Géométrie spectrale - Nalini Anantharaman

<p>La géométrie spectrale est le domaine des mathématiques qui vise à faire le lien entre la géométrie d'un objet et son spectre de vibration. Le domaine a connu une première naissance dans les années 1910, quand les précurseurs de la mécanique quantique ont cherché à calculer le spectre des atomes à partir de considérations géométriques sur le modèle planétaire. La question s'est ensuite muée en l'étude du spectre d'opérateurs de Schrödinger, en lien avec la géométrie symplectique dans l'espace des phases de la mécanique classique.</p><p></p><p>La seconde naissance du domaine remonte aux années 1960 avec le théorème de l'indice, qui donne des relations entre certains « indices topologiques » (par exemple la caractéristique d'Euler d'un espace topologique) et le bas du spectre d'un opérateur elliptique (comme l'opérateur de Laplace). Ce domaine connaît actuellement une activité intense du côté de la physique, avec la découverte du rôle de la notion d'« indice » dans la description des matériaux topologiques.</p><p></p><p>Parmi les grandes questions de la géométrie spectrale, citons :</p><p></p><p>Le chaos quantique : c'est l'étude du spectre d'un opérateur de Schrödinger, quand le système hamiltonien qui lui correspond en mécanique classique est chaotique ;</p><p>Les problèmes inverses : que peut-on deviner de la géométrie d'un objet à partir de la mesure de son spectre de vibration ?</p><p>Le lien entre spectre et topologie, via divers avatars du théorème de l'indice ;</p><p>Le spectre de systèmes désordonnés ou d'objets géométriques aléatoires ;</p><p>Le lien entre géométrie et contrôle des ondes : quels sont les meilleurs endroits où se placer pour « diriger » une onde ?</p><p>Le cours sera tourné vers les aspects mathématiques de ces questions, mais certaines années le séminaire sera l'occasion d'entendre des physiciens présenter leurs travaux en lien avec le cours.</p>

02 - Spectre des surfaces hyperboliques aléatoires : Formules d'intégration de Mirzakhani

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2024-202502 - Spectre des surfaces hyperboliques aléatoires : Modèles de surfaces hyperboliques aléatoires

11-20
01:53:51

01 - Spectre des surfaces hyperboliques aléatoires : Modèles de surfaces hyperboliques aléatoires

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2024-202501 - Spectre des surfaces hyperboliques aléatoires : Modèles de surfaces hyperboliques aléatoires

11-06
01:56:48

Séminaire - Spectres en géométrie hyperbolique : Du flot géodésique à l'équation des ondes sur une variété Anosov

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-2024Séminaire - Spectres en géométrie hyperbolique : Low-Temperature Quantum Bounds on Curved ManifoldsFrédéric FaureUniversité Grenoble AlpesRésuméLa correspondance semi-classique habituelle (appelée quantique-classique) montre que l'évolution à temps fixé de paquets d'ondes par une équation des ondes fait apparaitre le flot géodésique dans la limite des petites longueur d'onde λ → 0. Ce flot géodésique est déterminé par le symbole principal de l'opérateur d'onde. Ainsi des opérateurs différents de spectres différents peuvent avoir la même limite classique. La formule des traces de Duistermaat-Guillemin montre que le spectre de l'opérateur détermine l'ensemble des longueurs des géodésiques périodiques mais pas l'inverse. Nous souhaitons montrer le sens inverse : le flot géodésique lorsqu'il est Anosov, détermine une unique équation des ondes générée par un opérateur équivalent à √∆ à l'ordre principal et dont le spectre est caractérisé par les géodésiques périodiques, via une fonction zéta. Cette équation des ondes apparait dynamiquement de la façon suivante. Dans le cas simple d'une surface hyperbolique N (i.e. lisse, compacte de courbure −1), la moyenne sphérique au temps t ∈ R d'une fonction u0 : N → C est la fonction ut où en chaque point x ∈ N , la valeur ut (x) est la moyenne de u0 sur le cercle géodésique de centre x et de rayon |t|. Pour t → ∞, chaque cercle devient dense et ut converge exponentiellement vite vers la moyenne spatiale ⟨u0⟩ de u0. On s'intéresse aux fluctuations autour de cette moyenne en posant vt = e|t|/2 (ut − ⟨u0⟩). La surprise est que ces fluctuations sont solution de l'équation des ondes sur N. On montrera qu'un tel phénomène est plus général à toute variété Riemannienne Anosov donnant une équation des ondes émergente, générée par un opérateur qui est une sorte de "quantification dynamique" du flot classique. On présentera les idées et ingrédients qui permettent d'obtenir ces résultats et qui sont de l'analyse microlocale, des espaces de Sobolev anisotropes, des spectres de Ruelle et des spineurs symplectiques. Travail en collaboration avec Masato Tsujii, arxiv 2102.11196.

02-02
01:07:50

08 - Spectres de graphes et de surfaces : Trou spectral optimal des graphes réguliers aléatoires, d'après J. Friedman (II)

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-202408 - Spectres de graphes et de surfaces : Trou spectral optimal des graphes réguliers aléatoires, d'après J. Friedman (II)Dans ces deux derniers cours, nous nous intéressons à des modèles de graphes (q+1)-réguliers aléatoires à N sommets. Nous étudions le trou spectral de la matrice d'adjacence, dans la limite où N tend vers l'infini. Nous exposons un résultat dû à Joel Friedman, et plusieurs étapes de sa démonstration : avec une probabilité qui tend vers 1, le trou spectral est quasi-optimal, c'est-à-dire supérieur à (q+1)-2q^{1/2}-\epsilon.

02-02
01:29:20

Séminaire - Spectres en géométrie hyperbolique : Low-Temperature Quantum Bounds on Curved Manifolds

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-2024Séminaire - Spectres en géométrie hyperbolique : Low-Temperature Quantum Bounds on Curved ManifoldsSilvia PappalardiUniversité de CologneRésuméIn the past few years, there has been considerable activity around a set of quantum bounds on transport coefficients (viscosity, conductivity) and chaos (Lyapunov exponents), relevant at low temperatures. The interest comes from the fact that black-hole models seem to saturate all of them. However, the relation between the different bounds and physical properties of the systems saturating the is still a matter of ongoing research. In this talk, I will discuss how one can gain physical intuition by studying classical and quantum free dynamics on curved manifolds. Thanks to the curvature, such models display chaotic dynamics up to low temperatures, and – as I will show how – they violate the bounds in the classical limit. The talk aims to discuss three different ways in which quantum effects arise to enforce the bounds in practice. For instance, I will show how chaotic behavior is limited by the quantum effects of the curvature itself. As an illustrative example, I will consider the simple case of a free particle on a two-dimensional manifold, constructed by joining the surface of constant negative curvature – a paradigmatic model of quantum chaos – to a cylinder. The resulting phenomenology can be generalized to the case of several (constant) curvatures. The presence of a hierarchy of length scales enforces the bound to chaos up to zero temperature.

01-26
56:13

07 - Spectres de graphes et de surfaces : Trou spectral optimal des graphes réguliers aléatoires, d'après J. Friedman (I)

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-202407 - Spectres de graphes et de surfaces : Trou spectral optimal des graphes réguliers aléatoires, d'après J. Friedman (I)Dans ces deux derniers cours, nous nous intéressons à des modèles de graphes (q+1)-réguliers aléatoires à N sommets. Nous étudions le trou spectral de la matrice d'adjacence, dans la limite où N tend vers l'infini. Nous exposons un résultat dû à Joel Friedman, et plusieurs étapes de sa démonstration : avec une probabilité qui tend vers 1, le trou spectral est quasi-optimal, c'est-à-dire supérieur à (q+1)-2q^{1/2}-\epsilon.

01-26
01:17:50

Séminaire - Spectres en géométrie hyperbolique : Résonances de Ruelle pour le flot géodésique sur des variétés non compactes

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-2024Séminaire - Spectres en géométrie hyperbolique : Résonances de Ruelle pour le flot géodésique sur des variétés non compactesSébastien Gouëzel, Université Rennes 1RésuméLes résonances de Ruelle sont des caractéristiques d'un système dynamique qui décrivent les asymptotiques fines des corrélations en temps grand. Il est maintenant bien connu que cette notion est bien définie pour les systèmes uniformément hyperboliques lisses sur les variétés compactes. Dans cet exposé, je m'intéresserai au cas du flot géodésique sur des variétés non compactes. Dans une certaine classe de variétés (appelées SPR), j'expliquerai qu'on peut définir des résonances de Ruelle dans un demi-plan, dont l'abscisse est donnée par un exposant critique à l'infini.Travail avec Barbara Schapira et Samuel Tapie.

01-19
01:02:34

06 - Spectres de graphes et de surfaces : Valeur en 0 des séries de Poincaré des surfaces et des graphes

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-202406 - Spectres de graphes et de surfaces : Valeur en 0 des séries de Poincaré des surfaces et des graphesRécemment, Dang et Rivière ont démontré une identité remarquable, qui exprime la valeur en 0 des séries de Poincaré de n'importe quelle surface de courbure négative en fonction de la caractéristique d'Euler. Ainsi, une série de Dirichlet définie à partir des longueurs des géodésiques, possède une valeur en 0 qui dépend uniquement de la topologie de la surface. Dans ce cours, nous démontrons un théorème analogue pour les graphes. Nous reprenons la méthode de Dang et Rivière, mais le fait de travailler sur un espace discret demande de modifier significativement certaines étapes.

01-19
01:07:09

Séminaire - Spectres en géométrie hyperbolique : Poincaré Series and Convex Bodies on Flat Tori

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-2024Séminaire - Spectres en géométrie hyperbolique : Poincaré Series and Convex Bodies on Flat ToriNguyen Viet Dang, Institut de Mathématiques de JussieuRésuméI will start to motivate few recent results on Poincaré series from a naive personal viewpoint. Then I will report on joint work with Yannick Bonthonneau, Matthieu Léautaud, Gabriel Rivière where we consider Poincaré series on the torus which count orthogeodesics between convex bodies. When the convex are analytic, the Poincaré series has analytic extension through the imaginary axis as a multivalued holomorphic function with an infinite number of branching points. We determine explicitely the monodromy around these singular points.

01-12
53:36

06 - Spectres de graphes et de surfaces : Régularité des états résonants d'une surface hyperbolique compacte

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-202406 - Spectres de graphes et de surfaces : Spectre du laplacien et décroissance des corrélations du flot géodésique sur les surfaces hyperboliques (II)Nous terminerons le calcul des résonances de Ruelle d'une surface hyperbolique compacte, commencé au dernier cours en utilisant la théorie des représentations de PSL(2, R). Nous traiterons en détail le cas des séries principales. Nous calculerons les coefficients de Fourier des états résonants et en déduirons qu'ils appartiennent à des espaces de Sobolev négatifs. On fera ensuite une brève présentation de la théorie des espaces de Sobolev anisotropes, afin de comparer les résultats obtenus par les deux méthodes (théorie des représentations / espaces anisotropes).

01-12
01:16:13

Séminaire - Spectres en géométrie hyperbolique : Projecteurs spectraux sur les surfaces hyperboliques

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-2024Séminaire - Spectres en géométrie hyperbolique : Projecteurs spectraux sur les surfaces hyperboliquesJean-Philippe Anker, Université d'OrléansRésuméDans une collaboration en cours avec Pierre Germain et Tristan Léger, nous nous intéressons aux normes L2 - Lp des projecteurs spectraux dans de petites fenêtres spectrales sur les surface hyperboliques d'aire infinie. En l'absence de « cusps », nous obtenons des estimations quasi optimales et meilleures qu'en courbure non négative. Après un rappel historique du sujet, qui remonte au théorème de restriction de Stein-Tomas, nous donnerons un aperçu des méthodes utilisées pour parvenir à ce résultat.

12-22
55:51

05 - Spectres de graphes et de surfaces : Spectre du laplacien et décroissance des corrélations du flot géodésique sur les surfaces hyperboliques (II)

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-202405 - Spectres de graphes et de surfaces : Spectre du laplacien et décroissance des corrélations du flot géodésique sur les surfaces hyperboliques (II)

12-22
01:15:01

Séminaire - Spectres en géométrie hyperbolique : Determinants of Laplacians and Random Surfaces

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-2024Séminaire - Spectres en géométrie hyperbolique : Determinants of Laplacians and Random SurfacesFrédéric Naud, Sorbonne UniversitéRésuméIn this talk we will discuss the asymptotic behavior of determinants of Laplacians on random surfaces of large genus. We will motivate this problem by questions related to quantum field theory and topology of hyperbolic manifolds.

12-15
54:09

04 - Spectres de graphes et de surfaces : Spectre du laplacien et décroissance des corrélations du flot géodésique sur les surfaces hyperboliques (I)

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-202404 - Spectres de graphes et de surfaces : Spectre du laplacien et décroissance des corrélations du flot géodésique sur les surfaces hyperboliques (I)

12-15
01:20:41

Séminaire - Spectres en géométrie hyperbolique : Circuit QED Lattices: From Synthetic Quantum Systems to Spectral Graph Theory

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-2024Séminaire - Spectres en géométrie hyperbolique : Prescribing the Spectra of Cubic GraphsAlicia Kollár, University of MarylandRésuméAfter two decades of development, superconducting circuits have emerged as a rich platform for quantum computation and simulation. When combined with superconducting qubits, lattices of coplanar waveguide (CPW) resonators can be used to realize artificial photonic materials or photon-mediated spin models. Here I will highlight the special properties of this hardware implementation that lead to these lattices naturally being described as line graphs. Elucidating this connection required combining theoretical and computational methods from both physics pure mathematics, and has lead not only to a new understanding of the physics of these devices [1, 2], but also new results regarding spectral gaps of 3-regular graphs [3], and a framework for studying a new class of topologically-protected quantum error correcting codes [4].

12-08
01:06:44

03 - Spectres de graphes et de surfaces : Graphes réguliers : spectre du laplacien et décroissance des corrélations du flot géodesique (2)

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-202403 - Spectres de graphes et de surfaces : Graphes réguliers : spectre du laplacien et décroissance des corrélations du flot géodesique (2)RésuméAprès avoir défini le « flot géodésique » sur un graphe régulier, nous décrirons les corrélations temporelles de deux observables. La décroissance exponentielle des corrélations s'exprime explicitement grâce à la décomposition spectrale du laplacien. Il s'agit d'un cas particulier simple et explicite de ce que David Ruelle a appelé « développement en états résonants » pour un système dynamique chaotique. Cette correspondance entre fonctions propres du laplacien et états résonants du flot géodésique démontre aussi la « formule des traces », et la formule d'Ihara-Bass.

12-08
01:16:03

Séminaire - Spectres en géométrie hyperbolique : Prescribing the Spectra of Cubic Graphs

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-2024Séminaire - Spectres en géométrie hyperbolique : Prescribing the Spectra of Cubic GraphsPeter Sarnak, Princeton University / IAS PrincetonRésuméThe spectra of large locally uniform geometries have been studied widely and from different points of view. They include Ramanujan Graphs and Buildings, euclidean and hyperbolic spaces and more general locally symmetric spaces. We review some of these briefly highlighting rigidity features. We then focus on the simplest case of finite cubic graphs which prove to be surprisingly rich with structure and applications in combinatorics,physics and chemistry. As one imposes restrictions on these graphs, planarity, fullerenes, ... their spectra become rigid. Joint work with Alicia Kollar and Fan Wei.

12-01
01:04:01

02 - Spectres de graphes et de surfaces : Graphes réguliers : spectre du laplacien et décroissance des corrélations du flot géodésique (1)

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-202402 - Spectres de graphes et de surfaces : Graphes réguliers : spectre du laplacien et décroissance des corrélations du flot géodésique (1)RésuméAprès avoir défini le « flot géodésique » sur un graphe régulier, nous décrirons les corrélations temporelles de deux observables. La décroissance exponentielle des corrélations s'exprime explicitement grâce à la décomposition spectrale du laplacien. Il s'agit d'un cas particulier simple et explicite de ce que David Ruelle a appelé « développement en états résonants » pour un système dynamique chaotique. Cette correspondance entre fonctions propres du laplacien et états résonants du flot géodésique démontre aussi la « formule des traces », et la formule d'Ihara-Bass.

12-01
01:08:54

Séminaire - Spectres en géométrie hyperbolique : Curves, Surfaces and Intersection

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-2024Séminaire - Spectres en géométrie hyperbolique : Curves, Surfaces and IntersectionHugo Parlier, Université du LuxembourgRésuméUnderstanding curves on surfaces has become a primary tool for understanding their hyperbolic structures and associated moduli spaces. This talk will be on understanding curves through their intersection with other curves and themselves.For instance, through classical work of Dehn, simple closed curves can be described using intersection numbers with other simple curves. An underlying theme will be to figure out to what extent you can describe all curves in a similar fashion. More generally, curves are fabulous objects to experience the interplay between the topology and geometry of hyperbolic surfaces. Part of the talk will be based on joint work with Binbin Xu.

11-24
59:11

01 - Spectres de graphes et de surfaces

Nalini AnantharamanGéométrie spectraleCollège de FranceAnnée 2023-202401 - Spectres de graphes et de surfaces

11-24
01:11:39

Recommend Channels