DiscoverChoses à Savoir SCIENCES
Choses à Savoir SCIENCES
Claim Ownership

Choses à Savoir SCIENCES

Author: Choses à Savoir

Subscribed: 13,607Played: 667,809
Share

Description

Développez facilement votre culture scientifique grâce à un podcast quotidien !

Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

2423 Episodes
Reverse
Un cristal temporel, c’est un peu comme un cristal ordinaire… mais qui se répète non pas dans l’espace, mais dans le temps. Dans un cristal classique – un diamant, un sel ou un flocon de neige – les atomes s’alignent selon un motif régulier, qui se répète dans les trois dimensions de l’espace. Dans un cristal temporel, le motif ne se répète pas dans l’espace, mais dans le temps : les particules reviennent périodiquement à la même configuration, comme si elles oscillaient sans jamais s’arrêter.Ce concept, proposé en 2012 par le physicien américain Frank Wilczek, défie notre intuition. Dans la physique classique, lorsqu’un système atteint son état fondamental – c’est-à-dire l’état d’énergie minimale – il est censé être au repos. Rien ne bouge. Mais dans un cristal temporel, même dans cet état stable, quelque chose continue à évoluer, à vibrer, à osciller à un rythme fixe, sans apport d’énergie extérieure. C’est ce qui rend le phénomène si fascinant : il semble créer un « mouvement éternel » sans violer les lois de la thermodynamique.Comment est-ce possible ? Parce que ces oscillations ne produisent pas d’énergie utile : elles ne constituent pas une machine à mouvement perpétuel. Ce sont des oscillations internes du système, dues à des interactions collectives entre particules. C’est un comportement purement quantique, qui n’a pas d’équivalent direct dans le monde macroscopique.Sur le plan théorique, les cristaux temporels brisent une symétrie fondamentale de la physique appelée « symétrie de translation temporelle ». En d’autres termes, les lois de la physique sont les mêmes aujourd’hui qu’elles le seront demain, mais un cristal temporel, lui, introduit une périodicité : son état se répète à intervalles réguliers. C’est une rupture de symétrie, un peu comme un cristal spatial brise la symétrie d’un liquide homogène.Depuis 2016, plusieurs expériences ont permis de créer de véritables cristaux temporels, notamment avec des ions piégés ou sur des processeurs quantiques. Ces systèmes, isolés de leur environnement et pilotés par des lasers ou des champs magnétiques, ont montré ces oscillations périodiques stables dans le temps.Pourquoi cela intéresse-t-il les chercheurs ? Parce que cette stabilité temporelle pourrait servir de base à de nouvelles formes de mémoire ou d’horloge pour les ordinateurs quantiques. Le cristal temporel est donc une nouvelle phase de la matière, étrange mais bien réelle, qui remet en question notre manière de penser le temps et le mouvement au niveau le plus fondamental. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Allumer un feu avec de la glace : l’idée semble absurde, presque magique. Et pourtant, c’est scientifiquement possible. Ce paradoxe repose sur un principe physique fondamental : la lumière du Soleil, concentrée par une lentille transparente, peut enflammer un matériau combustible. Et de la glace bien taillée peut justement servir de lentille.Pour comprendre, il faut d’abord rappeler comment fonctionne une loupe. Lorsqu’un rayon de Soleil traverse un milieu transparent de forme convexe – bombée vers l’extérieur –, il est dévié et concentré en un point précis : le foyer. À cet endroit, l’énergie lumineuse se transforme en chaleur, suffisante pour enflammer du papier, du bois sec ou de l’herbe. La glace peut jouer ce rôle, à condition d’être parfaitement claire et bien polie.Sur le terrain, la méthode demande une rigueur d’artisan. Il faut d’abord trouver de la glace très pure, idéalement issue d’eau claire gelée lentement. Ensuite, on la sculpte en forme de lentille biconvexe : épaisse au centre, plus fine sur les bords. Un morceau d’environ 5 à 7 centimètres d’épaisseur suffit. Puis on polit les faces avec les mains, un tissu ou un peu d’eau, jusqu’à ce qu’elles deviennent translucides comme du verre. Plus la glace est transparente, plus la lumière passera efficacement.Une fois la lentille prête, on l’oriente vers le Soleil, en tenant le morceau de glace à une vingtaine de centimètres d’un petit tas d’amadou : herbe sèche, coton, copeaux de bois. En ajustant la distance et l’angle, on cherche à concentrer la lumière sur un minuscule point lumineux. Là, la température peut grimper à plus de 150 °C, suffisante pour enflammer la matière. Le processus prend du temps : quelques minutes si la lentille est bien formée, parfois plus si la glace contient des bulles ou des impuretés.Cette technique, connue depuis longtemps des trappeurs et popularisée par des survivalistes, illustre parfaitement la puissance des lois optiques. Elle repose sur la réfraction : la déviation de la lumière lorsqu’elle traverse un milieu différent. La glace, comme le verre ou le cristal, plie les rayons et les concentre.Bien sûr, la réussite dépend des conditions : il faut un Soleil fort, une glace très claire et une température extérieure assez basse pour que la lentille ne fonde pas trop vite. Mais le principe reste fascinant : transformer un élément symbole du froid en source de feu. La nature, une fois de plus, prouve que ses lois n’ont rien d’illogique — seulement de surprenant. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Au cœur de la péninsule du Yucatán, dissimulée dans la jungle, se trouve une grotte que les archéologues ont longtemps hésité à explorer. Son nom : la Cueva de Sangre, la « grotte ensanglantée ». Découverte dans les années 1990, elle vient de livrer de nouveaux secrets, présentés en avril 2025 lors de la convention annuelle de la Society for American Archaeology. Et ces révélations confirment ce que les anciens chroniqueurs redoutaient déjà : pour invoquer la pluie, les Mayas pratiquaient des rituels d’une violence inouïe.Une offrande pour les dieux de la pluieLes Mayas vivaient sous un climat contrasté, alternant saisons de sécheresse et pluies torrentielles. Or, leur survie dépendait entièrement de l’eau : sans pluie, pas de maïs, donc pas de vie. Pour apaiser Chaac, le dieu de la pluie, ils recouraient à un rituel qu’ils jugeaient sacré : le sacrifice humain. Dans la Cueva de Sangre, les fouilles ont mis au jour plus de 200 ossements humains, dont une grande majorité appartenant à des enfants et des adolescents.Les analyses isotopiques réalisées récemment montrent que ces jeunes victimes ne provenaient pas de la région immédiate : certains avaient parcouru des centaines de kilomètres avant d’être conduits jusqu’à la grotte. Cela suggère que la cérémonie avait une dimension politique et religieuse : un moyen pour les élites mayas de renforcer leur pouvoir tout en sollicitant la faveur des dieux.Un bain de sang sacréLes traces retrouvées sur les os racontent l’horreur du rituel. Les victimes étaient égorgées ou percées d’un coup de lame en obsidienne au niveau du thorax, probablement pour extraire le cœur encore battant. Les parois de la grotte portaient, selon les premiers explorateurs, des traces de pigments mêlés à du sang séché. Certains corps étaient déposés dans des bassins d’eau souterraine — des cénotes, considérés comme les passages entre le monde des hommes et celui des dieux.Un message venu du passéCes nouveaux résultats, issus d’analyses ADN et de datations au carbone 14, confirment que les sacrifices de la Cueva de Sangre se sont étalés sur plusieurs siècles, entre 900 et 1200 après J.-C., période de grande instabilité climatique dans la région. Les Mayas tentaient, littéralement, d’acheter la pluie par le sang.Aujourd’hui encore, la Cueva de Sangre demeure fermée au public, sanctuarisée pour des raisons éthiques et archéologiques. Mais ses vestiges rappellent un fait troublant : pour survivre, certaines civilisations ont cru devoir nourrir les dieux… de leur propre chair. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Dans une étude récente, les chercheurs Timothy Waring et Zachary Wood proposent une hypothèse audacieuse : l’évolution humaine entrerait dans une nouvelle phase, où ce n’est plus tant la génétique que la culture qui devient le principal moteur de notre adaptation. Le cœur de la théorieSelon Waring et Wood, nous assisterions à un basculement majeur : la transmission culturelle, qu’il s’agisse de techniques, d’institutions, de connaissances, prend désormais le pas sur la transmission génétique comme facteur fondamental de survie et de reproduction. Autrement dit : les gènes restent bien sûr importants… mais ce sont de plus en plus les systèmes culturels — l’éducation, la médecine, la technologie, les lois — qui déterminent si une personne ou un groupe peut prospérer. Pourquoi ce changement ?Plusieurs observations viennent étayer cette théorie :Dans le passé, l’évolution se faisait par de très longs processus génétiques : mutations, sélection, générations après générations.Aujourd’hui, on constate que les humains corrigent leurs handicaps via des technologies, vivent dans des environnements façonnés culturellement, et se transmettent des compétences et institutions à grande vitesse. Exemple : les lunettes corrigent la vue, la chirurgie permet de survivre à des affections mortelles, ce qui signifie que la sélection naturelle « pure » est moins décisive. Les systèmes culturels sont plus rapides : une innovation utile (par exemple, un protocole sanitaire, un procédé technologique) peut s’imposer en quelques années, là où une adaptation génétique prendra des millénaires. Waring et Wood estiment que cette rapidité donne à la culture un avantage adaptatif décisif. Quelles implications ?Les auteurs suggèrent que l’humanité pourrait évoluer vers quelque chose de plus groupal : les individus ne sont plus simplement des porteurs de gènes, mais font partie de systèmes culturels coopératifs, à même d’agir comme des super-organismes. En pratique, cela signifie que l’avenir évolutif de notre espèce dépendra peut-être davantage de la résilience et de l’innovation de nos sociétés culturelles que de notre bagage génétique. Il s’agit aussi d’un appel à penser l’évolution sous un angle nouveau : non plus seulement biologique, mais socioculturel, où l’environnement, les institutions, les technologies sont des facteurs d’adaptation à part entière.À noter toutefoisWaring et Wood ne prétendent pas que les gènes soient devenus inutiles ; leur théorie ne supprime pas la génétique mais la place dans un cadre plus large. De plus, ils insistent sur le fait que l’évolution culturelle n’est pas forcément « positive » ou morale : elle produire aussi des structures inégalitaires, des risques nouveaux et des trajectoires imprévues. En résumé, voilà une théorie qui change notre regard sur « ce que signifie être humain » : loin d’être figés dans nos gènes, nous serions en train de devenir des êtres davantage façonnés par les réseaux culturels, les institutions et la technologie. Si elle se confirme, cette vision pourrait bien redéfinir le futur de notre espèce. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
En 2001, une équipe d’océanographes canadiens menée par Paulina Zelitsky et Paul Weinzweig, travaillant pour la société Advanced Digital Communications, réalise une découverte qui va bouleverser le monde scientifique : au large de la pointe occidentale de Cuba, leurs sonars détectent à 650 mètres de profondeur une série de structures géométriques parfaitement alignées. Des formes rectangulaires, des pyramides, des avenues entières semblent dessiner les contours d’une ville engloutie.À l’époque, les chercheurs effectuent plusieurs plongées robotisées. Les images sont saisissantes : blocs taillés, angles droits, surfaces planes évoquant des murs ou des routes. Tout semble indiquer une construction humaine, mais datée de plusieurs millénaires. Si l’hypothèse se confirmait, elle remettrait en cause notre chronologie de la civilisation, car aucune société connue n’aurait pu ériger une telle cité avant qu’elle soit engloutie par la mer.Les scientifiques baptisent le site “Mega”, du nom d’un programme de cartographie sous-marine cubano-canadien. Certains y voient la trace d’une cité perdue semblable au mythe de l’Atlantide décrit par Platon. D’autres évoquent un cataclysme datant de la fin de la dernière ère glaciaire, il y a environ 12 000 ans, lorsque la montée brutale des océans aurait englouti des régions côtières entières. Mais le mystère reste total : à cette profondeur, aucune civilisation connue n’aurait pu construire ni même habiter un tel lieu.Les sceptiques avancent une explication plus rationnelle : il pourrait s’agir d’un phénomène géologique naturel, des formations rocheuses fracturées par les mouvements tectoniques. Pourtant, la régularité des motifs continue d’interpeller. Les images sonar montrent des structures de 400 mètres de large, formant des ensembles quadrillés trop ordonnés pour être purement aléatoires.Depuis deux décennies, les débats s’enchaînent sans qu’aucune expédition de grande ampleur n’ait été menée pour trancher. Les fonds cubains, encore peu explorés, gardent leurs secrets. Paulina Zelitsky elle-même affirmait en 2002 : « Ce que nous avons vu ne ressemble à rien de connu. »Aujourd’hui, ces vestiges muets dorment toujours sous les eaux turquoise des Caraïbes. Ville antique, illusion géologique ou trace d’un monde oublié, personne ne le sait. Mais une chose est sûre : le fond des mers n’a pas encore livré tous ses secrets. Et peut-être, un jour, ces mystérieuses ruines de Cuba réécriront une page entière de l’histoire humaine. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Une éruption plinienne, c’est l’une des formes les plus violentes et spectaculaires qu’un volcan puisse produire. Son nom évoque à lui seul la catastrophe : il vient de Pline le Jeune, un écrivain et sénateur romain du Ier siècle, témoin direct de la destruction de Pompéi lors de l’éruption du Vésuve en 79 après J.-C.. C’est de son récit que les volcanologues ont tiré ce terme, en hommage à la précision et à la force de sa description.Tout commence au petit matin du 24 août 79. Le Vésuve, jusque-là endormi depuis des siècles, explose soudainement. Pline le Jeune, alors âgé de 17 ans, observe la scène depuis la baie de Naples, à plusieurs kilomètres du volcan. Dans une lettre qu’il écrira des années plus tard à l’historien Tacite, il raconte avoir vu s’élever dans le ciel une immense colonne de cendres « comme un pin parasol » : une tige verticale qui monte droit, puis s’élargit en une nuée sombre. Ce détail deviendra le symbole même du phénomène : la colonne plinienne.Ce type d’éruption se caractérise par une explosion extrêmement puissante, provoquée par la pression des gaz emprisonnés dans le magma. Quand cette pression devient insupportable, elle libère d’un coup une énergie colossale : les gaz s’échappent, entraînant cendres, roches et fragments de lave pulvérisée jusqu’à plusieurs dizaines de kilomètres d’altitude — parfois jusqu’à la stratosphère. La colonne de matériaux peut atteindre 30 à 40 km de haut, avant de s’effondrer partiellement, formant des nuées ardentes qui dévalent les pentes à plus de 300 km/h, brûlant tout sur leur passage.Lors du drame du Vésuve, ces nuées ont enseveli Pompéi, Herculanum et Stabies sous plusieurs mètres de cendres. Les habitants, surpris par la rapidité de l’éruption, ont été piégés par la chaleur et les gaz. Pline l’Ancien, oncle de Pline le Jeune et célèbre naturaliste, tenta de secourir les victimes par bateau — il mourut asphyxié sur la plage de Stabies.Depuis, les volcanologues parlent d’éruption plinienne pour désigner les explosions les plus intenses, comparables à celle du Vésuve. D’autres volcans ont connu le même sort : le Krakatoa en 1883, le Mont Saint Helens en 1980 ou le Pinatubo en 1991, dont l’éruption a projeté plus de 10 milliards de tonnes de cendres dans l’atmosphère.En somme, une éruption plinienne, c’est le volcan porté à son paroxysme : une force brute de la nature, capable d’effacer des villes entières — et dont le nom, depuis deux millénaires, porte la mémoire d’un témoin romain fasciné par la fin d’un monde. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Si vous vivez près de la mer, vous l’avez sans doute remarqué : il y a presque toujours plus de vent sur les côtes qu’à l’intérieur des terres. Ce phénomène, à la fois familier et fascinant, s’explique par la physique de l’air et les différences de température entre la terre et l’océan.Tout part d’un fait simple : la terre et la mer ne se réchauffent pas de la même manière. Le sol se réchauffe et se refroidit beaucoup plus vite que l’eau. En journée, sous le soleil, la surface terrestre devient rapidement chaude, tandis que la mer reste relativement fraîche. Cet écart de température crée une différence de densité entre les masses d’air : l’air au-dessus du sol se réchauffe, devient plus léger et s’élève. Pour combler le vide ainsi créé, l’air plus frais venu de la mer se déplace vers la terre. C’est ce que l’on appelle la brise de mer.Cette circulation d’air se met en place presque chaque jour sur les littoraux, notamment en été. Elle peut être douce ou puissante selon la différence de température entre la terre et la mer. Plus le contraste est fort, plus le vent est soutenu. C’est pourquoi les côtes méditerranéennes, par exemple, connaissent souvent un vent régulier l’après-midi, tandis que les nuits y sont plus calmes.Mais à la tombée du jour, le phénomène s’inverse : la terre se refroidit rapidement alors que la mer conserve sa chaleur. L’air marin, plus chaud, monte à son tour, et l’air froid des terres glisse vers la mer. On parle alors de brise de terre. Ce cycle quotidien, discret mais constant, explique pourquoi les régions côtières semblent toujours animées d’un souffle d’air.À cette alternance locale s’ajoute une autre explication : la rugosité du sol. L’océan offre une surface lisse, presque plane, tandis que les terres intérieures sont couvertes d’obstacles — collines, forêts, immeubles — qui freinent le vent. Sur la mer, rien ne le retient : il peut accélérer librement. C’est pourquoi les vents marins sont souvent plus forts et plus réguliers.Enfin, les grands systèmes météorologiques jouent un rôle. Les zones côtières se trouvent souvent à la frontière entre masses d’air marines et continentales, ce qui accentue les mouvements atmosphériques.En somme, le vent des côtes n’est pas un hasard, mais le résultat d’un ballet permanent entre le soleil, la terre et la mer. Un souffle né de la différence, entretenu par le mouvement — et sans lequel les bords de mer perdraient une partie de leur charme. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Voici les 3 premiers podcasts du label Audio Sapiens:1/ SurvivreApple Podcasts:https://podcasts.apple.com/us/podcast/survivre-histoires-vraies/id1849332822Spotify:https://open.spotify.com/show/6m4YqFSEFm6ZWSkqTiOWQR2/ A la lueur de l'HistoireApple Podcasts:https://podcasts.apple.com/us/podcast/a-la-lueur-de-lhistoire/id1849342597Spotify:https://open.spotify.com/show/7HtLCQUQ0EFFS7Hent5mWd3/ Entrez dans la légendeApple Podcasts:https://open.spotify.com/show/0NCBjxciPo4LCRiHipFpoqSpotify:https://open.spotify.com/show/0NCBjxciPo4LCRiHipFpoqEt enfin, le site web du label ;)https://www.audio-sapiens.com Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
C’est un phénomène discret mais fascinant : sur certaines îles du Pacifique, notamment en Nouvelle-Calédonie, les pins colonnaires (Araucaria columnaris) semblent tous pencher… dans la même direction. C’est un phénomène discret mais fascinant : sur certaines îles du Pacifique, notamment en Nouvelle-Calédonie, les pins colonnaires (Araucaria columnaris) semblent tous pencher… dans la même direction. Et cette direction n’est pas aléatoire : ils s’inclinent vers l’équateur, qu’ils soient situés dans l’hémisphère Nord ou Sud. Un mystère botanique qui intrigue les scientifiques depuis plusieurs décennies.Ces arbres élancés, qui peuvent atteindre 60 mètres de haut, poussent naturellement droits dans la plupart des conditions. Pourtant, des mesures précises effectuées par une équipe de chercheurs australiens en 2017 (publiées dans Ecology) ont révélé un schéma troublant : plus les pins colonnaires sont éloignés de l’équateur, plus leur inclinaison vers celui-ci est marquée, jusqu’à 8 à 10 degrés. En d’autres termes, un pin situé dans l’hémisphère sud penchera vers le nord, et inversement.Pourquoi ? Plusieurs hypothèses ont été explorées. La première évoque le champ magnétique terrestre, qui pourrait influencer la croissance de ces arbres, un peu comme il guide certains animaux migrateurs. Mais aucune preuve solide ne vient confirmer ce lien. D’autres chercheurs ont pensé à une réponse phototropique, c’est-à-dire à une croissance orientée vers la lumière. Comme la trajectoire apparente du Soleil diffère selon la latitude, les arbres pourraient orienter lentement leur tronc vers la zone où l’exposition solaire est la plus régulière : celle de l’équateur. Cette hypothèse semble la plus plausible, mais elle ne suffit pas à tout expliquer, car d’autres espèces voisines ne présentent pas le même comportement.Une troisième piste concerne la rotation terrestre. Selon certains modèles, la force de Coriolis pourrait influencer la distribution des hormones de croissance (les auxines) dans les tissus végétaux, entraînant une croissance asymétrique du tronc. Ce serait une sorte d’effet “invisible” de la dynamique terrestre sur la biologie des plantes.Les chercheurs de l’université James Cook, en Australie, ont confirmé que cette inclinaison est constante et reproductible, mais son origine exacte reste mystérieuse. Aucun facteur climatique local (vents dominants, sol, humidité) ne permet de l’expliquer complètement.Ainsi, ces pins colonnaires qui s’inclinent avec élégance rappellent que la nature cache encore des énigmes : même dans un monde où les satellites scrutent chaque forêt, un simple arbre peut défier notre compréhension. Et, quelque part dans le Pacifique, des forêts entières continuent de saluer silencieusement le Soleil — toujours en direction de l’équateur. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Il existe une fleur capable de rivaliser avec les somnifères : celle du bigaradier. Derrière ce nom un peu oublié se cache l’oranger amer, un petit arbre originaire d’Asie, sans doute de la région de l’Himalaya. Introduit en Méditerranée au Moyen Âge, il s’est acclimaté sous le soleil de Séville et de Grasse, où ses fleurs blanches, d’un parfum enivrant, sont devenues le cœur de la parfumerie et de la phytothérapie. On la connaît mieux sous le nom de fleur d’oranger.Mais au-delà de son odeur douce et familière, la fleur du bigaradier possède des vertus étonnantes sur le sommeil. Depuis longtemps, les infusions de fleur d’oranger apaisent les enfants agités et calment les nerfs avant la nuit. Ce que la science confirme peu à peu. En 2023, des chercheurs iraniens ont mené un essai clinique sur des femmes dont les bébés étaient hospitalisés : boire chaque soir un distillat de fleur d’oranger a significativement amélioré leur sommeil, comparé à un placebo. Les participantes s’endormaient plus vite, se réveillaient moins souvent, et déclaraient se sentir plus reposées.D’autres travaux, menés sur des modèles animaux, sont encore plus surprenants. Un extrait de fleur d’oranger, administré à des souris privées de sommeil, s’est révélé plus efficace pour réduire leur anxiété qu’un médicament bien connu : le lorazépam, un somnifère puissant. Les chercheurs attribuent cet effet à plusieurs molécules actives : le linalol, le nérolidol et divers sesquiterpènes, capables d’agir sur les récepteurs GABA du cerveau, les mêmes que ceux ciblés par les benzodiazépines. En somme, la nature imiterait la chimie, mais sans ses effets secondaires.Cependant, ces résultats doivent être interprétés avec prudence. Les études restent encore peu nombreuses, souvent limitées à de petits échantillons. Et si la fleur d’oranger favorise l’endormissement, elle ne remplace pas un traitement médical dans les cas d’insomnie sévère. Elle agit comme une aide douce, idéale pour calmer les tensions, réduire l’anxiété et rétablir un cycle de sommeil perturbé.Boire une tisane de fleur d’oranger avant le coucher, respirer son huile essentielle ou l’utiliser en diffusion pourrait donc être une manière simple de renouer avec un sommeil naturel. Le bigaradier, autrefois symbole d’innocence et de paix, redevient ainsi ce qu’il a toujours été : un messager de sérénité, plus apaisant qu’un somnifère, et infiniment plus poétique. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
À première vue, le Soleil semble être une boule de feu parfaitement uniforme. Mais observé de près, à l’aide de filtres spéciaux, sa surface révèle des zones sombres : les taches solaires. Ces marques, visibles depuis la Terre depuis plus de quatre siècles, intriguent encore les astrophysiciens. Elles ne sont pas des “trous” dans le Soleil, mais les symptômes spectaculaires de son activité magnétique.Des zones plus froides, donc plus sombresLe Soleil est une immense sphère de gaz en fusion, animée de mouvements de convection : la matière chaude remonte, la froide redescend. Ces mouvements génèrent des champs magnétiques puissants, qui peuvent se tordre et s’entremêler. Lorsque ces champs deviennent trop intenses, ils perturbent la circulation de la chaleur à la surface, dans la région appelée photosphère.Résultat : certaines zones se refroidissent légèrement, passant d’environ 5 800 °C à 3 800 °C. Cette différence de température suffit à les rendre visiblement plus sombres que leur environnement. C’est ce contraste thermique qui crée l’illusion d’une “tache noire”, même si ces régions continuent à émettre énormément de lumière et d’énergie.Un phénomène magnétique cycliqueLes taches solaires n’apparaissent pas au hasard. Elles suivent un cycle de 11 ans, au cours duquel l’activité magnétique du Soleil croît puis décroît. Au maximum solaire, des dizaines, voire des centaines de taches peuvent parsemer sa surface ; au minimum, elles disparaissent presque totalement.Ce cycle s’accompagne d’autres manifestations spectaculaires : éruptions solaires et éjections de masse coronale, capables de projeter dans l’espace des milliards de tonnes de particules. Ces événements, liés aux zones où les champs magnétiques se reconnectent, peuvent perturber les communications, les satellites et même les réseaux électriques sur Terre.Un miroir de la santé du SoleilLes taches solaires servent aujourd’hui d’indicateurs précieux pour les scientifiques. En les observant, on mesure l’évolution du champ magnétique solaire, la rotation différentielle de l’étoile et la dynamique de son plasma interne.Historiquement, leur étude a aussi permis de grandes découvertes : dès le XVIIe siècle, Galilée les utilisait pour prouver que le Soleil tournait sur lui-même. Aujourd’hui, grâce aux sondes spatiales comme Solar Orbiter ou Parker Solar Probe, les chercheurs cartographient leur structure en trois dimensions.En somme, les taches solaires sont les pulsations visibles du cœur magnétique du Soleil — des fenêtres sur les forces colossales qui animent notre étoile et rythment la vie de tout le système solaire. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Le stress fait partie intégrante de la vie moderne. Pression professionnelle, tensions familiales, imprévus financiers : nos journées sont ponctuées de petites vagues d’anxiété. Mais une étude américaine publiée le 27 août 2025 dans la revue Communications Psychology révèle qu’un simple sentiment peut radicalement changer notre manière d’y faire face : le sentiment de contrôle. Autrement dit, croire que l’on a une influence, même partielle, sur une situation stressante suffit à en atténuer les effets.Le pouvoir du contrôle perçuLes chercheurs ont suivi plus de 2 500 adultes pendant plusieurs semaines, en mesurant leur niveau de stress, leur humeur et leur perception du contrôle sur les événements du quotidien. Résultat : lorsque les participants se sentaient maîtres de la situation, leur stress diminuait nettement, même lorsque les circonstances objectives restaient identiques. À l’inverse, ceux qui se sentaient impuissants ressentaient davantage de tension, d’irritabilité et de fatigue mentale.Ce sentiment de contrôle agit donc comme un tampon psychologique : il ne supprime pas les difficultés, mais il modifie la manière dont notre cerveau les interprète. En percevant un certain pouvoir d’action, le corps produit moins de cortisol — l’hormone du stress — et l’esprit retrouve plus facilement son équilibre.Une question de perception, pas de réalitéL’étude montre aussi que ce contrôle n’a pas besoin d’être réel pour être bénéfique. Ce qui compte, c’est la perception de pouvoir agir. Par exemple, un salarié submergé par le travail supportera mieux la pression s’il pense pouvoir réorganiser ses tâches, même si cette marge de manœuvre reste limitée.Cette idée rejoint les grands principes de la psychologie cognitive : notre ressenti dépend davantage de la manière dont nous interprétons une situation que de la situation elle-même. En cultivant un sentiment d’autonomie, on réduit donc mécaniquement l’impact du stress.Comment renforcer ce sentimentLes chercheurs suggèrent plusieurs leviers simples : prendre des décisions concrètes, même petites ; fractionner les problèmes en étapes gérables ; ou encore pratiquer la pleine conscience, qui aide à recentrer l’attention sur ce que l’on peut réellement contrôler.En somme, la clé pour mieux vivre avec le stress n’est pas de tout maîtriser, mais de croire qu’on en est capable. Ce sentiment, profondément humain, transforme une réalité subie en une réalité choisie — et redonne à chacun le pouvoir de respirer un peu plus librement. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
C’est un cri bref, rauque, presque universel. Qu’il s’agisse d’un merle européen, d’un corbeau américain ou d’un bulbul indonésien, tous semblent partager un même signal sonore : le cri d’alerte. Une étude publiée en 2025 par une équipe internationale de bioacousticiens, après avoir analysé plus de 300 espèces à travers tous les continents, révèle qu’il existe une signature acoustique commune lorsque les oiseaux veulent signaler un danger.Les chercheurs ont observé que ce cri particulier, souvent émis en cas de prédation, possède toujours les mêmes caractéristiques : une fréquence médiane, un timbre rugueux, et une durée très courte, de l’ordre de quelques dixièmes de seconde. Contrairement aux chants territoriaux ou aux appels de contact, qui varient énormément d’une espèce à l’autre, le cri d’alerte semble obéir à une logique universelle, presque instinctive.Cette convergence n’a rien d’un hasard. Selon l’étude, elle répond à des contraintes évolutives partagées. Un cri d’alerte doit être immédiatement reconnaissable, même pour une autre espèce, et difficile à localiser par le prédateur. Ce double objectif expliquerait pourquoi, au fil des millions d’années, les oiseaux ont développé des signaux acoustiques similaires, malgré leurs différences de taille, d’habitat ou de larynx.Les chercheurs ont mené des expériences étonnantes : dans une réserve du Costa Rica, la diffusion du cri d’alerte d’une mésange charbonnière a provoqué la fuite instantanée d’une dizaine d’autres espèces, pourtant étrangères à ce son. En Afrique du Sud, le même phénomène a été observé chez les tisserins et les tourterelles. Même les oiseaux qui n’avaient jamais été exposés à ces signaux semblaient en comprendre le sens, comme s’il existait un code sonore universel du danger.Cette découverte bouleverse notre compréhension du langage animal. Elle suggère que la communication entre espèces pourrait reposer sur des structures acoustiques fondamentales, comparables à des “mots” partagés de manière instinctive. En d’autres termes, les oiseaux parleraient tous une forme de dialecte commun lorsqu’il s’agit de survie.Au-delà de la curiosité scientifique, ces travaux ouvrent des perspectives fascinantes. Comprendre ce langage universel pourrait aider les écologues à mieux anticiper les réactions des oiseaux face aux menaces — qu’elles soient naturelles ou humaines. Et si, quelque part dans la canopée, un cri bref et rugueux s’élève, ce n’est pas une simple note dans le vent : c’est peut-être la langue la plus ancienne du monde animal, celle de la peur partagée. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
C’est une question que beaucoup de passagers se posent en regardant par le hublot d’un avion : pourquoi diable les sièges et les fenêtres ne sont-ils pas alignés ? Ce décalage, parfois frustrant quand on se retrouve face à un mur de plastique au lieu d’une vue sur les nuages, n’est pas une erreur de conception, mais le résultat d’un savant compromis entre ingénierie, sécurité et rentabilité.D’abord, il faut comprendre que les constructeurs d’avions et les compagnies aériennes n’ont pas les mêmes priorités. Les premiers, comme Airbus ou Boeing, conçoivent la structure de l’appareil : le fuselage, les hublots, les points d’ancrage des sièges, etc. De leur côté, les compagnies aériennes configurent l’intérieur selon leurs besoins commerciaux : nombre de rangées, espacement des sièges, confort de la cabine. Et c’est là que naît le décalage.Les hublots sont placés selon une logique structurelle. Chaque ouverture affaiblit légèrement la carlingue, donc leur position est fixée avec une précision millimétrique pour garantir la solidité de l’avion. Ils doivent respecter l’espacement des cadres du fuselage, ces anneaux métalliques qui renforcent la pression interne. Impossible donc de les déplacer librement pour s’adapter aux sièges.Les sièges, eux, sont installés bien plus tard, sur des rails au sol. Leur espacement — ce qu’on appelle le pitch — varie selon les compagnies : un avion identique peut accueillir 180 places en configuration “éco” serrée, ou 150 sièges plus espacés en version confort. Résultat : la disposition intérieure n’a souvent plus aucun rapport avec la position des hublots prévue à l’origine.Autrement dit, ce décalage est une conséquence directe du modèle économique des compagnies aériennes. En optimisant le nombre de rangées, elles gagnent quelques places supplémentaires, au détriment parfois du plaisir visuel des passagers.Il y a aussi une question de sécurité. Les hublots sont légèrement surélevés par rapport aux yeux d’un adulte assis, afin de permettre une meilleure vision extérieure pour le personnel en cas d’urgence. Et comme les sièges sont modulables, les compagnies préfèrent garder une marge de manœuvre pour adapter la cabine à différents modèles ou configurations.En somme, si votre siège ne correspond pas au hublot, ce n’est pas un oubli, mais une preuve du casse-tête logistique qu’est l’aménagement d’un avion moderne : un équilibre permanent entre contraintes mécaniques, exigences commerciales et normes de sécurité. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
La superfétation est un phénomène biologique aussi fascinant que rarissime : il s’agit de la fécondation d’un second ovule alors qu’une grossesse est déjà en cours. Autrement dit, une femme — ou un animal — tombe enceinte… alors qu’elle l’est déjà. Le résultat : deux embryons d’âges différents cohabitent dans le même utérus, chacun issu d’une ovulation et d’une fécondation distinctes.Chez la plupart des mammifères, ce scénario semble impossible. En temps normal, une fois qu’un ovule fécondé s’implante dans l’utérus, le corps déclenche des mécanismes hormonaux très efficaces pour empêcher toute nouvelle ovulation. Le col de l’utérus se ferme, les hormones de grossesse bloquent les cycles, et la muqueuse utérine devient impraticable pour un nouvel embryon. Pourtant, dans des circonstances exceptionnelles, ces barrières peuvent être contournées.Trois conditions doivent se réunir pour qu’une superfétation se produise. D’abord, une nouvelle ovulation doit survenir malgré la grossesse. Ensuite, les spermatozoïdes doivent parvenir à féconder un second ovule, alors que le col est censé être fermé. Enfin, cet ovule fécondé doit réussir à s’implanter dans l’utérus déjà occupé, sans être expulsé ni écrasé par le premier embryon. Autant dire que la probabilité que tout cela se produise est infime.Chez l’être humain, seuls une vingtaine de cas documentés existent dans la littérature médicale. Le plus souvent, la superfétation est découverte par hasard, lors d’échographies montrant deux fœtus de tailles ou de stades de développement très différents, sans qu’il s’agisse de jumeaux classiques. Dans certains cas, les bébés naissent à quelques jours, voire à quelques semaines d’écart.Le phénomène est un peu plus fréquent chez certaines espèces animales, comme les lièvres, les chevaux ou les poissons vivipares, chez lesquels les mécanismes hormonaux sont moins stricts. Les femelles peuvent ainsi porter simultanément plusieurs portées à différents stades de gestation, ce qui augmente leurs chances de reproduction.Chez l’humain, la superfétation pourrait parfois être favorisée par la procréation médicalement assistée, notamment lorsque des ovules supplémentaires sont libérés sous traitement hormonal. Mais même dans ce contexte, le cas reste rarissime.Ce phénomène spectaculaire illustre à quel point la biologie humaine garde encore des zones de mystère. La superfétation défie les lois habituelles de la reproduction et rappelle que, parfois, la nature aime brouiller les règles les mieux établies — au point qu’une femme peut, littéralement, être enceinte… deux fois en même temps. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Installer du Wi-Fi sur la Lune : l’idée peut sembler étrange, voire anecdotique, mais elle répond à des enjeux scientifiques et techniques très concrets. La NASA prépare le retour de l’homme sur notre satellite avec le programme Artemis, et pour y établir une présence durable, il faut bien plus que des fusées : il faut une infrastructure de communication fiable, rapide et autonome.Aujourd’hui, les échanges entre la Terre et la Lune passent par des réseaux radio traditionnels, adaptés aux missions courtes mais insuffisants pour gérer les flux massifs de données qu’exigeront les futures bases lunaires. Photos haute résolution, vidéos, données scientifiques, communications entre astronautes, véhicules et robots… tout cela nécessite une connexion permanente et à haut débit. C’est pourquoi la NASA, en collaboration avec plusieurs entreprises privées, veut déployer un véritable réseau Wi-Fi lunaire.L’idée n’est pas de connecter les habitants de la Terre au Wi-Fi lunaire, mais d’offrir aux astronautes et aux engins robotiques un réseau local permettant de transmettre instantanément les informations d’une base à l’autre. Le projet s’inspire directement des réseaux Wi-Fi terrestres : il s’agit de relier différents points — habitats, rovers, instruments scientifiques — grâce à des antennes et répéteurs répartis sur la surface.Ce projet fait partie d’une initiative plus large baptisée Lunar Communications Relay and Navigation System, qui vise à doter la Lune d’un internet spatial. L’objectif : que les astronautes d’Artemis puissent communiquer entre eux et avec la Terre sans dépendre de relais limités. Une telle infrastructure faciliterait aussi les missions robotisées : par exemple, un rover pourrait envoyer en direct ses données à un module d’habitation, qui les retransmettrait ensuite vers la Terre via un satellite en orbite lunaire.Mais la NASA n’est pas seule sur ce terrain. Nokia, partenaire du projet, travaille à la création du premier réseau 4G lunaire, capable de couvrir plusieurs kilomètres autour d’une base. Cette technologie, plus robuste que le Wi-Fi classique, fonctionnerait avec des antennes compactes et résistantes aux radiations, installées sur le sol lunaire.Au-delà de la recherche scientifique, l’enjeu est stratégique : créer un écosystème numérique durable sur la Lune. Un Wi-Fi lunaire permettrait de tester les technologies de communication qui serviront plus tard sur Mars, où les retards de transmission rendent les échanges encore plus complexes.En somme, la NASA ne cherche pas à offrir le Wi-Fi aux touristes de l’espace, mais à bâtir le réseau vital d’un futur avant-poste humain hors de la Terre. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
La catastrophe nucléaire de Kyshtym, survenue en 1957 en Union soviétique, est l’un des pires accidents nucléaires de l’histoire — pourtant, elle est restée secrète pendant plus de vingt ans. À l’époque, seuls Tchernobyl et Fukushima feront pire. Mais si le monde en a si peu entendu parler, c’est parce que le drame s’est produit au cœur d’un complexe militaire ultra-secret, dans une région interdite aux étrangers.Tout commence dans la petite ville de Kyshtym, dans l’Oural, à proximité du complexe nucléaire de Maïak, l’un des tout premiers sites soviétiques destinés à produire du plutonium pour la bombe atomique. Dans ce centre, des tonnes de déchets hautement radioactifs sont entreposées dans des réservoirs souterrains en acier, refroidis par un système d’eau. Mais le 29 septembre 1957, le système de refroidissement d’un de ces réservoirs tombe en panne. Pendant plusieurs mois, la température interne monte lentement… jusqu’à provoquer une explosion chimique équivalente à environ 70 tonnes de TNT.L’explosion pulvérise le couvercle en béton de plusieurs tonnes et libère un immense nuage radioactif. Environ 20 millions de curies de matières radioactives sont projetées dans l’atmosphère — une quantité comparable à un tiers de celle de Tchernobyl. Ce nuage contamine une zone de plus de 20 000 km², touchant plusieurs régions de l’Oural et exposant près de 270 000 personnes.Mais à l’époque, impossible pour la population de comprendre ce qui se passe. Le régime soviétique garde le silence absolu. Les habitants des villages voisins voient des soldats arriver, des hélicoptères survoler la région, des convois évacuer des familles sans explication. On leur dit simplement qu’il y a eu une « explosion industrielle ». En réalité, 23 villages seront rasés, les habitants déplacés de force, et des centaines de personnes mourront dans les mois ou années suivantes des suites d’irradiations aiguës.Ce n’est qu’en 1976, grâce au témoignage du biologiste soviétique Jores Medvedev, réfugié à Londres, que l’Occident découvre l’ampleur de la catastrophe. Il baptise alors l’événement « catastrophe de Kyshtym », du nom de la ville la plus proche du site.Aujourd’hui encore, la région reste l’une des zones les plus contaminées de la planète. Le site de Maïak continue de fonctionner, mais les cicatrices écologiques et humaines du désastre rappellent qu’avant même Tchernobyl, l’histoire du nucléaire avait déjà connu une tragédie passée presque sous silence. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Et si, demain, l’intelligence artificielle ne fonctionnait plus à l’électricité, mais… à la lumière ? C’est l’idée audacieuse d’une équipe de chercheurs américains, persuadés que les photons pourraient un jour remplacer les électrons dans les calculs informatiques. Car si l’IA progresse à une vitesse fulgurante, elle consomme aussi une énergie colossale. Les data centers dédiés à son entraînement engloutissent déjà des térawatts d’électricité, au point que certains experts y voient une impasse énergétique. D’où cette piste lumineuse, au sens propre comme au figuré.À l’Université de Floride, des ingénieurs ont mis au point une puce photonique capable d’exécuter les calculs nécessaires à l’apprentissage automatique en utilisant des faisceaux de lumière. Là où les ordinateurs classiques font circuler des électrons dans des circuits, cette puce utilise des lasers miniaturisés pour traiter les données. Résultat : une vitesse décuplée et une consommation d’énergie quasi nulle.Cette technologie, appelée photonique sur puce, s’appuie sur de minuscules lentilles de Fresnel gravées directement sur du silicium. Les données numériques y sont converties en lumière, qui traverse les lentilles, effectue les opérations mathématiques, puis ressort sous forme de signaux interprétables par les algorithmes d’IA. Lors des premiers tests, le prototype a réussi à reconnaître des chiffres manuscrits avec 98 % de précision, un score comparable à celui des processeurs électroniques traditionnels.Mais l’intérêt ne s’arrête pas là : la lumière peut transporter plusieurs informations à la fois grâce au multiplexage en longueur d’onde. En clair, différentes couleurs de lasers peuvent effectuer des calculs simultanés dans le même espace, multipliant la capacité de traitement sans augmenter la taille de la puce. C’est ce potentiel de calcul parallèle qui pourrait, selon le chercheur Hangbo Yang, « transformer la conception même des réseaux neuronaux à grande échelle ».Cette percée, issue d’une collaboration entre l’Université de Floride, l’UCLA et l’Université George Washington, s’inscrit dans un mouvement plus large. Des géants comme NVIDIA explorent déjà des composants optiques pour leurs futurs processeurs d’IA. Pour Volker J. Sorger, qui dirige l’étude, « réaliser un calcul d’apprentissage automatique avec une énergie proche de zéro, c’est franchir une étape décisive vers une IA durable ».À terme, cette révolution pourrait rendre les modèles d’intelligence artificielle plus rapides, moins coûteux et surtout moins polluants. Si la lumière devient le moteur des calculs, l’IA du futur ne sera pas seulement plus intelligente — elle sera aussi plus propre. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Le romancier et journaliste Thomas Bronnec a rencontré le chimiste et biologiste Raphaël Rodriguez. Chimiste et biologiste, Raphaël Rodriguez est directeur de recherche au CNRS et dirige une équipe à l’Institut Curie. Lauréat de la médaille d’argent du CNRS, il étudie les interactions entre métaux et cellules cancéreuses. Dans un dialogue constant entre intuition, créativité et rigueur scientifique, ses découvertes sur le métabolisme du fer ouvrent des perspectives thérapeutiques inédites en cancérologie. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Pendant des décennies, on a cru qu’en multipliant les compliments, on aidait les enfants à s’épanouir. « Tu es le meilleur ! », « Tu es génial ! » — autant de phrases censées nourrir la confiance. Mais selon une recherche conjointe de l’Université d’État de l’Ohio et de l’Université d’Amsterdam, publiée dans la revue PNAS, ces compliments exagérés sont en réalité un piège. Loin de renforcer l’estime de soi, ils peuvent créer des enfants égocentriques, voire manipulateurs, incapables plus tard de relations équilibrées.Tout commence souvent avec de bonnes intentions. Un parent veut encourager son enfant, surtout s’il le sent fragile ou timide. Alors il multiplie les louanges. Mais lorsqu’elles deviennent disproportionnées — quand on félicite non pas l’effort, mais la personne elle-même, en la présentant comme exceptionnelle —, le cerveau de l’enfant apprend une leçon bien différente : pour être aimé, il faut être extraordinaire. Ce n’est plus la curiosité ni la persévérance qui comptent, mais l’image que l’on renvoie.Les chercheurs ont observé que ces enfants finissent par éviter les situations où ils risquent d’échouer. L’échec, pour eux, n’est pas une étape normale de l’apprentissage, mais une menace pour l’identité flatteuse qu’on leur a imposée. Ils préfèrent donc ne pas essayer plutôt que de risquer d’être « démasqués ». Et pour continuer à mériter l’admiration, ils développent des stratégies sociales subtiles : séduire, manipuler, attirer l’attention, parfois rabaisser les autres pour se sentir supérieurs.Peu à peu, l’enfant devient dépendant du regard extérieur. Il mesure sa valeur à travers l’approbation d’autrui. Dans ce processus, une chose s’étiole : l’empathie. S’il se vit comme le centre du monde, les besoins des autres perdent de l’importance. Il ne cherche plus à comprendre, mais à convaincre ; plus à échanger, mais à briller. Ce type d’éducation, en apparence bienveillante, prépare sans le vouloir des adultes narcissiques, fragiles sous leur assurance, et incapables de tisser des liens sincères.Les chercheurs insistent : la clé n’est pas de bannir les compliments, mais de les orienter autrement. Il faut cesser de dire « Tu es incroyable » et apprendre à dire « Tu as bien travaillé ». Féliciter l’effort plutôt que le talent, reconnaître les progrès plutôt que la perfection. C’est ainsi que l’enfant apprend que la valeur ne se joue pas dans le regard des autres, mais dans l’action, la persévérance et la relation à autrui. En somme, c’est en apprenant à échouer qu’on apprend aussi à aimer. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
loading
Comments (13)

Thibault de Changy

toujours des doublons du podcast sciences

Apr 18th
Reply

Thibault de Changy

sounds dress episodes science !!

Apr 10th
Reply

bouclé

continuer 😊🌹

Apr 28th
Reply

Mina Duchateau

merci merci merci, un vrai plaisir de vous écouter. J'ai une question : quel est la raison d'un bégaiement ? comment ça se déclenche/ fonctionne ?

Mar 19th
Reply

Yvan Shema

Que Dieu aïe pitié de tous les utilisateurs de cette appli.

Mar 16th
Reply

Thibault de Changy

le contenu du podcast est erroné

Sep 2nd
Reply

marc Genevey

j'adore! un seul reproche : l'accélération de l'enregistrement est très souvent exagéré, et nuit au plaisir de l'écoute.

Jul 27th
Reply

unknow1991

g5y nth. h

Jul 10th
Reply (1)

Artin akbari

👏🏻

Jan 22nd
Reply

Inès B

C'est peut-être une question bête mais... pourquoi partir du principe que Hercule et la tortue courent à la même vitesse ? C'est peu vraisemblable

Feb 17th
Reply

guipoum

je les ecoutent tous. vous avez 3 podcasts cesr bien ça?

Nov 28th
Reply

Valérie Schneider

Mon rituel du matin, pendant que je me lave ! Très instructif et ludique. J'écoute également Choses à savoir Culture générale et Choses à savoir Santé.

Jul 20th
Reply