Discover
Daily Paper Cast
Daily Paper Cast
Author: Jingwen Liang, Gengyu Wang
Subscribed: 7Played: 446Subscribe
Share
© 2025 Jingwen Liang, Gengyu Wang
Description
We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com
Creator:
Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/
Gengyu Wang, LLM ML, http://wanggengyu.com
Listen on:
Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL
Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236
Cover Image by Kawen Kuang https://kawen.art
Creator:
Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/
Gengyu Wang, LLM ML, http://wanggengyu.com
Listen on:
Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL
Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236
Cover Image by Kawen Kuang https://kawen.art
1387 Episodes
Reverse
🤗 Upvotes: 66 | cs.CV, cs.AI
Authors:
Cheng Yang, Haiyuan Wan, Yiran Peng, Xin Cheng, Zhaoyang Yu, Jiayi Zhang, Junchi Yu, Xinlei Yu, Xiawu Zheng, Dongzhan Zhou, Chenglin Wu
Title:
Reasoning via Video: The First Evaluation of Video Models' Reasoning Abilities through Maze-Solving Tasks
Arxiv:
http://arxiv.org/abs/2511.15065v1
Abstract:
Video Models have achieved remarkable success in high-fidelity video generation with coherent motion dynamics. Analogous to the development from text generation to text-based reasoning in language modeling, the development of video models motivates us to ask: Can video models reason via video generation? Compared with the discrete text corpus, video grounds reasoning in explicit spatial layouts and temporal continuity, which serves as an ideal substrate for spatial reasoning. In this work, we explore the reasoning via video paradigm and introduce VR-Bench -- a comprehensive benchmark designed to systematically evaluate video models' reasoning capabilities. Grounded in maze-solving tasks that inherently require spatial planning and multi-step reasoning, VR-Bench contains 7,920 procedurally generated videos across five maze types and diverse visual styles. Our empirical analysis demonstrates that SFT can efficiently elicit the reasoning ability of video model. Video models exhibit stronger spatial perception during reasoning, outperforming leading VLMs and generalizing well across diverse scenarios, tasks, and levels of complexity. We further discover a test-time scaling effect, where diverse sampling during inference improves reasoning reliability by 10--20%. These findings highlight the unique potential and scalability of reasoning via video for spatial reasoning tasks.
🤗 Upvotes: 128 | cs.CV, cs.AI, cs.LG
Authors:
Vladimir Arkhipkin, Vladimir Korviakov, Nikolai Gerasimenko, Denis Parkhomenko, Viacheslav Vasilev, Alexey Letunovskiy, Maria Kovaleva, Nikolai Vaulin, Ivan Kirillov, Lev Novitskiy, Denis Koposov, Nikita Kiselev, Alexander Varlamov, Dmitrii Mikhailov, Vladimir Polovnikov, Andrey Shutkin, Ilya Vasiliev, Julia Agafonova, Anastasiia Kargapoltseva, Anna Dmitrienko, Anastasia Maltseva, Anna Averchenkova, Olga Kim, Tatiana Nikulina, Denis Dimitrov
Title:
Kandinsky 5.0: A Family of Foundation Models for Image and Video Generation
Arxiv:
http://arxiv.org/abs/2511.14993v1
Abstract:
This report introduces Kandinsky 5.0, a family of state-of-the-art foundation models for high-resolution image and 10-second video synthesis. The framework comprises three core line-up of models: Kandinsky 5.0 Image Lite - a line-up of 6B parameter image generation models, Kandinsky 5.0 Video Lite - a fast and lightweight 2B parameter text-to-video and image-to-video models, and Kandinsky 5.0 Video Pro - 19B parameter models that achieves superior video generation quality. We provide a comprehensive review of the data curation lifecycle - including collection, processing, filtering and clustering - for the multi-stage training pipeline that involves extensive pre-training and incorporates quality-enhancement techniques such as self-supervised fine-tuning (SFT) and reinforcement learning (RL)-based post-training. We also present novel architectural, training, and inference optimizations that enable Kandinsky 5.0 to achieve high generation speeds and state-of-the-art performance across various tasks, as demonstrated by human evaluation. As a large-scale, publicly available generative framework, Kandinsky 5.0 leverages the full potential of its pre-training and subsequent stages to be adapted for a wide range of generative applications. We hope that this report, together with the release of our open-source code and training checkpoints, will substantially advance the development and accessibility of high-quality generative models for the research community.
🤗 Upvotes: 47 | cs.AI
Authors:
Alexis Audran-Reiss, Jordi Armengol Estapé, Karen Hambardzumyan, Amar Budhiraja, Martin Josifoski, Edan Toledo, Rishi Hazra, Despoina Magka, Michael Shvartsman, Parth Pathak, Justine T Kao, Lucia Cipolina-Kun, Bhavul Gauri, Jean-Christophe Gagnon-Audet, Emanuel Tewolde, Jenny Zhang, Taco Cohen, Yossi Adi, Tatiana Shavrina, Yoram Bachrach
Title:
What Does It Take to Be a Good AI Research Agent? Studying the Role of Ideation Diversity
Arxiv:
http://arxiv.org/abs/2511.15593v1
Abstract:
AI research agents offer the promise to accelerate scientific progress by automating the design, implementation, and training of machine learning models. However, the field is still in its infancy, and the key factors driving the success or failure of agent trajectories are not fully understood. We examine the role that ideation diversity plays in agent performance. First, we analyse agent trajectories on MLE-bench, a well-known benchmark to evaluate AI research agents, across different models and agent scaffolds. Our analysis reveals that different models and agent scaffolds yield varying degrees of ideation diversity, and that higher-performing agents tend to have increased ideation diversity. Further, we run a controlled experiment where we modify the degree of ideation diversity, demonstrating that higher ideation diversity results in stronger performance. Finally, we strengthen our results by examining additional evaluation metrics beyond the standard medal-based scoring of MLE-bench, showing that our findings still hold across other agent performance metrics.
🤗 Upvotes: 31 | cs.CV, cs.AI, cs.CL, cs.LG
Authors:
Yicheng He, Chengsong Huang, Zongxia Li, Jiaxin Huang, Yonghui Yang
Title:
VisPlay: Self-Evolving Vision-Language Models from Images
Arxiv:
http://arxiv.org/abs/2511.15661v2
Abstract:
Reinforcement learning (RL) provides a principled framework for improving Vision-Language Models (VLMs) on complex reasoning tasks. However, existing RL approaches often rely on human-annotated labels or task-specific heuristics to define verifiable rewards, both of which are costly and difficult to scale. We introduce VisPlay, a self-evolving RL framework that enables VLMs to autonomously improve their reasoning abilities using large amounts of unlabeled image data. Starting from a single base VLM, VisPlay assigns the model into two interacting roles: an Image-Conditioned Questioner that formulates challenging yet answerable visual questions, and a Multimodal Reasoner that generates silver responses. These roles are jointly trained with Group Relative Policy Optimization (GRPO), which incorporates diversity and difficulty rewards to balance the complexity of generated questions with the quality of the silver answers. VisPlay scales efficiently across two model families. When trained on Qwen2.5-VL and MiMo-VL, VisPlay achieves consistent improvements in visual reasoning, compositional generalization, and hallucination reduction across eight benchmarks, including MM-Vet and MMMU, demonstrating a scalable path toward self-evolving multimodal intelligence. The project page is available at https://bruno686.github.io/VisPlay/
🤗 Upvotes: 23 | cs.CV
Authors:
Geon Choi, Hangyul Yoon, Hyunju Shin, Hyunki Park, Sang Hoon Seo, Eunho Yang, Edward Choi
Title:
Instruction-Guided Lesion Segmentation for Chest X-rays with Automatically Generated Large-Scale Dataset
Arxiv:
http://arxiv.org/abs/2511.15186v1
Abstract:
The applicability of current lesion segmentation models for chest X-rays (CXRs) has been limited both by a small number of target labels and the reliance on long, detailed expert-level text inputs, creating a barrier to practical use. To address these limitations, we introduce a new paradigm: instruction-guided lesion segmentation (ILS), which is designed to segment diverse lesion types based on simple, user-friendly instructions. Under this paradigm, we construct MIMIC-ILS, the first large-scale instruction-answer dataset for CXR lesion segmentation, using our fully automated multimodal pipeline that generates annotations from chest X-ray images and their corresponding reports. MIMIC-ILS contains 1.1M instruction-answer pairs derived from 192K images and 91K unique segmentation masks, covering seven major lesion types. To empirically demonstrate its utility, we introduce ROSALIA, a vision-language model fine-tuned on MIMIC-ILS. ROSALIA can segment diverse lesions and provide textual explanations in response to user instructions. The model achieves high segmentation and textual accuracy in our newly proposed task, highlighting the effectiveness of our pipeline and the value of MIMIC-ILS as a foundational resource for pixel-level CXR lesion grounding.
🤗 Upvotes: 70 | cs.CV, cs.AI, cs.LG
Authors:
Yifan Jiang, Yueying Wang, Rui Zhao, Toufiq Parag, Zhimin Chen, Zhenyu Liao, Jayakrishnan Unnikrishnan
Title:
VIDEOP2R: Video Understanding from Perception to Reasoning
Arxiv:
http://arxiv.org/abs/2511.11113v1
Abstract:
Reinforcement fine-tuning (RFT), a two-stage framework consisting of supervised fine-tuning (SFT) and reinforcement learning (RL) has shown promising results on improving reasoning ability of large language models (LLMs). Yet extending RFT to large video language models (LVLMs) remains challenging. We propose VideoP2R, a novel process-aware video RFT framework that enhances video reasoning by modeling perception and reasoning as distinct processes. In the SFT stage, we develop a three-step pipeline to generate VideoP2R-CoT-162K, a high-quality, process-aware chain-of-thought (CoT) dataset for perception and reasoning. In the RL stage, we introduce a novel process-aware group relative policy optimization (PA-GRPO) algorithm that supplies separate rewards for perception and reasoning. Extensive experiments show that VideoP2R achieves state-of-the-art (SotA) performance on six out of seven video reasoning and understanding benchmarks. Ablation studies further confirm the effectiveness of our process-aware modeling and PA-GRPO and demonstrate that model's perception output is information-sufficient for downstream reasoning.
🤗 Upvotes: 66 | cs.CL, cs.AI, cs.LG, cs.PF
Authors:
Tianyu Fu, Yichen You, Zekai Chen, Guohao Dai, Huazhong Yang, Yu Wang
Title:
Think-at-Hard: Selective Latent Iterations to Improve Reasoning Language Models
Arxiv:
http://arxiv.org/abs/2511.08577v1
Abstract:
Improving reasoning capabilities of Large Language Models (LLMs), especially under parameter constraints, is crucial for real-world applications. Prior work proposes recurrent transformers, which allocate a fixed number of extra iterations per token to improve generation quality. After the first, standard forward pass, instead of verbalization, last-layer hidden states are fed back as inputs for additional iterations to refine token predictions. Yet we identify a latent overthinking phenomenon: easy token predictions that are already correct after the first pass are sometimes revised into errors in additional iterations. To address this, we propose Think-at-Hard (TaH), a dynamic latent thinking method that iterates deeper only at hard tokens. It employs a lightweight neural decider to trigger latent iterations only at tokens that are likely incorrect after the standard forward pass. During latent iterations, Low-Rank Adaptation (LoRA) modules shift the LLM objective from general next-token prediction to focused hard-token refinement. We further introduce a duo-causal attention mechanism that extends attention from the token sequence dimension to an additional iteration depth dimension. This enables cross-iteration information flow while maintaining full sequential parallelism. Experiments show that TaH boosts LLM reasoning performance across five challenging benchmarks while maintaining the same parameter count. Compared with baselines that iterate twice for all output tokens, TaH delivers 8.1-11.3% accuracy gains while exempting 94% of tokens from the second iteration. Against strong single-iteration Qwen3 models finetuned with the same data, it also delivers 4.0-5.0% accuracy gains. When allowing less than 3% additional parameters from LoRA and the iteration decider, the gains increase to 8.5-12.6% and 5.3-5.4%, respectively. Our code is available at https://github.com/thu-nics/TaH.
🤗 Upvotes: 58 | cs.CL, cs.AI, cs.LG
Authors:
Mohammad Zbib, Hasan Abed Al Kader Hammoud, Sina Mukalled, Nadine Rizk, Fatima Karnib, Issam Lakkis, Ammar Mohanna, Bernard Ghanem
Title:
AraLingBench A Human-Annotated Benchmark for Evaluating Arabic Linguistic Capabilities of Large Language Models
Arxiv:
http://arxiv.org/abs/2511.14295v1
Abstract:
We present AraLingBench: a fully human annotated benchmark for evaluating the Arabic linguistic competence of large language models (LLMs). The benchmark spans five core categories: grammar, morphology, spelling, reading comprehension, and syntax, through 150 expert-designed multiple choice questions that directly assess structural language understanding. Evaluating 35 Arabic and bilingual LLMs reveals that current models demonstrate strong surface level proficiency but struggle with deeper grammatical and syntactic reasoning. AraLingBench highlights a persistent gap between high scores on knowledge-based benchmarks and true linguistic mastery, showing that many models succeed through memorization or pattern recognition rather than authentic comprehension. By isolating and measuring fundamental linguistic skills, AraLingBench provides a diagnostic framework for developing Arabic LLMs. The full evaluation code is publicly available on GitHub.
🤗 Upvotes: 41 | cs.CV, cs.AI
Authors:
Huijie Liu, Shuhao Cui, Haoxiang Cao, Shuai Ma, Kai Wu, Guoliang Kang
Title:
A Style is Worth One Code: Unlocking Code-to-Style Image Generation with Discrete Style Space
Arxiv:
http://arxiv.org/abs/2511.10555v4
Abstract:
Innovative visual stylization is a cornerstone of artistic creation, yet generating novel and consistent visual styles remains a significant challenge. Existing generative approaches typically rely on lengthy textual prompts, reference images, or parameter-efficient fine-tuning to guide style-aware image generation, but often struggle with style consistency, limited creativity, and complex style representations. In this paper, we affirm that a style is worth one numerical code by introducing the novel task, code-to-style image generation, which produces images with novel, consistent visual styles conditioned solely on a numerical style code. To date, this field has only been primarily explored by the industry (e.g., Midjourney), with no open-source research from the academic community. To fill this gap, we propose CoTyle, the first open-source method for this task. Specifically, we first train a discrete style codebook from a collection of images to extract style embeddings. These embeddings serve as conditions for a text-to-image diffusion model (T2I-DM) to generate stylistic images. Subsequently, we train an autoregressive style generator on the discrete style embeddings to model their distribution, allowing the synthesis of novel style embeddings. During inference, a numerical style code is mapped to a unique style embedding by the style generator, and this embedding guides the T2I-DM to generate images in the corresponding style. Unlike existing methods, our method offers unparalleled simplicity and diversity, unlocking a vast space of reproducible styles from minimal input. Extensive experiments validate that CoTyle effectively turns a numerical code into a style controller, demonstrating a style is worth one code.
🤗 Upvotes: 32 | cs.CV
Authors:
Xinxin Liu, Zhaopan Xu, Kai Wang, Yong Jae Lee, Yuzhang Shang
Title:
Can World Simulators Reason? Gen-ViRe: A Generative Visual Reasoning Benchmark
Arxiv:
http://arxiv.org/abs/2511.13853v1
Abstract:
While Chain-of-Thought (CoT) prompting enables sophisticated symbolic reasoning in LLMs, it remains confined to discrete text and cannot simulate the continuous, physics-governed dynamics of the real world. Recent video generation models have emerged as potential world simulators through Chain-of-Frames (CoF) reasoning -- materializing thought as frame-by-frame visual sequences, with each frame representing a physically-grounded reasoning step. Despite compelling demonstrations, a challenge persists: existing benchmarks, focusing on fidelity or alignment, do not assess CoF reasoning and thus cannot measure core cognitive abilities in multi-step planning, algorithmic logic, or abstract pattern extrapolation. This evaluation void prevents systematic understanding of model capabilities and principled guidance for improvement. We introduce Gen-ViRe (Generative Visual Reasoning Benchmark), a framework grounded in cognitive science and real-world AI applications, which decomposes CoF reasoning into six cognitive dimensions -- from perceptual logic to abstract planning -- and 24 subtasks. Through multi-source data curation, minimal prompting protocols, and hybrid VLM-assisted evaluation with detailed criteria, Gen-ViRe delivers the first quantitative assessment of video models as reasoners. Our experiments on SOTA systems reveal substantial discrepancies between impressive visual quality and actual reasoning depth, establishing baselines and diagnostic tools to advance genuine world simulators.
🤗 Upvotes: 24 | cs.CV
Authors:
Huiyi Chen, Jiawei Peng, Dehai Min, Changchang Sun, Kaijie Chen, Yan Yan, Xu Yang, Lu Cheng
Title:
MVI-Bench: A Comprehensive Benchmark for Evaluating Robustness to Misleading Visual Inputs in LVLMs
Arxiv:
http://arxiv.org/abs/2511.14159v1
Abstract:
Evaluating the robustness of Large Vision-Language Models (LVLMs) is essential for their continued development and responsible deployment in real-world applications. However, existing robustness benchmarks typically focus on hallucination or misleading textual inputs, while largely overlooking the equally critical challenge posed by misleading visual inputs in assessing visual understanding. To fill this important gap, we introduce MVI-Bench, the first comprehensive benchmark specially designed for evaluating how Misleading Visual Inputs undermine the robustness of LVLMs. Grounded in fundamental visual primitives, the design of MVI-Bench centers on three hierarchical levels of misleading visual inputs: Visual Concept, Visual Attribute, and Visual Relationship. Using this taxonomy, we curate six representative categories and compile 1,248 expertly annotated VQA instances. To facilitate fine-grained robustness evaluation, we further introduce MVI-Sensitivity, a novel metric that characterizes LVLM robustness at a granular level. Empirical results across 18 state-of-the-art LVLMs uncover pronounced vulnerabilities to misleading visual inputs, and our in-depth analyses on MVI-Bench provide actionable insights that can guide the development of more reliable and robust LVLMs. The benchmark and codebase can be accessed at https://github.com/chenyil6/MVI-Bench.
🤗 Upvotes: 22 | cs.CV
Authors:
Jiaze Li, Hao Yin, Wenhui Tan, Jingyang Chen, Boshen Xu, Yuxun Qu, Yijing Chen, Jianzhong Ju, Zhenbo Luo, Jian Luan
Title:
REVISOR: Beyond Textual Reflection, Towards Multimodal Introspective Reasoning in Long-Form Video Understanding
Arxiv:
http://arxiv.org/abs/2511.13026v1
Abstract:
Self-reflection mechanisms that rely on purely text-based rethinking processes perform well in most multimodal tasks. However, when directly applied to long-form video understanding scenarios, they exhibit clear limitations. The fundamental reasons for this lie in two points: (1)long-form video understanding involves richer and more dynamic visual input, meaning rethinking only the text information is insufficient and necessitates a further rethinking process specifically targeting visual information; (2) purely text-based reflection mechanisms lack cross-modal interaction capabilities, preventing them from fully integrating visual information during reflection. Motivated by these insights, we propose REVISOR (REflective VIsual Segment Oriented Reasoning), a novel framework for tool-augmented multimodal reflection. REVISOR enables MLLMs to collaboratively construct introspective reflection processes across textual and visual modalities, significantly enhancing their reasoning capability for long-form video understanding. To ensure that REVISOR can learn to accurately review video segments highly relevant to the question during reinforcement learning, we designed the Dual Attribution Decoupled Reward (DADR) mechanism. Integrated into the GRPO training strategy, this mechanism enforces causal alignment between the model's reasoning and the selected video evidence. Notably, the REVISOR framework significantly enhances long-form video understanding capability of MLLMs without requiring supplementary supervised fine-tuning or external models, achieving impressive results on four benchmarks including VideoMME, LongVideoBench, MLVU, and LVBench.
🤗 Upvotes: 87 | cs.CL, cs.AI, cs.CV
Authors:
Yunxin Li, Xinyu Chen, Shenyuan Jiang, Haoyuan Shi, Zhenyu Liu, Xuanyu Zhang, Nanhao Deng, Zhenran Xu, Yicheng Ma, Meishan Zhang, Baotian Hu, Min Zhang
Title:
Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data
Arxiv:
http://arxiv.org/abs/2511.12609v1
Abstract:
We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics.
🤗 Upvotes: 107 | cs.LG, cs.AI, cs.CL
Authors:
Jiacheng Chen, Qianjia Cheng, Fangchen Yu, Haiyuan Wan, Yuchen Zhang, Shenghe Zheng, Junchi Yao, Qingyang Zhang, Haonan He, Yun Luo, Yufeng Zhao, Futing Wang, Li Sheng, Chengxing Xie, Yuxin Zuo, Yizhuo Li, Wenxauan Zeng, Yulun Wu, Rui Huang, Dongzhan Zhou, Kai Chen, Yu Qiao, Lei Bai, Yu Cheng, Ning Ding, Bowen Zhou, Peng Ye, Ganqu Cui
Title:
P1: Mastering Physics Olympiads with Reinforcement Learning
Arxiv:
http://arxiv.org/abs/2511.13612v1
Abstract:
Recent progress in large language models (LLMs) has moved the frontier from puzzle-solving to science-grade reasoning-the kind needed to tackle problems whose answers must stand against nature, not merely fit a rubric. Physics is the sharpest test of this shift, which binds symbols to reality in a fundamental way, serving as the cornerstone of most modern technologies. In this work, we manage to advance physics research by developing large language models with exceptional physics reasoning capabilities, especially excel at solving Olympiad-level physics problems. We introduce P1, a family of open-source physics reasoning models trained entirely through reinforcement learning (RL). Among them, P1-235B-A22B is the first open-source model with Gold-medal performance at the latest International Physics Olympiad (IPhO 2025), and wins 12 gold medals out of 13 international/regional physics competitions in 2024/2025. P1-30B-A3B also surpasses almost all other open-source models on IPhO 2025, getting a silver medal. Further equipped with an agentic framework PhysicsMinions, P1-235B-A22B+PhysicsMinions achieves overall No.1 on IPhO 2025, and obtains the highest average score over the 13 physics competitions. Besides physics, P1 models also present great performance on other reasoning tasks like math and coding, showing the great generalibility of P1 series.
🤗 Upvotes: 104 | cs.CL
Authors:
MiroMind Team, Song Bai, Lidong Bing, Carson Chen, Guanzheng Chen, Yuntao Chen, Zhe Chen, Ziyi Chen, Jifeng Dai, Xuan Dong, Wenhan Dou, Yue Deng, Yunjie Fu, Junqi Ge, Chenxia Han, Tammy Huang, Zhenhang Huang, Jerry Jiao, Shilei Jiang, Tianyu Jiao, Xiaoqi Jian, Lei Lei, Ruilin Li, Ryan Luo, Tiantong Li, Xiang Lin, Ziyuan Liu, Zhiqi Li, Jie Ni, Qiang Ren, Pax Sun, Shiqian Su, Chenxin Tao, Bin Wang, Hellen Wang, Haonan Wang, James Wang, Jin Wang, Jojo Wang, Letian Wang, Shizun Wang, Weizhi Wang, Zixuan Wang, Jinfan Xu, Sen Xing, Chenyu Yang, Hai Ye, Jiaheng Yu, Yue Yu, Muyan Zhong, Tianchen Zhao, Xizhou Zhu, Yanpeng Zhou, Yifan Zhang, Zhi Zhu
Title:
MiroThinker: Pushing the Performance Boundaries of Open-Source Research Agents via Model, Context, and Interactive Scaling
Arxiv:
http://arxiv.org/abs/2511.11793v2
Abstract:
We present MiroThinker v1.0, an open-source research agent designed to advance tool-augmented reasoning and information-seeking capabilities. Unlike previous agents that only scale up model size or context length, MiroThinker explores interaction scaling at the model level, systematically training the model to handle deeper and more frequent agent-environment interactions as a third dimension of performance improvement. Unlike LLM test-time scaling, which operates in isolation and risks degradation with longer reasoning chains, interactive scaling leverages environment feedback and external information acquisition to correct errors and refine trajectories. Through reinforcement learning, the model achieves efficient interaction scaling: with a 256K context window, it can perform up to 600 tool calls per task, enabling sustained multi-turn reasoning and complex real-world research workflows. Across four representative benchmarks-GAIA, HLE, BrowseComp, and BrowseComp-ZH-the 72B variant achieves up to 81.9%, 37.7%, 47.1%, and 55.6% accuracy respectively, surpassing previous open-source agents and approaching commercial counterparts such as GPT-5-high. Our analysis reveals that MiroThinker benefits from interactive scaling consistently: research performance improves predictably as the model engages in deeper and more frequent agent-environment interactions, demonstrating that interaction depth exhibits scaling behaviors analogous to model size and context length. These findings establish interaction scaling as a third critical dimension for building next-generation open research agents, complementing model capacity and context windows.
🤗 Upvotes: 75 | cs.CL
Authors:
Shalini Maiti, Amar Budhiraja, Bhavul Gauri, Gaurav Chaurasia, Anton Protopopov, Alexis Audran-Reiss, Michael Slater, Despoina Magka, Tatiana Shavrina, Roberta Raileanu, Yoram Bachrach
Title:
Souper-Model: How Simple Arithmetic Unlocks State-of-the-Art LLM Performance
Arxiv:
http://arxiv.org/abs/2511.13254v1
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse domains, but their training remains resource- and time-intensive, requiring massive compute power and careful orchestration of training procedures. Model souping-the practice of averaging weights from multiple models of the same architecture-has emerged as a promising pre- and post-training technique that can enhance performance without expensive retraining. In this paper, we introduce Soup Of Category Experts (SoCE), a principled approach for model souping that utilizes benchmark composition to identify optimal model candidates and applies non-uniform weighted averaging to maximize performance. Contrary to previous uniform-averaging approaches, our method leverages the observation that benchmark categories often exhibit low inter-correlations in model performance. SoCE identifies "expert" models for each weakly-correlated category cluster and combines them using optimized weighted averaging rather than uniform weights. We demonstrate that the proposed method improves performance and robustness across multiple domains, including multilingual capabilities, tool calling, and math and achieves state-of-the-art results on the Berkeley Function Calling Leaderboard.
🤗 Upvotes: 63 | cs.CV
Authors:
Chunshi Wang, Junliang Ye, Yunhan Yang, Yang Li, Zizhuo Lin, Jun Zhu, Zhuo Chen, Yawei Luo, Chunchao Guo
Title:
Part-X-MLLM: Part-aware 3D Multimodal Large Language Model
Arxiv:
http://arxiv.org/abs/2511.13647v1
Abstract:
We introduce Part-X-MLLM, a native 3D multimodal large language model that unifies diverse 3D tasks by formulating them as programs in a structured, executable grammar. Given an RGB point cloud and a natural language prompt, our model autoregressively generates a single, coherent token sequence encoding part-level bounding boxes, semantic descriptions, and edit commands. This structured output serves as a versatile interface to drive downstream geometry-aware modules for part-based generation and editing. By decoupling the symbolic planning from the geometric synthesis, our approach allows any compatible geometry engine to be controlled through a single, language-native frontend. We pre-train a dual-encoder architecture to disentangle structure from semantics and instruction-tune the model on a large-scale, part-centric dataset. Experiments demonstrate that our model excels at producing high-quality, structured plans, enabling state-of-the-art performance in grounded Q\&A, compositional generation, and localized editing through one unified interface. Project page: https://chunshi.wang/Part-X-MLLM/
🤗 Upvotes: 47 | cs.CV
Authors:
Ye Tian, Ling Yang, Jiongfan Yang, Anran Wang, Yu Tian, Jiani Zheng, Haochen Wang, Zhiyang Teng, Zhuochen Wang, Yinjie Wang, Yunhai Tong, Mengdi Wang, Xiangtai Li
Title:
MMaDA-Parallel: Multimodal Large Diffusion Language Models for Thinking-Aware Editing and Generation
Arxiv:
http://arxiv.org/abs/2511.09611v3
Abstract:
While thinking-aware generation aims to improve performance on complex tasks, we identify a critical failure mode where existing sequential, autoregressive approaches can paradoxically degrade performance due to error propagation. To systematically analyze this issue, we propose ParaBench, a new benchmark designed to evaluate both text and image output modalities. Our analysis using ParaBench reveals that this performance degradation is strongly correlated with poor alignment between the generated reasoning and the final image. To resolve this, we propose a parallel multimodal diffusion framework, MMaDA-Parallel, that enables continuous, bidirectional interaction between text and images throughout the entire denoising trajectory. MMaDA-Parallel is trained with supervised finetuning and then further optimized by Parallel Reinforcement Learning (ParaRL), a novel strategy that applies semantic rewards along the trajectory to enforce cross-modal consistency. Experiments validate that our model significantly improves cross-modal alignment and semantic consistency, achieving a 6.9\% improvement in Output Alignment on ParaBench compared to the state-of-the-art model, Bagel, establishing a more robust paradigm for thinking-aware image synthesis. Our code is open-sourced at https://github.com/tyfeld/MMaDA-Parallel
🤗 Upvotes: 46 | cs.IR, cs.AI, cs.LG
Authors:
Duolin Sun, Meixiu Long, Dan Yang, Yihan Jiao, Zhehao Tan, Jie Feng, Junjie Wang, Yue Shen, Peng Wei, Jian Wang, Jinjie Gu
Title:
GroupRank: A Groupwise Reranking Paradigm Driven by Reinforcement Learning
Arxiv:
http://arxiv.org/abs/2511.11653v1
Abstract:
Large Language Models have shown strong potential as rerankers to enhance the overall performance of RAG systems. However, existing reranking paradigms are constrained by a core theoretical and practical dilemma: Pointwise methods, while simple and highly flexible, evaluate documents independently, making them prone to the Ranking Myopia Trap, overlooking the relative importance between documents. In contrast, Listwise methods can perceive the global ranking context, but suffer from inherent List Rigidity, leading to severe scalability and flexibility issues when handling large candidate sets. To address these challenges, we propose Groupwise, a novel reranking paradigm. In this approach, the query and a group of candidate documents are jointly fed into the model, which performs within-group comparisons to assign individual relevance scores to each document. This design retains the flexibility of Pointwise methods while enabling the comparative capability of Listwise methods. We further adopt GRPO for model training, equipped with a heterogeneous reward function that integrates ranking metrics with a distributional reward aimed at aligning score distributions across groups. To overcome the bottleneck caused by the scarcity of high quality labeled data, we further propose an innovative pipeline for synthesizing high quality retrieval and ranking data. The resulting data can be leveraged not only for training the reranker but also for training the retriever. Extensive experiments validate the effectiveness of our approach. On two reasoning intensive retrieval benchmarks, BRIGHT and R2MED.
🤗 Upvotes: 40 | cs.CV
Authors:
Harold Haodong Chen, Disen Lan, Wen-Jie Shu, Qingyang Liu, Zihan Wang, Sirui Chen, Wenkai Cheng, Kanghao Chen, Hongfei Zhang, Zixin Zhang, Rongjin Guo, Yu Cheng, Ying-Cong Chen
Title:
TiViBench: Benchmarking Think-in-Video Reasoning for Video Generative Models
Arxiv:
http://arxiv.org/abs/2511.13704v1
Abstract:
The rapid evolution of video generative models has shifted their focus from producing visually plausible outputs to tackling tasks requiring physical plausibility and logical consistency. However, despite recent breakthroughs such as Veo 3's chain-of-frames reasoning, it remains unclear whether these models can exhibit reasoning capabilities similar to large language models (LLMs). Existing benchmarks predominantly evaluate visual fidelity and temporal coherence, failing to capture higher-order reasoning abilities. To bridge this gap, we propose TiViBench, a hierarchical benchmark specifically designed to evaluate the reasoning capabilities of image-to-video (I2V) generation models. TiViBench systematically assesses reasoning across four dimensions: i) Structural Reasoning & Search, ii) Spatial & Visual Pattern Reasoning, iii) Symbolic & Logical Reasoning, and iv) Action Planning & Task Execution, spanning 24 diverse task scenarios across 3 difficulty levels. Through extensive evaluations, we show that commercial models (e.g., Sora 2, Veo 3.1) demonstrate stronger reasoning potential, while open-source models reveal untapped potential that remains hindered by limited training scale and data diversity. To further unlock this potential, we introduce VideoTPO, a simple yet effective test-time strategy inspired by preference optimization. By performing LLM self-analysis on generated candidates to identify strengths and weaknesses, VideoTPO significantly enhances reasoning performance without requiring additional training, data, or reward models. Together, TiViBench and VideoTPO pave the way for evaluating and advancing reasoning in video generation models, setting a foundation for future research in this emerging field.




cool