/open-sciencelab/SciReason.
🤗 Upvotes: 67 | cs.CV
Authors:
Sicong Leng, Jing Wang, Jiaxi Li, Hao Zhang, Zhiqiang Hu, Boqiang Zhang, Yuming Jiang, Hang Zhang, Xin Li, Lidong Bing, Deli Zhao, Wei Lu, Yu Rong, Aixin Sun, Shijian Lu
Title:
MMR1: Enhancing Multimodal Reasoning with Variance-Aware Sampling and Open Resources
Arxiv:
http://arxiv.org/abs/2509.21268v1
Abstract:
Large multimodal reasoning models have achieved rapid progress, but their advancement is constrained by two major limitations: the absence of open, large-scale, high-quality long chain-of-thought (CoT) data, and the instability of reinforcement learning (RL) algorithms in post-training. Group Relative Policy Optimization (GRPO), the standard framework for RL fine-tuning, is prone to gradient vanishing when reward variance is low, which weakens optimization signals and impairs convergence. This work makes three contributions: (1) We propose Variance-Aware Sampling (VAS), a data selection strategy guided by Variance Promotion Score (VPS) that combines outcome variance and trajectory diversity to promote reward variance and stabilize policy optimization. (2) We release large-scale, carefully curated resources containing ~1.6M long CoT cold-start data and ~15k RL QA pairs, designed to ensure quality, difficulty, and diversity, along with a fully reproducible end-to-end training codebase. (3) We open-source a family of multimodal reasoning models in multiple scales, establishing standardized baselines for the community. Experiments across mathematical reasoning benchmarks demonstrate the effectiveness of both the curated data and the proposed VAS. Comprehensive ablation studies and analyses provide further insight into the contributions of each component. In addition, we theoretically establish that reward variance lower-bounds the expected policy gradient magnitude, with VAS serving as a practical mechanism to realize this guarantee. Our code, data, and checkpoints are available at https://github.com/LengSicong/MMR1.
🤗 Upvotes: 58 | cs.LG, cs.AI
Authors:
Yuxiang Ji, Ziyu Ma, Yong Wang, Guanhua Chen, Xiangxiang Chu, Liaoni Wu
Title:
Tree Search for LLM Agent Reinforcement Learning
Arxiv:
http://arxiv.org/abs/2509.21240v1
Abstract:
Recent advances in reinforcement learning (RL) have significantly enhanced the agentic capabilities of large language models (LLMs). In long-term and multi-turn agent tasks, existing approaches driven solely by outcome rewards often suffer from the problem of sparse supervision. To address the challenge, we propose Tree-based Group Relative Policy Optimization (Tree-GRPO), a grouped agent RL method based on tree search, where each tree node represents the complete agent interaction step. By sharing common prefixes, the tree search sampling increases the number of rollouts achievable within a fixed budget of tokens or tool calls. Moreover, we find that the tree-structured trajectory naturally allows the construction of step-wise process supervised signals even using only the outcome reward. Based on this, Tree-GRPO estimates the grouped relative advantages both on intra-tree and inter-tree levels. Through theoretical analysis, we demonstrate that the objective of intra-tree level group relative policy optimization is equivalent to that of step-level direct preference learning. Experiments across 11 datasets and 3 types of QA tasks demonstrate the superiority of the proposed tree-based RL over the chain-based RL method.
🤗 Upvotes: 46 | cs.CV
Authors:
Team Seedream, Yunpeng Chen, Yu Gao, Lixue Gong, Meng Guo, Qiushan Guo, Zhiyao Guo, Xiaoxia Hou, Weilin Huang, Yixuan Huang, Xiaowen Jian, Huafeng Kuang, Zhichao Lai, Fanshi Li, Liang Li, Xiaochen Lian, Chao Liao, Liyang Liu, Wei Liu, Yanzuo Lu, Zhengxiong Luo, Tongtong Ou, Guang Shi, Yichun Shi, Shiqi Sun, Yu Tian, Zhi Tian, Peng Wang, Rui Wang, Xun Wang, Ye Wang, Guofeng Wu, Jie Wu, Wenxu Wu, Yonghui Wu, Xin Xia, Xuefeng Xiao, Shuang Xu, Xin Yan, Ceyuan Yang, Jianchao Yang, Zhonghua Zhai, Chenlin Zhang, Heng Zhang, Qi Zhang, Xinyu Zhang, Yuwei Zhang, Shijia Zhao, Wenliang Zhao, Wenjia Zhu
Title:
Seedream 4.0: Toward Next-generation Multimodal Image Generation
Arxiv:
http://arxiv.org/abs/2509.20427v1
Abstract:
We introduce Seedream 4.0, an efficient and high-performance multimodal image generation system that unifies text-to-image (T2I) synthesis, image editing, and multi-image composition within a single framework. We develop a highly efficient diffusion transformer with a powerful VAE which also can reduce the number of image tokens considerably. This allows for efficient training of our model, and enables it to fast generate native high-resolution images (e.g., 1K-4K). Seedream 4.0 is pretrained on billions of text-image pairs spanning diverse taxonomies and knowledge-centric concepts. Comprehensive data collection across hundreds of vertical scenarios, coupled with optimized strategies, ensures stable and large-scale training, with strong generalization. By incorporating a carefully fine-tuned VLM model, we perform multi-modal post-training for training both T2I and image editing tasks jointly. For inference acceleration, we integrate adversarial distillation, distribution matching, and quantization, as well as speculative decoding. It achieves an inference time of up to 1.8 seconds for generating a 2K image (without a LLM/VLM as PE model). Comprehensive evaluations reveal that Seedream 4.0 can achieve state-of-the-art results on both T2I and multimodal image editing. In particular, it demonstrates exceptional multimodal capabilities in complex tasks, including precise image editing and in-context reasoning, and also allows for multi-image reference, and can generate multiple output images. This extends traditional T2I systems into an more interactive and multidimensional creative tool, pushing the boundary of generative AI for both creativity and professional applications. Seedream 4.0 is now accessible on https://www.volcengine.com/experience/ark?launch=seedream.
🤗 Upvotes: 28 | cs.CV, cs.AI
Authors:
Team Hunyuan3D, :, Bowen Zhang, Chunchao Guo, Haolin Liu, Hongyu Yan, Huiwen Shi, Jingwei Huang, Junlin Yu, Kunhong Li, Linus, Penghao Wang, Qingxiang Lin, Sicong Liu, Xianghui Yang, Yixuan Tang, Yunfei Zhao, Zeqiang Lai, Zhihao Liang, Zibo Zhao
Title:
Hunyuan3D-Omni: A Unified Framework for Controllable Generation of 3D Assets
Arxiv:
http://arxiv.org/abs/2509.21245v1
Abstract:
Recent advances in 3D-native generative models have accelerated asset creation for games, film, and design. However, most methods still rely primarily on image or text conditioning and lack fine-grained, cross-modal controls, which limits controllability and practical adoption. To address this gap, we present Hunyuan3D-Omni, a unified framework for fine-grained, controllable 3D asset generation built on Hunyuan3D 2.1. In addition to images, Hunyuan3D-Omni accepts point clouds, voxels, bounding boxes, and skeletal pose priors as conditioning signals, enabling precise control over geometry, topology, and pose. Instead of separate heads for each modality, our model unifies all signals in a single cross-modal architecture. We train with a progressive, difficulty-aware sampling strategy that selects one control modality per example and biases sampling toward harder signals (e.g., skeletal pose) while downweighting easier ones (e.g., point clouds), encouraging robust multi-modal fusion and graceful handling of missing inputs. Experiments show that these additional controls improve generation accuracy, enable geometry-aware transformations, and increase robustness for production workflows.
🤗 Upvotes: 22 | cs.CL
Authors:
Ilya Alekseev, Roman Solomatin, Darina Rustamova, Denis Kuznetsov
Title:
AutoIntent: AutoML for Text Classification
Arxiv:
http://arxiv.org/abs/2509.21138v1
Abstract:
AutoIntent is an automated machine learning tool for text classification tasks. Unlike existing solutions, AutoIntent offers end-to-end automation with embedding model selection, classifier optimization, and decision threshold tuning, all within a modular, sklearn-like interface. The framework is designed to support multi-label classification and out-of-scope detection. AutoIntent demonstrates superior performance compared to existing AutoML tools on standard intent classification datasets and enables users to balance effectiveness and resource consumption.
🤗 Upvotes: 49 | cs.LG, cs.AI, cs.CV, cs.RO
Authors:
Thaddäus Wiedemer, Yuxuan Li, Paul Vicol, Shixiang Shane Gu, Nick Matarese, Kevin Swersky, Been Kim, Priyank Jaini, Robert Geirhos
Title:
Video models are zero-shot learners and reasoners
Arxiv:
http://arxiv.org/abs/2509.20328v1
Abstract:
The remarkable zero-shot capabilities of Large Language Models (LLMs) have propelled natural language processing from task-specific models to unified, generalist foundation models. This transformation emerged from simple primitives: large, generative models trained on web-scale data. Curiously, the same primitives apply to today's generative video models. Could video models be on a trajectory towards general-purpose vision understanding, much like LLMs developed general-purpose language understanding? We demonstrate that Veo 3 can solve a broad variety of tasks it wasn't explicitly trained for: segmenting objects, detecting edges, editing images, understanding physical properties, recognizing object affordances, simulating tool use, and more. These abilities to perceive, model, and manipulate the visual world enable early forms of visual reasoning like maze and symmetry solving. Veo's emergent zero-shot capabilities indicate that video models are on a path to becoming unified, generalist vision foundation models.
🤗 Upvotes: 28 | cs.CL, cs.AI
Authors:
Xilin Wei, Xiaoran Liu, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Jiaqi Wang, Xipeng Qiu, Dahua Lin
Title:
SIM-CoT: Supervised Implicit Chain-of-Thought
Arxiv:
http://arxiv.org/abs/2509.20317v2
Abstract:
Implicit Chain-of-Thought (CoT) methods offer a token-efficient alternative to explicit CoT reasoning in Large Language Models (LLMs), but a persistent performance gap has limited their adoption. We identify a core latent instability issue when scaling the computational budget of implicit CoT: as the number of reasoning tokens increases, training often becomes unstable and collapses. Our analysis shows that this instability arises from latent representations becoming homogeneous and losing semantic diversity, caused by insufficient step-level supervision in current implicit CoT methods. To address this, we propose SIM-CoT, a plug-and-play training module that introduces step-level supervision to stabilize and enrich the latent reasoning space. SIM-CoT employs an auxiliary decoder during training to align each implicit token with its corresponding explicit reasoning step, ensuring latent states capture distinct and meaningful information. The auxiliary decoder is removed at inference, preserving the efficiency of implicit CoT with no added overhead. It also provides interpretability by projecting each latent token onto an explicit reasoning vocabulary, enabling per-step visualization and diagnosis. SIM-CoT significantly improves both in-domain accuracy and out-of-domain stability of implicit CoT methods, boosting Coconut by +8.2\% on GPT-2 and CODI by +3.0\% on LLaMA-3.1 8B. It further surpasses the explicit CoT baseline on GPT-2 by 2.1\% with 2.3$\times$ greater token efficiency, while closing the performance gap on larger models like LLaMA-3.1 8B. Code: https://github.com/InternLM/SIM-CoT
🤗 Upvotes: 83 | cs.CV, cs.CL
Authors:
Khalil Hennara, Muhammad Hreden, Mohamed Motasim Hamed, Ahmad Bastati, Zeina Aldallal, Sara Chrouf, Safwan AlModhayan
Title:
Baseer: A Vision-Language Model for Arabic Document-to-Markdown OCR
Arxiv:
http://arxiv.org/abs/2509.18174v1
Abstract:
Arabic document OCR remains a challenging task due to the language's cursive script, diverse fonts, diacritics, and right-to-left orientation. While modern Multimodal Large Language Models (MLLMs) have advanced document understanding for high-resource languages, their performance on Arabic remains limited. In this work, we introduce Baseer, a vision-language model fine- tuned specifically for Arabic document OCR. Leveraging a large-scale dataset combining synthetic and real-world documents, Baseer is trained using a decoder-only fine-tuning strategy to adapt a pre-trained MLLM while preserving general visual features. We also present Misraj-DocOCR, a high-quality, expert-verified benchmark designed for rigorous evaluation of Arabic OCR systems. Our experiments show that Baseer significantly outperforms existing open-source and commercial solutions, achieving a WER of 0.25 and establishing a new state-of-the-art in the domain of Arabic document OCR. Our results highlight the benefits of domain-specific adaptation of general-purpose MLLMs and establish a strong baseline for high-accuracy OCR on morphologically rich languages like Arabic.
🤗 Upvotes: 43 | cs.CL, cs.AI, cs.LG
Authors:
Siheng Li, Kejiao Li, Zenan Xu, Guanhua Huang, Evander Yang, Kun Li, Haoyuan Wu, Jiajia Wu, Zihao Zheng, Chenchen Zhang, Kun Shi, Kyrierl Deng, Qi Yi, Ruibin Xiong, Tingqiang Xu, Yuhao Jiang, Jianfeng Yan, Yuyuan Zeng, Guanghui Xu, Jinbao Xue, Zhijiang Xu, Zheng Fang, Shuai Li, Qibin Liu, Xiaoxue Li, Zhuoyu Li, Yangyu Tao, Fei Gao, Cheng Jiang, Bo Chao Wang, Kai Liu, Jianchen Zhu, Wai Lam, Wayyt Wang, Bo Zhou, Di Wang
Title:
Reinforcement Learning on Pre-Training Data
Arxiv:
http://arxiv.org/abs/2509.19249v1
Abstract:
The growing disparity between the exponential scaling of computational resources and the finite growth of high-quality text data now constrains conventional scaling approaches for large language models (LLMs). To address this challenge, we introduce Reinforcement Learning on Pre-Training data (RLPT), a new training-time scaling paradigm for optimizing LLMs. In contrast to prior approaches that scale training primarily through supervised learning, RLPT enables the policy to autonomously explore meaningful trajectories to learn from pre-training data and improve its capability through reinforcement learning (RL). While existing RL strategies such as reinforcement learning from human feedback (RLHF) and reinforcement learning with verifiable rewards (RLVR) rely on human annotation for reward construction, RLPT eliminates this dependency by deriving reward signals directly from pre-training data. Specifically, it adopts a next-segment reasoning objective, rewarding the policy for accurately predicting subsequent text segments conditioned on the preceding context. This formulation allows RL to be scaled on pre-training data, encouraging the exploration of richer trajectories across broader contexts and thereby fostering more generalizable reasoning skills. Extensive experiments on both general-domain and mathematical reasoning benchmarks across multiple models validate the effectiveness of RLPT. For example, when applied to Qwen3-4B-Base, RLPT yields absolute improvements of $3.0$, $5.1$, $8.1$, $6.0$, $6.6$, and $5.3$ on MMLU, MMLU-Pro, GPQA-Diamond, KOR-Bench, AIME24, and AIME25, respectively. The results further demonstrate favorable scaling behavior, suggesting strong potential for continued gains with more compute. In addition, RLPT provides a solid foundation, extending the reasoning boundaries of LLMs and enhancing RLVR performance.
🤗 Upvotes: 43 | cs.RO, cs.AI
Authors:
Juntu Zhao, Wenbo Lu, Di Zhang, Yufeng Liu, Yushen Liang, Tianluo Zhang, Yifeng Cao, Junyuan Xie, Yingdong Hu, Shengjie Wang, Junliang Guo, Dequan Wang, Yang Gao
Title:
Do You Need Proprioceptive States in Visuomotor Policies?
Arxiv:
http://arxiv.org/abs/2509.18644v2
Abstract:
Imitation-learning-based visuomotor policies have been widely used in robot manipulation, where both visual observations and proprioceptive states are typically adopted together for precise control. However, in this study, we find that this common practice makes the policy overly reliant on the proprioceptive state input, which causes overfitting to the training trajectories and results in poor spatial generalization. On the contrary, we propose the State-free Policy, removing the proprioceptive state input and predicting actions only conditioned on visual observations. The State-free Policy is built in the relative end-effector action space, and should ensure the full task-relevant visual observations, here provided by dual wide-angle wrist cameras. Empirical results demonstrate that the State-free policy achieves significantly stronger spatial generalization than the state-based policy: in real-world tasks such as pick-and-place, challenging shirt-folding, and complex whole-body manipulation, spanning multiple robot embodiments, the average success rate improves from 0% to 85% in height generalization and from 6% to 64% in horizontal generalization. Furthermore, they also show advantages in data efficiency and cross-embodiment adaptation, enhancing their practicality for real-world deployment. Discover more by visiting: https://statefreepolicy.github.io.
🤗 Upvotes: 32 | cs.LG, cs.CV
Authors:
Tianyu Yu, Zefan Wang, Chongyi Wang, Fuwei Huang, Wenshuo Ma, Zhihui He, Tianchi Cai, Weize Chen, Yuxiang Huang, Yuanqian Zhao, Bokai Xu, Junbo Cui, Yingjing Xu, Liqing Ruan, Luoyuan Zhang, Hanyu Liu, Jingkun Tang, Hongyuan Liu, Qining Guo, Wenhao Hu, Bingxiang He, Jie Zhou, Jie Cai, Ji Qi, Zonghao Guo, Chi Chen, Guoyang Zeng, Yuxuan Li, Ganqu Cui, Ning Ding, Xu Han, Yuan Yao, Zhiyuan Liu, Maosong Sun
Title:
MiniCPM-V 4.5: Cooking Efficient MLLMs via Architecture, Data, and Training Recipe
Arxiv:
http://arxiv.org/abs/2509.18154v1
Abstract:
Multimodal Large Language Models (MLLMs) are undergoing rapid progress and represent the frontier of AI development. However, their training and inference efficiency have emerged as a core bottleneck in making MLLMs more accessible and scalable. To address the challenges, we present MiniCPM-V 4.5, an 8B parameter model designed for high efficiency and strong performance. We introduce three core improvements in model architecture, data strategy and training method: a unified 3D-Resampler model architecture for highly compact encoding over images and videos, a unified learning paradigm for document knowledge and text recognition without heavy data engineering, and a hybrid reinforcement learning strategy for proficiency in both short and long reasoning modes. Comprehensive experimental results in OpenCompass evaluation show that MiniCPM-V 4.5 surpasses widely used proprietary models such as GPT-4o-latest, and significantly larger open-source models such as Qwen2.5-VL 72B. Notably, the strong performance is achieved with remarkable efficiency. For example, on the widely adopted VideoMME benchmark, MiniCPM-V 4.5 achieves state-of-the-art performance among models under 30B size, using just 46.7\% GPU memory cost and 8.7\% inference time of Qwen2.5-VL 7B.
🤗 Upvotes: 69 | cs.AI
Authors:
Yang Xiao, Mohan Jiang, Jie Sun, Keyu Li, Jifan Lin, Yumin Zhuang, Ji Zeng, Shijie Xia, Qishuo Hua, Xuefeng Li, Xiaojie Cai, Tongyu Wang, Yue Zhang, Liming Liu, Xia Wu, Jinlong Hou, Yuan Cheng, Wenjie Li, Xiang Wang, Dequan Wang, Pengfei Liu
Title:
LIMI: Less is More for Agency
Arxiv:
http://arxiv.org/abs/2509.17567v1
Abstract:
We define Agency as the emergent capacity of AI systems to function as autonomous agents actively discovering problems, formulating hypotheses, and executing solutions through self-directed engagement with environments and tools. This fundamental capability marks the dawn of the Age of AI Agency, driven by a critical industry shift: the urgent need for AI systems that don't just think, but work. While current AI excels at reasoning and generating responses, industries demand autonomous agents that can execute tasks, operate tools, and drive real-world outcomes. As agentic intelligence becomes the defining characteristic separating cognitive systems from productive workers, efficiently cultivating machine autonomy becomes paramount. Current approaches assume that more data yields better agency, following traditional scaling laws from language modeling. We fundamentally challenge this paradigm. LIMI (Less Is More for Intelligent Agency) demonstrates that agency follows radically different development principles. Through strategic focus on collaborative software development and scientific research workflows, we show that sophisticated agentic intelligence can emerge from minimal but strategically curated demonstrations of autonomous behavior. Using only 78 carefully designed training samples, LIMI achieves 73.5% on comprehensive agency benchmarks, dramatically outperforming state-of-the-art models: Kimi-K2-Instruct (24.1%), DeepSeek-V3.1 (11.9%), Qwen3-235B-A22B-Instruct (27.5%), and GLM-4.5 (45.1%). Most strikingly, LIMI demonstrates 53.7% improvement over models trained on 10,000 samples-achieving superior agentic intelligence with 128 times fewer samples. Our findings establish the Agency Efficiency Principle: machine autonomy emerges not from data abundance but from strategic curation of high-quality agentic demonstrations.
🤗 Upvotes: 56 | cs.CL, cs.AI, cs.CV, eess.AS
Authors:
Jin Xu, Zhifang Guo, Hangrui Hu, Yunfei Chu, Xiong Wang, Jinzheng He, Yuxuan Wang, Xian Shi, Ting He, Xinfa Zhu, Yuanjun Lv, Yongqi Wang, Dake Guo, He Wang, Linhan Ma, Pei Zhang, Xinyu Zhang, Hongkun Hao, Zishan Guo, Baosong Yang, Bin Zhang, Ziyang Ma, Xipin Wei, Shuai Bai, Keqin Chen, Xuejing Liu, Peng Wang, Mingkun Yang, Dayiheng Liu, Xingzhang Ren, Bo Zheng, Rui Men, Fan Zhou, Bowen Yu, Jianxin Yang, Le Yu, Jingren Zhou, Junyang Lin
Title:
Qwen3-Omni Technical Report
Arxiv:
http://arxiv.org/abs/2509.17765v1
Abstract:
We present Qwen3-Omni, a single multimodal model that, for the first time, maintains state-of-the-art performance across text, image, audio, and video without any degradation relative to single-modal counterparts. Qwen3-Omni matches the performance of same-sized single-modal models within the Qwen series and excels particularly on audio tasks. Across 36 audio and audio-visual benchmarks, Qwen3-Omni achieves open-source SOTA on 32 benchmarks and overall SOTA on 22, outperforming strong closed-source models such as Gemini-2.5-Pro, Seed-ASR, and GPT-4o-Transcribe. Qwen3-Omni adopts a Thinker-Talker MoE architecture that unifies perception and generation across text, images, audio, and video, yielding fluent text and natural real-time speech. It supports text interaction in 119 languages, speech understanding in 19 languages, and speech generation in 10 languages. To reduce first-packet latency in streaming synthesis, Talker autoregressively predicts discrete speech codecs using a multi-codebook scheme. Leveraging the representational capacity of these codebooks, we replace computationally intensive block-wise diffusion with a lightweight causal ConvNet, enabling streaming from the first codec frame. In cold-start settings, Qwen3-Omni achieves a theoretical end-to-end first-packet latency of 234 ms. To further strengthen multimodal reasoning, we introduce a Thinking model that explicitly reasons over inputs from any modality. Since the research community currently lacks a general-purpose audio captioning model, we fine-tuned Qwen3-Omni-30B-A3B to obtain Qwen3-Omni-30B-A3B-Captioner, which produces detailed, low-hallucination captions for arbitrary audio inputs. Qwen3-Omni-30B-A3B, Qwen3-Omni-30B-A3B-Thinking, and Qwen3-Omni-30B-A3B-Captioner are publicly released under the Apache 2.0 license.
🤗 Upvotes: 49 | cs.CV
Authors:
Jinshu Chen, Xinghui Li, Xu Bai, Tianxiang Ma, Pengze Zhang, Zhuowei Chen, Gen Li, Lijie Liu, Songtao Zhao, Bingchuan Li, Qian He
Title:
OmniInsert: Mask-Free Video Insertion of Any Reference via Diffusion Transformer Models
Arxiv:
http://arxiv.org/abs/2509.17627v1
Abstract:
Recent advances in video insertion based on diffusion models are impressive. However, existing methods rely on complex control signals but struggle with subject consistency, limiting their practical applicability. In this paper, we focus on the task of Mask-free Video Insertion and aim to resolve three key challenges: data scarcity, subject-scene equilibrium, and insertion harmonization. To address the data scarcity, we propose a new data pipeline InsertPipe, constructing diverse cross-pair data automatically. Building upon our data pipeline, we develop OmniInsert, a novel unified framework for mask-free video insertion from both single and multiple subject references. Specifically, to maintain subject-scene equilibrium, we introduce a simple yet effective Condition-Specific Feature Injection mechanism to distinctly inject multi-source conditions and propose a novel Progressive Training strategy that enables the model to balance feature injection from subjects and source video. Meanwhile, we design the Subject-Focused Loss to improve the detailed appearance of the subjects. To further enhance insertion harmonization, we propose an Insertive Preference Optimization methodology to optimize the model by simulating human preferences, and incorporate a Context-Aware Rephraser module during reference to seamlessly integrate the subject into the original scenes. To address the lack of a benchmark for the field, we introduce InsertBench, a comprehensive benchmark comprising diverse scenes with meticulously selected subjects. Evaluation on InsertBench indicates OmniInsert outperforms state-of-the-art closed-source commercial solutions. The code will be released.
🤗 Upvotes: 27 | cs.IR, cs.AI, cs.CL
Authors:
Sunhao Dai, Jiakai Tang, Jiahua Wu, Kun Wang, Yuxuan Zhu, Bingjun Chen, Bangyang Hong, Yu Zhao, Cong Fu, Kangle Wu, Yabo Ni, Anxiang Zeng, Wenjie Wang, Xu Chen, Jun Xu, See-Kiong Ng
Title:
OnePiece: Bringing Context Engineering and Reasoning to Industrial Cascade Ranking System
Arxiv:
http://arxiv.org/abs/2509.18091v1
Abstract:
Despite the growing interest in replicating the scaled success of large language models (LLMs) in industrial search and recommender systems, most existing industrial efforts remain limited to transplanting Transformer architectures, which bring only incremental improvements over strong Deep Learning Recommendation Models (DLRMs). From a first principle perspective, the breakthroughs of LLMs stem not only from their architectures but also from two complementary mechanisms: context engineering, which enriches raw input queries with contextual cues to better elicit model capabilities, and multi-step reasoning, which iteratively refines model outputs through intermediate reasoning paths. However, these two mechanisms and their potential to unlock substantial improvements remain largely underexplored in industrial ranking systems. In this paper, we propose OnePiece, a unified framework that seamlessly integrates LLM-style context engineering and reasoning into both retrieval and ranking models of industrial cascaded pipelines. OnePiece is built on a pure Transformer backbone and further introduces three key innovations: (1) structured context engineering, which augments interaction history with preference and scenario signals and unifies them into a structured tokenized input sequence for both retrieval and ranking; (2) block-wise latent reasoning, which equips the model with multi-step refinement of representations and scales reasoning bandwidth via block size; (3) progressive multi-task training, which leverages user feedback chains to effectively supervise reasoning steps during training. OnePiece has been deployed in the main personalized search scenario of Shopee and achieves consistent online gains across different key business metrics, including over $+2\%$ GMV/UU and a $+2.90\%$ increase in advertising revenue.
🤗 Upvotes: 26 | cs.CV
Authors:
Yunheng Li, Jing Cheng, Shaoyong Jia, Hangyi Kuang, Shaohui Jiao, Qibin Hou, Ming-Ming Cheng
Title:
TempSamp-R1: Effective Temporal Sampling with Reinforcement Fine-Tuning for Video LLMs
Arxiv:
http://arxiv.org/abs/2509.18056v1
Abstract:
This paper introduces TempSamp-R1, a new reinforcement fine-tuning framework designed to improve the effectiveness of adapting multimodal large language models (MLLMs) to video temporal grounding tasks. We reveal that existing reinforcement learning methods, such as Group Relative Policy Optimization (GRPO), rely on on-policy sampling for policy updates. However, in tasks with large temporal search spaces, this strategy becomes both inefficient and limited in performance, as it often fails to identify temporally accurate solutions. To address this limitation, TempSamp-R1 leverages ground-truth annotations as off-policy supervision to provide temporally precise guidance, effectively compensating for the sparsity and misalignment in on-policy solutions. To further stabilize training and reduce variance in reward-based updates, TempSamp-R1 provides a non-linear soft advantage computation method that dynamically reshapes the reward feedback via an asymmetric transformation. By employing a hybrid Chain-of-Thought (CoT) training paradigm, TempSamp-R1 optimizes a single unified model to support both CoT and non-CoT inference modes, enabling efficient handling of queries with varying reasoning complexity. Experimental results demonstrate that TempSamp-R1 outperforms GRPO-based baselines, establishing new state-of-the-art performance on benchmark datasets: Charades-STA (R1@0.7: 52.9%, +2.7%), ActivityNet Captions (R1@0.5: 56.0%, +5.3%), and QVHighlights (mAP: 30.0%, +3.0%). Moreover, TempSamp-R1 shows robust few-shot generalization capabilities under limited data. Code: https://github.com/HVision-NKU/TempSamp-R1
🤗 Upvotes: 89 | cs.CL, cs.AI, cs.SE
Authors:
Jane Luo, Xin Zhang, Steven Liu, Jie Wu, Yiming Huang, Yangyu Huang, Chengyu Yin, Ying Xin, Jianfeng Liu, Yuefeng Zhan, Hao Sun, Qi Chen, Scarlett Li, Mao Yang
Title:
RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation
Arxiv:
http://arxiv.org/abs/2509.16198v1
Abstract:
Large language models excel at function- and file-level code generation, yet generating complete repositories from scratch remains a fundamental challenge. This process demands coherent and reliable planning across proposal- and implementation-level stages, while natural language, due to its ambiguity and verbosity, is ill-suited for faithfully representing complex software structures. To address this, we introduce the Repository Planning Graph (RPG), a persistent representation that unifies proposal- and implementation-level planning by encoding capabilities, file structures, data flows, and functions in one graph. RPG replaces ambiguous natural language with an explicit blueprint, enabling long-horizon planning and scalable repository generation. Building on RPG, we develop ZeroRepo, a graph-driven framework for repository generation from scratch. It operates in three stages: proposal-level planning and implementation-level refinement to construct the graph, followed by graph-guided code generation with test validation. To evaluate this setting, we construct RepoCraft, a benchmark of six real-world projects with 1,052 tasks. On RepoCraft, ZeroRepo produces repositories averaging nearly 36K LOC, roughly 3.9$\times$ the strongest baseline (Claude Code) and about 64$\times$ other baselines. It attains 81.5% functional coverage and a 69.7% pass rate, exceeding Claude Code by 27.3 and 35.8 percentage points, respectively. Further analysis shows that RPG models complex dependencies, enables progressively more sophisticated planning through near-linear scaling, and enhances LLM understanding of repositories, thereby accelerating agent localization.
🤗 Upvotes: 37 | cs.CV, cs.CL, cs.LG
Authors:
Yanghao Li, Rui Qian, Bowen Pan, Haotian Zhang, Haoshuo Huang, Bowen Zhang, Jialing Tong, Haoxuan You, Xianzhi Du, Zhe Gan, Hyunjik Kim, Chao Jia, Zhenbang Wang, Yinfei Yang, Mingfei Gao, Zi-Yi Dou, Wenze Hu, Chang Gao, Dongxu Li, Philipp Dufter, Zirui Wang, Guoli Yin, Zhengdong Zhang, Chen Chen, Yang Zhao, Ruoming Pang, Zhifeng Chen
Title:
MANZANO: A Simple and Scalable Unified Multimodal Model with a Hybrid Vision Tokenizer
Arxiv:
http://arxiv.org/abs/2509.16197v1
Abstract:
Unified multimodal Large Language Models (LLMs) that can both understand and generate visual content hold immense potential. However, existing open-source models often suffer from a performance trade-off between these capabilities. We present Manzano, a simple and scalable unified framework that substantially reduces this tension by coupling a hybrid image tokenizer with a well-curated training recipe. A single shared vision encoder feeds two lightweight adapters that produce continuous embeddings for image-to-text understanding and discrete tokens for text-to-image generation within a common semantic space. A unified autoregressive LLM predicts high-level semantics in the form of text and image tokens, with an auxiliary diffusion decoder subsequently translating the image tokens into pixels. The architecture, together with a unified training recipe over understanding and generation data, enables scalable joint learning of both capabilities. Manzano achieves state-of-the-art results among unified models, and is competitive with specialist models, particularly on text-rich evaluation. Our studies show minimal task conflicts and consistent gains from scaling model size, validating our design choice of a hybrid tokenizer.
cool