Join Tim and Kim and Dr. Francis Fluharty of the University of Georgia as they talk about changes in cattle over the past 60 years, whether these changes can be sustained in the future, and the desirability of selecting for cows that are excellent swimmers for future floods. ReferencesHerrero, M., & Thornton, P. K. (2013). Livestock and global change: Emerging issues for sustainable food systems. Proceedings of the National Academy of Sciences, 110(52), 20878–20881. https://doi.org/10.1073/pnas.1321844111Lamm, K. W., Randall, N. L., & Fluharty, F. L. (2021). Critical issues facing the animal and food industry: A Delphi analysis. Translational Animal Science, 5(1), txaa213. https://doi.org/10.1093/tas/txaa213Nicol, C. J. (2021). A Grand Challenge for Animal Science: Multiple Goals – Convergent and Divergent. Frontiers in Animal Science, 2, 640503. https://doi.org/10.3389/fanim.2021.640503Nielsen, M. S. W., & Bergfeld, E. (2003). Critical perspectives in animal agriculture: A response. Journal of Animal Science, 81(11), 2908–2911. https://doi.org/10.2527/2003.81112908xRioja-Lang, F. C., Connor, M., Bacon, H. J., Lawrence, A. B., & Dwyer, C. M. (2020). Prioritization of Farm Animal Welfare Issues Using Expert Consensus. Frontiers in Veterinary Science, 6, 495. https://doi.org/10.3389/fvets.2019.00495Schillo, K. K. (2003). Critical perspectives of animal agriculture: Introduction1,2. Journal of Animal Science, 81(11), 2880–2886. https://doi.org/10.2527/2003.81112880x
Join Tim and Kim as they visit with Mark Aspin, Manager of the Pastoral Greenhouse Gas Consortium in New Zealand. Much discussion of burps, farts and levies for ruminant-produced greenhouse gasses ensues. References Buddle, Bryce M., Michel Denis, Graeme T. Attwood, Eric Altermann, Peter H. Janssen, Ron S. Ronimus, Cesar S. Pinares-Patiño, Stefan Muetzel, and D. Neil Wedlock. “Strategies to Reduce Methane Emissions from Farmed Ruminants Grazing on Pasture.” The Veterinary Journal 188, no. 1 (April 2011): 11–17. https://doi.org/10.1016/j.tvjl.2010.02.019.Animals. “Can You Tax a Cow’s Burps? New Zealand Will Be the First to Try.,” November 17, 2022. https://www.nationalgeographic.com/animals/article/can-you-tax-a-cows-burps-new-zealand-will-be-the-first-to-try.Corlett, Eva. “Nineteen Years after the ‘Fart Tax’, New Zealand’s Farmers Are Fighting Emissions.” The Guardian, November 12, 2022, sec. World news. https://www.theguardian.com/world/2022/nov/12/19-years-after-the-fart-tax-new-zealands-farmers-are-fighting-emissions.González-Recio, O., J. López-Paredes, L. Ouatahar, N. Charfeddine, E. Ugarte, R. Alenda, and J.A. Jiménez-Montero. “Mitigation of Greenhouse Gases in Dairy Cattle via Genetic Selection: 2. Incorporating Methane Emissions into the Breeding Goal.” Journal of Dairy Science 103, no. 8 (August 2020): 7210–21. https://doi.org/10.3168/jds.2019-17598.Hayek, Matthew N, and Scot M Miller. “Underestimates of Methane from Intensively Raised Animals Could Undermine Goals of Sustainable Development.” Environmental Research Letters 16, no. 6 (June 1, 2021): 063006. https://doi.org/10.1088/1748-9326/ac02ef.Hickey, Sharon M., Wendy E. Bain, Timothy P. Bilton, Gordon J. Greer, Sara Elmes, Brooke Bryson, Cesar S. Pinares-Patiño, et al. “Impact of Breeding for Reduced Methane Emissions in New Zealand Sheep on Maternal and Health Traits.” Frontiers in Genetics 13 (September 30, 2022): 910413. https://doi.org/10.3389/fgene.2022.910413.McGregor, Andrew, Lauren Rickards, Donna Houston, Michael K. Goodman, and Milena Bojovic. “The Biopolitics of Cattle Methane Emissions Reduction: Governing Life in a Time of Climate Change.” Antipode 53, no. 4 (July 2021): 1161–85. https://doi.org/10.1111/anti.12714.Press ·, The Associated. “New Zealand’s Plan to Tax Cow Burps Condemned by Farmers | CBC News.” CBC, October 11, 2022. https://www.cbc.ca/news/world/new-zealand-proposes-taxing-cow-burps-1.6612302.Smith, Ian. “Farmers Protest against New Zealand’s Proposed ‘Cow Burp Tax.’” euronews, October 20, 2022. https://www.euronews.com/green/2022/10/20/cow-burps-to-be-taxed-under-world-first-proposals-by-new-zealand.
ReferencesBai, Zhaohai, Xiangwen Fan, Xinpeng Jin, Zhanqing Zhao, Yan Wu, Oene Oenema, Gerard Velthof, Chunsheng Hu, and Lin Ma. “Relocate 10 Billion Livestock to Reduce Harmful Nitrogen Pollution Exposure for 90% of China’s Population.” Nature Food 3, no. 2 (February 10, 2022): 152–60. https://doi.org/10.1038/s43016-021-00453-z.Rütting, T., H. Aronsson, and S. Delin. “Efficient Use of Nitrogen in Agriculture.” Nutrient Cycling in Agroecosystems 110, no. 1 (January 2018): 1–5. https://doi.org/10.1007/s10705-017-9900-8.Samanta, Prantik, Harald Horn, and Florencia Saravia. “Impact of Livestock Farming on Nitrogen Pollution and the Corresponding Energy Demand for Zero Liquid Discharge.” Water 14, no. 8 (April 15, 2022): 1278. https://doi.org/10.3390/w14081278.Skeffington, R.A., and Emma J. Wilson. “Excess Nitrogen Deposition: Issues for Consideration.” Environmental Pollution 54, no. 3–4 (1988): 159–84. https://doi.org/10.1016/0269-7491(88)90110-8.Sun, Bo, Linxiu Zhang, Linzhang Yang, Fusuo Zhang, David Norse, and Zhaoliang Zhu. “Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures.” AMBIO 41, no. 4 (June 2012): 370–79. https://doi.org/10.1007/s13280-012-0249-6.
Join Tim and Kim as they talk with Dr. Colleen Duncan of Colorado State University and Dr. Katie Steneroden of Iowa State University on potential cow-related pandemics of the future, the role of climate change in pandemics and the need for future fun fashion with hazmat suits in designer colors. BibliographyBernstein, A. S., Ando, A. W., Loch-Temzelides, T., Vale, M. M., Li, B. V., Li, H., Busch, J., Chapman, C. A., Kinnaird, M., Nowak, K., Castro, M. C., Zambrana-Torrelio, C., Ahumada, J. A., Xiao, L., Roehrdanz, P., Kaufman, L., Hannah, L., Daszak, P., Pimm, S. L., & Dobson, A. P. (2022). The costs and benefits of primary prevention of zoonotic pandemics. Science Advances, 8(5), eabl4183. https://doi.org/10.1126/sciadv.abl4183Jones, B. A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M. Y., McKeever, D., Mutua, F., Young, J., McDermott, J., & Pfeiffer, D. U. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences, 110(21), 8399–8404. https://doi.org/10.1073/pnas.1208059110Magouras, I., Brookes, V. J., Jori, F., Martin, A., Pfeiffer, D. U., & Dürr, S. (2020). Emerging Zoonotic Diseases: Should We Rethink the Animal–Human Interface? Frontiers in Veterinary Science, 7, 582743. https://doi.org/10.3389/fvets.2020.582743McDaniel, C. J., Cardwell, D. M., Moeller, R. B., & Gray, G. C. (2014). Humans and Cattle: A Review of Bovine Zoonoses. Vector-Borne and Zoonotic Diseases, 14(1), 1–19. https://doi.org/10.1089/vbz.2012.1164Meurens, F., Dunoyer, C., Fourichon, C., Gerdts, V., Haddad, N., Kortekaas, J., Lewandowska, M., Monchatre-Leroy, E., Summerfield, A., Wichgers Schreur, P. J., van der Poel, W. H. M., & Zhu, J. (2021). Animal board invited review: Risks of zoonotic disease emergence at the interface of wildlife and livestock systems. Animal, 15(6), 100241. https://doi.org/10.1016/j.animal.2021.100241Petrovan, S. O., Aldridge, D. C., Bartlett, H., Bladon, A. J., Booth, H., Broad, S., Broom, D. M., Burgess, N. D., Cleaveland, S., Cunningham, A. A., Ferri, M., Hinsley, A., Hua, F., Hughes, A. C., Jones, K., Kelly, M., Mayes, G., Radakovic, M., Ugwu, C. A., … Sutherland, W. J. (2021). Post COVID‐19: A solution scan of options for preventing future zoonotic epidemics. Biological Reviews, 96(6), 2694–2715. https://doi.org/10.1111/brv.12774PREVENTING THE NEXT PANDEMIC: Zoonotic diseases and how to break the chain of transmission. (n.d.).
BibliographyChakravarti, A. K. (1985). Cattle development problems and programs in India: A regional analysis. GeoJournal, 10(1). https://doi.org/10.1007/BF00174664Gupta, J. J., Singh, K. M., Bhatt, B. P., & Dey, A. (n.d.). A diagnostic study on livestock production system in Eastern Region of India. 7.Khan, A. A., & Bidabadi, F. S. (2004). Livestock Revolution in India: Its Impact and Policy Response. South Asia Research, 24(2), 99–122. https://doi.org/10.1177/0262728004047907Kumar, A., & Singh, D. K. (n.d.). Livestock Production Systems in India: An Appraisal Across Agro-Ecological Regions. 22.Thornton, P., Nelson, G., Mayberry, D., & Herrero, M. (2022). Impacts of heat stress on global cattle production during the 21st century: A modelling study. The Lancet Planetary Health, 6(3), e192–e201. https://doi.org/10.1016/S2542-5196(22)00002-X
Join Tim and Kim as they talk with Dr. Frank Mitloehner of UC Davis about how dietary choices affect green house gasses, teaching children to cook, and the need for better-looking scientists among other things.BibliographyAlmiron, N., & Zoppeddu, M. (2015). Eating Meat and Climate Change: The Media Blind Spot—A Study of Spanish and Italian Press Coverage. Environmental Communication, 9(3), 307–325. https://doi.org/10.1080/17524032.2014.953968Amundson, R. (2022). Negative emissions in agriculture are improbable in the near future. Proceedings of the National Academy of Sciences, 119(12), e2118142119. https://doi.org/10.1073/pnas.2118142119González, N., Marquès, M., Nadal, M., & Domingo, J. L. (2020). Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Research International, 137, 109341. https://doi.org/10.1016/j.foodres.2020.109341Pitesky, M. E., Stackhouse, K. R., & Mitloehner, F. M. (2009). Clearing the Air. In Advances in Agronomy (Vol. 103, pp. 1–40). Elsevier. https://doi.org/10.1016/S0065-2113(09)03001-6Raiten, D. J., Allen, L. H., Slavin, J. L., Mitloehner, F. M., Thoma, G. J., Haggerty, P. A., & Finley, J. W. (2020). Understanding the Intersection of Climate/Environmental Change, Health, Agriculture, and Improved Nutrition: A Case Study on Micronutrient Nutrition and Animal Source Foods. Current Developments in Nutrition, 4(7), nzaa087. https://doi.org/10.1093/cdn/nzaa087
Join Tim and Kim as they talk with Dr. Sarah Klopatek of UC Davis and learn all the chewy bits of her recent comprehensive study on grass-fed beef economics, meat quality, and environmental impacts. BibliographyDavis, H., Magistrali, A., Butler, G., & Stergiadis, S. (2022). Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. Foods, 11(5), 646. https://doi.org/10.3390/foods11050646Geiker, N. R. W., Bertram, H. C., Mejborn, H., Dragsted, L. O., Kristensen, L., Carrascal, J. R., Bügel, S., & Astrup, A. (2021). Meat and Human Health—Current Knowledge and Research Gaps. Foods, 10(7), 1556. https://doi.org/10.3390/foods10071556Klopatek, S. C., Marvinney, E., Duarte, T., Kendall, A., Yang, X. (Crystal), & Oltjen, J. W. (2022a). Grass-fed vs. grain-fed beef systems: Performance, economic, and environmental trade-offs. Journal of Animal Science, 100(2), skab374. https://doi.org/10.1093/jas/skab374Klopatek, S. C., Marvinney, E., Duarte, T., Kendall, A., Yang, X. (Crystal), & Oltjen, J. W. (2022b). Grass-fed vs. grain-fed beef systems: Performance, economic, and environmental trade-offs. Journal of Animal Science, 100(2), skab374. https://doi.org/10.1093/jas/skab374Klopatek, S. C., & Oltjen, J. W. (2022). How advances in animal efficiency and management have affected beef cattle’s water intensity in the United States: 1991 compared to 2019. Journal of Animal Science, skac297. https://doi.org/10.1093/jas/skac297Provenza, F. D., Kronberg, S. L., & Gregorini, P. (2019). Is Grassfed Meat and Dairy Better for Human and Environmental Health? Frontiers in Nutrition, 6, 26. https://doi.org/10.3389/fnut.2019.00026Tichenor, N. E., Peters, C. J., Norris, G. A., Thoma, G., & Griffin, T. S. (2017). Life cycle environmental consequences of grass-fed and dairy beef production systems in the Northeastern United States. Journal of Cleaner Production, 142, 1619–1628. https://doi.org/10.1016/j.jclepro.2016.11.138Turner, T. D., Jensen, J., Pilfold, J. L., Prema, D., Donkor, K. K., Cinel, B., Thompson, D. J., Dugan, M. E. R., & Church, J. S. (2015). Comparison of fatty acids in beef tissues from conventional, organic and natural feeding systems in western Canada. Canadian Journal of Animal Science, 95(1), 49–58. https://doi.org/10.4141/cjas-2014-113
Join Tim and Kim as they discuss the sometimes negative view of agriculture in the media with Ben Wilson and Sarah Wray of Storybrokers Media House. BibliographyJohn, D. A., & Babu, G. R. (2021). Lessons From the Aftermaths of Green Revolution on Food System and Health. Frontiers in Sustainable Food Systems, 5, 644559. https://doi.org/10.3389/fsufs.2021.644559Lundy, L. K., Ruth, A. M., & Park, T. D. (2007). Entertainment and Agriculture: An Examination of the Impact of Entertainment Media on Perceptions of Agriculture. Journal of Applied Communications, 91(1). https://doi.org/10.4148/1051-0834.1257Tilman, D. (1999). Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proceedings of the National Academy of Sciences, 96(11), 5995–6000. https://doi.org/10.1073/pnas.96.11.5995Wachenheim, C., & Rathge, R. (n.d.). Societal Perceptions of Agriculture. 41.Widiyanti, E., Setyowati, N., & Ardianto, D. T. (2018). Young generation’s perception on the agricultural sector. IOP Conference Series: Earth and Environmental Science, 200, 012060. https://doi.org/10.1088/1755-1315/200/1/012060
Join Tim and Kim as they welcome back Dr. Edward Bork of the University of Alberta to discuss his work on increasing carbon sequestration by judicious grazing by cattle. Are cattle the problem or part of the solution to climate change?CitationsBaah-Acheamfour, M., Chang, S. X., Carlyle, C. N., & Bork, E. W. (2015). Carbon pool size and stability are affected by trees and grassland cover types within agroforestry systems of western Canada. Agriculture, Ecosystems & Environment, 213, 105–113. https://doi.org/10.1016/j.agee.2015.07.016Bork, D. E., & Chair, M. (n.d.). A Reconsideration of Grazing Impacts on Soil Carbon in Northern Temperate Grasslands. 31.Carlyle, C. N. (n.d.). GRAZING EFFECTS ON CARBON STORAGE IN RANGELANDS OF THE CANADIAN PRAIRIE. 26.De Deyn, G. B., Cornelissen, J. H. C., & Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11(5), 516–531. https://doi.org/10.1111/j.1461-0248.2008.01164.xShrestha, B., Chang, S., Bork, E., & Carlyle, C. (2018). Enrichment Planting and Soil Amendments Enhance Carbon Sequestration and Reduce Greenhouse Gas Emissions in Agroforestry Systems: A Review. Forests, 9(6), 369. https://doi.org/10.3390/f9060369Whitehead, D. (2020). Management of Grazed Landscapes to Increase Soil Carbon Stocks in Temperate, Dryland Grasslands. Frontiers in Sustainable Food Systems, 4, 585913. https://doi.org/10.3389/fsufs.2020.585913
Join Tim and Kim as they talk about all your favorite potential residues in beef, from hormones and antibiotics to genetically-modified crops, with Dr. Joe Schwarcz, Director of the Office for Science and Society at McGill University.CitationDoyle, E. (2000). Human Safety of Hormone Implants Used to Promote Growth in Cattle. 24.Hirpessa, B., Ulusoy, B., Hecer, C. (2020). Hormones and Hormonal Anabolics: Residues in Animal Source Food, Potential Public Health Impacts, and Methods of Analysis. Retrieved August 9, 2022, from https://www.hindawi.com/journals/jfq/2020/5065386/Jeong, S.-H., Kang, D.-J., Lim, M.-W., Kang, C.-S., & Sung, H.-J. (2010). Risk Assessment of Growth Hormones and Antimicrobial Residues in Meat. Toxicological Research, 26(4), 301–313. https://doi.org/10.5487/TR.2010.26.4.301Kumar, S. (2018). Adverse effects on consumer’s health caused by hormones administered in cattle. 10.Ramatla, T., Ngoma, L., Adetunji, M., & Mwanza, M. (2017). Evaluation of Antibiotic Residues in Raw Meat Using Different Analytical Methods. Antibiotics, 6(4), 34. https://doi.org/10.3390/antibiotics6040034Smith, Z. K., & Johnson, B. J. (2020). Mechanisms of steroidal implants to improve beef cattle growth: A review. Journal of Applied Animal Research, 48(1), 133–141. https://doi.org/10.1080/09712119.2020.1751642Thieme, D., & Hemmersbach, P. (Eds.). (2010). Doping in Sports (Vol. 195). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79088-4
Join Tim and Kim as they discuss situations most likely to lead to injury or death by bovine with Dr. Karen Schwartzkopf-Genswein in a shameless ploy to tap into the true crime podcast fanbase. CitationsBlack, R., & Krawczel, P. (2016). A Case Study of Behaviour and Performance of Confined or Pastured Cows During the Dry Period. Animals, 6(7), 41. https://doi.org/10.3390/ani6070041Eusebi, P. G., Sevane, N., O’Rourke, T., Pizarro, M., Boeckx, C., & Dunner, S. (2022). Age Effects Aggressive Behavior: RNA-Seq Analysis in Cattle with Implications for Studying Neoteny Under Domestication. Behavior Genetics, 52(2), 141–153. https://doi.org/10.1007/s10519-021-10097-1No need to tolerate aggressive cows. (2011). Retrieved July 27, 2022, from https://www.canadiancattlemen.ca/features/why-do-we-tolerate-aggressive-cows/Westgarth, C., & McIntyre, M. (2017). When cows attack: How dangerous are cattle and how can you stay safe around them? The Conversation. Retrieved July 27, 2022, from http://theconversation.com/when-cows-attack-how-dangerous-are-cattle-and-how-can-you-stay-safe-around-them-79524Why and how to read a cow or bull. (2004). Retrieved July 27, 2022, from https://nature.berkeley.edu/ucce50/ag-labor/7article/article29.htm
Join Tim and Kim and Dr. Manuel Juarez of Agriculture and Agri-Food Canada as they discus eating invasive species such as wild boars instead of beef and the pros and cons of helicopter gunships for wild boar hunting.CitationAschim, R. A., & Brook, R. K. (2019). Evaluating Cost-Effective Methods for Rapid and Repeatable National Scale Detection and Mapping of Invasive Species Spread. Scientific Reports, 9(1), 7254. https://doi.org/10.1038/s41598-019-43729-yBulté, G., Robinson, S. A., Forbes, M. R., & Marcogliese, David. J. (2012). Is There Such Thing as a Parasite Free Lunch? The Direct and Indirect Consequences of Eating Invasive Prey. EcoHealth, 9(1), 6–16. https://doi.org/10.1007/s10393-012-0757-7Croft, S., Franzetti, B., Gill, R., & Massei, G. (2020). Too many wild boar? Modelling fertility control and culling to reduce wild boar numbers in isolated populations. PLOS ONE, 15(9), e0238429. https://doi.org/10.1371/journal.pone.0238429Curtis, P. D. (n.d.). After Decades of Suburban Deer Research and Management in the Eastern United States: Where Do We Go From Here? 18.Fiala, M., Marveggio, D., Viganò, R., Demartini, E., Nonini, L., & Gaviglio, A. (2020). LCA and wild animals: Results from wild deer culled in a northern Italy hunting district. Journal of Cleaner Production, 244, 118667. https://doi.org/10.1016/j.jclepro.2019.118667Gagnier, M., Laurion, I., & DeNicola, A. J. (2020). Control and Surveillance Operations to Prevent Chronic Wasting Disease Establishment in Free-Ranging White-Tailed Deer in Québec, Canada. Animals, 10(2), 283. https://doi.org/10.3390/ani10020283Gamborg, C., Sandøe, P., & Palmer, C. (2020). Ethical management of wildlife. Lethal versus nonlethal control of white‐tailed deer. Conservation Science and Practice, 2(4). https://doi.org/10.1111/csp2.171Gaviglio, A., Marescotti, M., & Demartini, E. (2018). The Local Value Chain of Hunted Red Deer Meat: A Scenario Analysis Based on a Northern Italian Case Study. Resources, 7(2), 34. https://doi.org/10.3390/resources7020034Johann, F., Handschuh, M., Linderoth, P., Dormann, C. F., & Arnold, J. (2020). Adaptation of wild boar (Sus scrofa) activity in a human-dominated landscape. BMC Ecology, 20(1), 4. https://doi.org/10.1186/s12898-019-0271-7Keuling, O., Baubet, E., Duscher, A., Ebert, C., Fischer, C., Monaco, A., Podgórski, T., Prevot, C., Ronnenberg, K., Sodeikat, G., Stier, N., & Thurfjell, H. (2013). Mortality rates of wild boar Sus scrofa L. in central Europe. European Journal of Wildlife Research, 59(6), 805–814. https://doi.org/10.1007/s10344-013-0733-8Koons, D. N., Rockwell, R. F., & Aubry, L. M. (2014). Effects of exploitation on an overabundant species: The lesser snow goose predicament. Journal of Animal Ecology, 83(2), 365–374. https://doi.org/10.1111/1365-2656.12133Meng, X. J., Lindsay, D. S., & Sriranganathan, N. (2009). Wild boars as sources for infectious diseases in livestock and humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1530), 2697–2707. https://doi.org/10.1098/rstb.2009.0086Niewiadomska, K., Kosicka-Gębska, M., Gębski, J., Gutkowska, K., Jeżewska-Zychowicz, M., & Sułek, M. (2020). Game Meat Consumption—Conscious Choice or Just a Game? Foods, 9(10), 1357. https://doi.org/10.3390/foods9101357Nuñez, M. A., Kuebbing, S., Dimarco, R. D., & Simberloff, D. (2012). Invasive Species: To eat or not to eat, that is the question: Eating invasive species. Conservation Letters, 5(5), 334–341. https://doi.org/10.1111/j.1755-263X.2012.00250.xRisch, D. R., Ringma, J., & Price, M. R. (2021). The global impact of wild pigs (Sus scrofa) on terrestrial biodiversity. Scientific Reports, 11(1), 13256. https://doi.org/10.1038/s41598-021-92691-1Seaman, A. N. (n.d.). Eating invasives: Chefs as an avenue to control through consumption. 19.Silveira de Oliveira, Ê., Ludwig da Fontoura Rodrigues, M., Machado Severo, M., Gomes dos Santos, T., & Kasper, C. B. (2020). Who’s afraid of the big bad boar? Assessing the effect of wild boar presence on the occurrence and activity patterns of other mammals. PLOS ONE, 15(7), e0235312. https://doi.org/10.1371/journal.pone.0235312
Join Tim and Kim as they talk with Dr. Hsin Huang, Secretary General of the International Meat Secretariat about some of the surprising products that come from cows other than milk and meat. CitationsAlam, A. Y. (n.d.). The challenge of dealing with animal derived ingredients in medical/surgical products. 3.Alao, B., Falowo, A., Chulayo, A., & Muchenje, V. (2017). The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. Sustainability, 9(7), 1089. https://doi.org/10.3390/su9071089Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. Journal of Food Science and Technology, 49(3), 278–293. https://doi.org/10.1007/s13197-011-0290-7Khouw, B. T., Rubin, L. J., & Berry, B. (n.d.). Meat Animal By-Products of Pharmaceutical and Food Interest. 8.Quin, J. (2020). Medicines/pharmaceuticals of animal origin. 33.Singh, N., Halliday, H. L., Stevens, T. P., Suresh, G., Soll, R., & Rojas-Reyes, M. X. (2015). Comparison of animal-derived surfactants for the prevention and treatment of respiratory distress syndrome in preterm infants. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD010249.pub2Toldrá, F., Reig, M., & Mora, L. (2021). Management of meat by- and co-products for an improved meat processing sustainability. Meat Science, 181, 108608. https://doi.org/10.1016/j.meatsci.2021.108608
CitationsCurtain, F., & Grafenauer, S. (2019). Plant-Based Meat Substitutes in the Flexitarian Age: An Audit of Products on Supermarket Shelves. Nutrients, 11(11), 2603. https://doi.org/10.3390/nu11112603Davitt, E. D., Winham, D. M., Heer, M. M., Shelley, M. C., & Knoblauch, S. T. (2021). Predictors of Plant-Based Alternatives to Meat Consumption in Midwest University Students. Journal of Nutrition Education and Behavior, 53(7), 564–572. https://doi.org/10.1016/j.jneb.2021.04.459He, J., Evans, N. M., Liu, H., & Shao, S. (2020). A review of research on plant‐based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2639–2656. https://doi.org/10.1111/1541-4337.12610Lynch, H., Johnston, C., & Wharton, C. (2018). Plant-Based Diets: Considerations for Environmental Impact, Protein Quality, and Exercise Performance. Nutrients, 10(12), 1841. https://doi.org/10.3390/nu10121841Michel, F., Hartmann, C., & Siegrist, M. (2021). Consumers’ associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Quality and Preference, 87, 104063. https://doi.org/10.1016/j.foodqual.2020.104063Santo, R. E., Kim, B. F., Goldman, S. E., Dutkiewicz, J., Biehl, E. M. B., Bloem, M. W., Neff, R. A., & Nachman, K. E. (2020). Considering Plant-Based Meat Substitutes and Cell-Based Meats: A Public Health and Food Systems Perspective. Frontiers in Sustainable Food Systems, 4, 134. https://doi.org/10.3389/fsufs.2020.00134van Vliet, S., Kronberg, S. L., & Provenza, F. D. (2020). Plant-Based Meats, Human Health, and Climate Change. Frontiers in Sustainable Food Systems, 4, 128. https://doi.org/10.3389/fsufs.2020.00128
Literature CitedBrooks, S., Leaver, A., Spence, M., Elliott, C. T., & Dean, M. (2017). Pragmatic engagement in a low trust supply chain: Beef farmers’ perceptions of power, trust and agency. Competition & Change, 21(2), 114–131. https://doi.org/10.1177/1024529417691053Chamanara, S., Goldstein, B., & Newell, J. P. (2021). Where’s the beef? Costco’s meat supply chain and environmental justice in California. Journal of Cleaner Production, 278, 123744. https://doi.org/10.1016/j.jclepro.2020.123744Fernandes, A. M., de Souza Teixeira, O., Rios, H. V., Canozzi, M. E. A., Schultz, G., & Barcellos, J. O. J. (2019). Insights of innovation and competitiveness in meat supply chains. International Food and Agribusiness Management Review, 22(3), 413–427. https://doi.org/10.22434/IFAMR2018.0031Ijaz, M., Yar, M. K., Badar, I. H., Ali, S., Islam, Md. S., Jaspal, M. H., Hayat, Z., Sardar, A., Ullah, S., & Guevara-Ruiz, D. (2021). Meat Production and Supply Chain Under COVID-19 Scenario: Current Trends and Future Prospects. Frontiers in Veterinary Science, 8, 660736. https://doi.org/10.3389/fvets.2021.660736Ma, M., & Lusk, J. (2021). Concentration and Resilience in the U.S. Meat Supply Chains (No. w29103; p. w29103). National Bureau of Economic Research. https://doi.org/10.3386/w29103Meidayanti, K., Arkeman, Y., & Sugiarto. (2019). Analysis and design of beef supply chain traceability system based on blockchain technology. IOP Conference Series: Earth and Environmental Science, 335(1), 012012. https://doi.org/10.1088/1755-1315/335/1/012012Nastasijević, I., Lakićević, B., & Petrović, Z. (2017). Cold chain management in meat storage, distribution and retail: A review. IOP Conference Series: Earth and Environmental Science, 85, 012022. https://doi.org/10.1088/1755-1315/85/1/012022Patrice, T. (n.d.). COVID-19 and the Beef Supply Chain: An Overview. 12.Peel, D. (2021). Beef supply chains and the impact of the COVID-19 pandemic in the United States. Animal Frontiers, 11(1), 33–38. https://doi.org/10.1093/af/vfaa054Rude, J. (2021). COVID‐19 and the Canadian cattle/beef sector: A second look. Canadian Journal of Agricultural Economics/Revue Canadienne d’agroeconomie, 69(2), 233–241. https://doi.org/10.1111/cjag.12277
Literature CitiedAdesogan, A. T., Havelaar, A. H., McKune, S. L., Eilittä, M., & Dahl, G. E. (2020). Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters. Global Food Security, 25, 100325. https://doi.org/10.1016/j.gfs.2019.100325Balehegn, M., Duncan, A., Tolera, A., Ayantunde, A. A., Issa, S., Karimou, M., Zampaligré, N., André, K., Gnanda, I., Varijakshapanicker, P., Kebreab, E., Dubeux, J., Boote, K., Minta, M., Feyissa, F., & Adesogan, A. T. (2020). Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Global Food Security, 26, 100372. https://doi.org/10.1016/j.gfs.2020.100372Leroy, G., Boettcher, P., Besbes, B., Peña, C. R., Jaffrezic, F., & Baumung, R. (2020). Food securers or invasive aliens? Trends and consequences of non-native livestock introgression in developing countries. Global Food Security, 26, 100420. https://doi.org/10.1016/j.gfs.2020.100420Vipham, J. L., Amenu, K., Alonso, S., Ndahetuye, J.-B., Zereyesus, Y., Nishimwe, K., Bowers, E., Maier, D., Sah, K., Havelaar, A., & Grace, D. (n.d.). No food security without food safety: Lessons from livestock related research. 16.
Literature CitedKaimowitz, D., Mertens, B., Wunder, S., & Pacheco, P. (n.d.). Cattle ranching and deforestation in Brazil’s Amazon. 10.Rajão, R., & Georgiadou, Y. (2014). Blame Games in the Amazon: Environmental Crises and the Emergence of a Transparency Regime in Brazil. Global Environmental Politics, 14(4), 97–115. https://doi.org/10.1162/GLEP_a_00259Rajão, R., Soares-Filho, B., Nunes, F., Börner, J., Machado, L., Assis, D., Oliveira, A., Pinto, L., Ribeiro, V., Rausch, L., Gibbs, H., & Figueira, D. (2020). The rotten apples of Brazil’s agribusiness. Science, 369(6501), 246–248. https://doi.org/10.1126/science.aba6646Rajão, R., & Vurdubakis, T. (2013). On the Pragmatics of Inscription: Detecting Deforestation in the Brazilian Amazon. Theory, Culture & Society, 30(4), 151–177. https://doi.org/10.1177/0263276413486203Shukla, J., Nobre, C., & Sellers, P. (1990). Amazon Deforestation and Climate Change. Science, 247(4948), 1322–1325. https://doi.org/10.1126/science.247.4948.1322Silva Junior, C. H. L., Pessôa, A. C. M., Carvalho, N. S., Reis, J. B. C., Anderson, L. O., & Aragão, L. E. O. C. (2021). The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nature Ecology & Evolution, 5(2), 144–145. https://doi.org/10.1038/s41559-020-01368-xSkidmore, M. E., Moffette, F., Rausch, L., Christie, M., Munger, J., & Gibbs, H. K. (2021). Cattle ranchers and deforestation in the Brazilian Amazon: Production, location, and policies. Global Environmental Change, 68, 102280. https://doi.org/10.1016/j.gloenvcha.2021.102280Soares-Filho, B., Rajão, R., Macedo, M., Carneiro, A., Costa, W., Coe, M., Rodrigues, H., & Alencar, A. (2014). Cracking Brazil’s Forest Code. Science, 344(6182), 363–364. https://doi.org/10.1126/science.1246663Walker, N. F., Patel, S. A., & Kalif, K. A. B. (2013). From Amazon Pasture to the High Street: Deforestation and the Brazilian Cattle Product Supply Chain. Tropical Conservation Science, 6(3), 446–467. https://doi.org/10.1177/194008291300600309Walker, R., Moran, E., & Anselin, L. (2000). Deforestation and Cattle Ranching in the Brazilian Amazon: External Capital and Household Processes. World Development, 28(4), 683–699. https://doi.org/10.1016/S0305-750X(99)00149-7
Citation Adams, F., Ohene-Yankyera, K., Aidoo, R., & Wongnaa, C. A. (2021). Economic benefits of livestock management in Ghana. Agricultural and Food Economics, 9(1), 17. https://doi.org/10.1186/s40100-021-00191-7Addah, W. (2010). Impact of ethnic conflicts on cattle population and production in the eastern corridor of the northern region of Ghana. International Journal of Tropical Agriculture and Food Systems, 3(1). https://doi.org/10.4314/ijotafs.v3i1.50015Balehegn, M., Kebreab, E., Tolera, A., Hunt, S., Erickson, P., Crane, T. A., & Adesogan, A. T. (2021). Livestock sustainability research in Africa with a focus on the environment. Animal Frontiers, 11(4), 47–56. https://doi.org/10.1093/af/vfab034Chebo, C., & Alemayehu, K. (n.d.). Trends of cattle genetic improvement programs in Ethiopia: Challenges and opportunities. 17.Ilemobade, A. A. (n.d.). Tsetse and trypanosomosis in Africa: The challenges, the opportunities. 6.Nyantakyi-Frimpong, H., Colecraft, E. K., Awuah, R. B., Adjorlolo, L. K., Wilson, M. L., & Jones, A. D. (2018). Leveraging smallholder livestock production to reduce anemia: A qualitative study of three agroecological zones in Ghana. Social Science & Medicine, 212, 191–202. https://doi.org/10.1016/j.socscimed.2018.07.028Otte, J., Pica-Ciamarra, U., & Morzaria, S. (2019). A Comparative Overview of the Livestock-Environment Interactions in Asia and Sub-saharan Africa. Frontiers in Veterinary Science, 6, 37. https://doi.org/10.3389/fvets.2019.00037University of Ghana, Obese, F., Acheampong, D., Darfour-Oduro, K., & Animal Research Institute, Ghana. (2013). Growth and reproductive traits of friesian X sanga crossbred cattle in the Accra plains of Ghana. African Journal of Food, Agriculture, Nutrition and Development, 13(57), 7357–7371. https://doi.org/10.18697/ajfand.57.11440The role of livestock in food security, poverty reduction and wealth creation in West Africa. (2020). FAO. https://doi.org/10.4060/ca8385enEVALUATION OF EXISTING AND POTENTIAL FEED RESOURCES FOR RUMINANT PRODUCTION IN NORTHERN GHANA. (n.d.). 36.
CitationCan be found in the episode notes of the past 17 episodes at Cows on the Planet (simplecast.com).
CitationsFAO. (2018). Nutrient flows and associated environmental impacts in livestock suppply chains: Guidelines for assessment.FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. (2019). WATER USE IN LIVESTOCK PRODUCTION SYSTEMS AND SUPPLY CHAINS GUIDELINES FOR ASSESSMENT: Version 1. FOOD & AGRICULTURE ORG.Biodiversity and the livestock sector—Guidelines for quantitative assessment. (2020). FAO. https://doi.org/10.4060/ca9295enEnvironmental performance of feed additives in livestock supply chains. Guidelines for assessment. (2020). FAO. https://doi.org/10.4060/ca9744enBiodiversity and the livestock sector. (n.d.). 2.Environmental performance of animal feeds supply chains. (n.d.). 184.Environmental performance of animal feeds supply chains. (n.d.). 2.Environmental performance of large ruminants supply chains. (n.d.). 2.Environmental performance of large ruminants supply chains. (n.d.). 2.