DiscoverDataFramed
DataFramed
Claim Ownership

DataFramed

Author: DataCamp

Subscribed: 2,544Played: 21,061
Share

Description

Data science is one of the fastest growing industries and has been called the ‘Sexiest job of the 21st Century’. But what exactly is data science? In this podcast, brought to you by DataCamp, Hugo Bowne-Anderson approaches the question by exploring what problems data science can solve rather than defining what data science is. From automated medical diagnosis and self-driving cars to recommendation systems and climate change, come on a journey with experts from industry and academia to explore the industry that will change the course of the 21st century.
59 Episodes
Reverse
#58 Critical Thinking in Data Science
This week, Hugo speaks with Debbie Berebichez about the importance of critical thinking in data science. Debbie is a physicist, TV host and data scientist and is currently the Chief Data Scientist at Metis in NY.In a world and a professional space plagued by buzz terms like AI, big data, deep learning, and neural networks, conversations around skill sets and less than productive programming language wars, what has happened to critical thinking in data science and data thinking in general? What type of critical thinking skills are even necessary as data science, AI and machine learning become even more present in all of our lives and how spread out do they need to be across organizations and society? Listen to find out!LINKS FROM THE SHOWDATAFRAMED GUEST SUGGESTIONSDataFramed Guest Suggestions (who do you want to hear on DataFramed?)FROM THE INTERVIEWDebbie on TwitterDebbie's WebsiteDebbie Berebichez- Media Reel (Video)Deborah Berebichez' Keynote at Grace Hopper Celebration 2017 (Video)Debbie Berebichez on Perseverance and Paying it Forward (Video)Things about the Future and the Future of Things (By Debbie Berebichez, Video)FROM THE SEGMENTSData Science tools for getting stuff done and giving it to the world (with Jared Lander ~21:55)Lander Analytics WebsiteDocker Websiteplumber WebsiteStatistical Distributions and their Stories (with Justin Bois ~39:30)Probability distributions and their stories (By Justin Bois)The History of Statistics (By Stephen M. Stigler)Original music and sounds by The Sticks.
#57 The Credibility Crisis in Data Science
This week, Hugo will be speaking with Skipper Seabold about the current and looming credibility crisis in data science. Skipper is Director of Data Science at Civis Analytics, a data science technology and solutions company, and also the creator of the statsmodels package for statistical modeling and computing in python. Skipper is also a data scientist with a beard bigger than Hugo's.They’re going to be talking about how data science is facing a credibility crisis that is manifesting itself in different ways in different industries, how and why expectations aren’t met and many stakeholders are disillusioned. You’ll see that if the crisis isn’t prevented, the data science labor market may cease to be a seller’s market and we’ll have big missed opportunities. But this isn’t an episode of Black Mirror so they’ll also discuss how to avoid the crisis, taking detours through the role of randomized control trials in data science, the rise of methods borrowed from econometrics and how to set realistic expectations around what data science can and can’t do.LINKS FROM THE SHOWDATAFRAMED GUEST SUGGESTIONSDataFramed Guest Suggestions (who do you want to hear on DataFramed?)FROM THE INTERVIEWSkipper on TwitterSkipper on GithubWhat's the Science in Data Science? (Video by Skipper Seabold)The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics (By Joshua D. Angrist & Jörn-Steffen Pischke, American Economic Association)Project Management for the Unofficial Project Manager: A FranklinCovey Title (By Kory Kogon)Courtyard by Marriott Designing a Hotel Facility with Consumer-Based Marketing Models (Jerry Wind et al., The Institute of Management Sciences)Statsmodels's DocumentationFROM THE SEGMENTSGuidelines for A/B Testing (with Emily Robinson ~15:48 & ~35:20)Guidelines for A/B Testing (By Emily Robinson)10 Guidelines for A/B Testing Slides (By Emily Robinson)Original music and sounds by The Sticks.
#56 Data Science at AT&T Labs Research
This week, Hugo speaks with Noemi Derzsy, a Senior Inventive Scientist at AT&T Labs within the Data Science and AI Research organization, where she does lots of science with lots of data.They’ll be talking about her work at AT&T Labs Research, the mission of which is to look beyond today’s technology solutions to invent disruptive technologies that meet future needs. AT&T Labs works on a multitude of projects, from product development at AT&T, to how to combat bias and fairness issues in targeted advertising and creating drones for cell tower inspection research that leverages AI, ML and video analytics. They’ll be talking about some of the work Noemi does, from characterizing human mobility from cellular network data to characterizing their mobile network to analyze how its topology compares to other real social networks reported to understanding tv viewership, and how engaged people are in different shows. They’ll discuss what the future of data science looks like, whether it will even be around in 2029 and what types of skills would help you land a job in a place like AT&T Labs.LINKS FROM THE SHOWDATAFRAMED GUEST SUGGESTIONSDataFramed Guest Suggestions (who do you want to hear on DataFramed?)FROM THE INTERVIEWNoemi on TwitterNoemi's WebsiteHuman Mobility Characterization from Cellular Network Data (By Richard Becker et al., Communications of the ACM)AT&T Labs Research WebsiteNASA Datanauts WebsiteOpen NASA WebsiteFROM THE SEGMENTSGuidelines for A/B Testing (with Emily Robinson ~18:23 & ~36:38)Testing multiple statistical hypotheses resulted in spurious associations: a study of astrological signs and health (By Peter C. Austin et al., Journal of Clinical Epidemiology)From Infrastructure to Culture: A/B Testing Challenges in Large Scale Social Networks (By Ya Xu et al., LinkedIn Corp)Guidelines for A/B Testing (By Emily Robinson)10 Guidelines for A/B Testing Slides (By Emily Robinson)Original music and sounds by The Sticks.
#54 Women in Data Science
This week, Hugo speaks with Reshama Shaikh, about women in machine learning and data science, inclusivity and diversity more generally and how being intentional in what you do is essential. Reshama, a freelance data scientist and statistician, is also an organizer of the meetup groups Women in Machine Learning & Data Science (otherwise known  as WiMLDS) and PyLadies. She has organized WiMLDS for 4 years and is a Board Member. They’ll discuss her work at WiMLDS and what you can do to support and promote women and gender minorities in data science. They’ll also delve into why women are flourishing in the R community but lagging in Python and discuss more generally how NUMFOCUS thinks about diversity and inclusion, including their code of conduct. All this and more.LINKS FROM THE SHOWDATAFRAMED GUEST SUGGESTIONSDataFramed Guest Suggestions (who do you want to hear on DataFramed?)FROM THE INTERVIEWReshama’s BlogReshama on TwitterList of Relevant Conferences (and Code of Conduct info)NYC PyLadies meetupCode of Conduct for NeurIPS and Other Stem OrganizationsNumFOCUS Diversity & Inclusion in Scientific Computing (DISC)NumFOCUS DISCOVER Cookbook (for inclusive events)fastai deep learning notesWiMLDS (Women in Machine Learning and Data Science)NYC WiMLDS meetupTo start a WiMLDS chapter: email info@wimlds.org and more info at our starter kit.WiMLDS WebsiteGlobal List of WiMLDS Meetup ChaptersWiMLDS Paris: They run their meetups in English, so knowledge of French is not required.  FROM THE SEGMENTSDataCamp User Stories (with David Sudolsky ~17:27 & ~31:50)Boldr WebsiteOriginal music and sounds by The Sticks.

#54 Women in Data Science

2019-02-2500:47:171

#53 Data Science, Gambling and Bookmaking
This week, Hugo speaks with Marco Blume, Trading Director at Pinnacle Sports. Marco and Hugo will talk about the role of data science in large-scale bets and bookmaking, how Marco is training an army of data scientists and much more. At Pinnacle, Marco uses tight risk-management built on cutting-edge models to provide bets not only on sports but on questions such as who will be the next pope? Who will be the world hot dog eating champion, who will land on mars first and who will be on the iron throne at the end of game of thrones. They’ll discuss the relations between risk management and uncertainty, how great forecasters are necessarily good at updating their predictions in the light of new data and evidence, how you can model this using Bayesian inference and the future of biometric sensing in sports betting. And, as always, much, much more.LINKS FROM THE SHOWDATAFRAMED GUEST SUGGESTIONSDataFramed Guest Suggestions (who do you want to hear on DataFramed?)FROM THE INTERVIEWPinnacle WebsiteTraining an army of new data scientists (Presentation by Marco Blume)FROM THE SEGMENTSData Science Best Practices (with Ben Skrainka ~16:40)Python Debugging With Pdb (By Nathan Jennings)pdb Tutorial (Github)The Visual Python Debugger for Jupyter Notebooks You’ve Always Wanted (By David Taieb)Debugging with RStudio (By Jonathan McPherson)Basics of DebuggingStatistical Distributions and their Stories (with Justin Bois at ~36:00)Justin's Website at CaltechProbability distributions and their stories (By Justin Bois)Original music and sounds by The Sticks.
#51 Inclusivity and Data Science
This week Hugo speaks with Dr. Brandeis Marshall, about people of color and under-represented groups in data science. They’ll talk about the biggest barriers to entry for people of color, initiatives that currently exist and what we as a community can do to be as diverse and inclusive as possible.Brandeis is an Associate Professor of Computer Science at Spelman College. Her interdisciplinary research lies in the areas of information retrieval, data science, and social media. Other research includes the BlackTwitter Project, which blends data analytics, social impact and race as a lens to understanding cultural sentiments. Brandeis is involved in a number of projects, workshops, and organizations that support data literacy and understanding, share best data practices and broaden participation in data science.LINKS FROM THE SHOWDATAFRAMED GUEST SUGGESTIONSDataFramed Guest Suggestions (who do you want to hear on DataFramed?)FROM THE INTERVIEWBrandeis on TwitterThe BlackTwitter ProjectThe Impact of Live Tweeting on Social Movements (By Brandeis Marshall, Takeria Blunt, Tayloir Thompson)EvergreenLP: Using a social network as a learning platform (By Brandeis Marshall, Jaye Nias, Tayloir Thompson, Takeria Blunt)Journal of Computing Sciences in Colleges (By Brandeis Marshall)DSX (Data Science eXtension Faculty development and undergraduate instruction in data science) African American Women Computer Science PhDs500 Women ScientistsBlack in AIWomen in Machine LearningFROM THE SEGMENTSWhat Data Scientists Really Do (with Hugo Bowne-Anderson & Emily Robinson ~21:30 & ~41:40)What Data Scientists Really Do, According to 35 Data Scientists (Harvard Business Review article by Hugo Bowne-Anderson)What Data Scientists Really Do, According to 50 Data Scientists (Slides from a talk by Hugo Bowne-Anderson)Original music and sounds by The Sticks.
#50 Weapons of Math Destruction
In episode 50, our Season 1, 2018 finale of DataFramed, the DataCamp podcast, Hugo speaks with Cathy O’Neil, data scientist, investigative journalist, consultant, algorithmic auditor and author of the critically acclaimed book Weapons of Math Destruction. Cathy and Hugo discuss the ingredients that make up weapons of math destruction, which are algorithms and models that are important in society, secret and harmful, from models that decide whether you keep your job, a credit card or insurance to algorithms that decide how we’re policed, sentenced to prison or given parole? Cathy and Hugo discuss the current lack of fairness in artificial intelligence, how societal biases are perpetuated by algorithms and how both transparency and auditability of algorithms will be necessary for a fairer future. What does this mean in practice? Tune in to find out. As Cathy says, “Fairness is a statistical concept. It's a notion that we need to understand at an aggregate level.” And, moreover, “data science doesn't just predict the future. It causes the future.”LINKS FROM THE SHOWDATAFRAMED SURVEYDataFramed Survey (take it so that we can make an even better podcast for you)DATAFRAMED GUEST SUGGESTIONSDataFramed Guest Suggestions (who do you want to hear on Season 2?)FROM THE INTERVIEWCathy on TwitterCathy's Blog MathbabeWeapons of Math Destruction: How big data increases inequality and threatens democracy by Cathy O'NeilCathy's Opinion Column, Bloomberg Doing Data Science (By Cathy O'Neil and Rachel Schutt)Cathy O'Neil & Hanna Gunn's "Ethical Matrix" paper coming soon.FROM THE SEGMENTSData Science Best Practices (with Heather Nolis ~20:30)Using docker to deploy an R plumber API (By Jonathan Nolis and Heather Nolis)Enterprise Web Services with Neural Networks Using R and TensorFlow (By Jonathan Nolis and Heather Nolis)Data Science Best Practices (with Ben Skrainka ~39:35)The Clean Coder Blog (By Robert C. Martin)James Shore’s blog post on Red, Green, RefactorJeff Knupp’s Python Unittesting tutorial (general unit tests in Python)John Myles White’s Intro to Unit Testing in ROriginal music and sounds by The Sticks.
#49 Data Science Tool Building
Hugo speaks with Wes McKinney, creator of the pandas project for data analysis tools in Python and author of Python for Data Analysis, among many other things. Wes and Hugo talk about data science tool building, what it took to get pandas off the ground and how he approaches building “human interfaces to data” to make individuals more productive. On top of this, they’ll talk about the future of data science tooling, including the Apache arrow project and how it can facilitate this future, the importance of DataFrames that are portable between programming languages and building tools that facilitate data analysis work in the big data limit. Pandas initially arose from Wes noticing that people were nowhere near as productive as they could be due to lack of tooling & the projects he’s working on today, which they’ll discuss, arise from the same place and present a bold vision for the future.LINKS FROM THE SHOWDATAFRAMED SURVEYDataFramed Survey (take it so that we can make an even better podcast for you)DATAFRAMED GUEST SUGGESTIONSDataFramed Guest Suggestions (who do you want to hear on Season 2?)FROM THE INTERVIEWWes on TwitterRoads and Bridges: The Unseen Labor Behind Our Digital Infrastructure by Nadia Eghbalpandas, an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.Ursa LabsFROM THE SEGMENTSData Science Best Practices (with Ben Skrainka ~17:10)To Explain or To Predict? (By Galit Shmueli)Statistical Modeling: The Two Cultures (By Leo Breiman)The Book of Why (By Judea Pearl & Dana Mackenzie)Studies in Interpretability (with Peadar Coyle at ~39:00)Modelling Loss Curves in Insurance with RStan (By Mick Cooney)Lime: Explaining the predictions of any machine learning classifier Probabilistic Programming PrimerOriginal music and sounds by The Sticks.
loading
Comments (6)

Moncsi

Hi there, is it possible to get links to the data philanthropy organisations? I'm super curious. Thank you!

Mar 25th
Reply

Jokus Jodokus

The short section about the connection between data scientists and project managers resonated with me

Feb 26th
Reply

Anthony Rossi

400 million people do not have diabetic retinopathy, incorrect statistic.

Jan 23rd
Reply

Paolo Eusebi

Amazing episode! How many listeners worked with Stan in R? What are their impressions over other bayesian software?

Oct 9th
Reply

Rafael Anjos

The contents are very good. Thank you for your good job

Sep 18th
Reply

Anthony Giancursio

Ol

Jul 19th
Reply
loading
Download from Google Play
Download from App Store