DiscoverGround Truths
Ground Truths
Claim Ownership

Ground Truths

Author: Eric Topol

Subscribed: 36Played: 99
Share

Description

Facts, data, and analytics about biomedical matters.

erictopol.substack.com
48 Episodes
Reverse
Below is a brief video snippet from our conversation. Full videos of all Ground Truths podcasts can be seen on YouTube here. The current one is here. If you like the YouTube format, please subscribe! This one has embedded one of my favorite TikTok’s from Will. There are several links to others in the transcript. The audios are also available on Apple and Spotify.Transcript with links to both audio and videos, commencement addresses, NEJM article coverageEric Topol (00:06):Hi, it's Eric Topol from Ground Truths, and I've got an amazing couple with me today. It's Will Flanary and Kristin Flanary, the Glaucomfleckens. I've had the chance to get to know them a bit through Knock Knock, Hi! which is their podcast. And of course, everyone knows Dr. Glaucomflecken from his TikTok world and his other about 4 million followers on Instagram and Twitter and all these other social media, and YouTube. So welcome.Will Flanary (00:43):Thanks for having us.Kristin Flanary (00:44):Thank you. Happy to be here.By Way of BackgroundEric Topol (00:45):Yeah. Well, this is going to be fun because I'm going to go a quick background so we can go fast forward because we did an interview back in early 2022.Kristin Flanary (00:56):Yes.Eric Topol (00:57):And what you've been doing since then is rocking it. You're like a meteoric, right. And it was predictable, like rarefied talent and who couldn't love humor, medical humor, but by way of background, just for those who are not up to speed. I guess you got your start, Will, as a class clown when your mother was a teacher in the sixth grade.Will Flanary (01:22):Yep, yep. I misbehaved a little bit. It helped that I still made good grades, but I cut up a bit in class.Eric Topol (01:32):And then you were already in the comedy club circuits doing standup in Houston as an 18-year-old.Will Flanary (01:40):It was all amateur stuff, nothing, just dabble in it and trying to get better. I was always kind of naturally funny just with my friend group and everything. I loved making people laugh, but doing standups is a whole different ball game. And so, I started doing that around Houston as a high school senior and kept that going through college and a little bit into med school.Kristin Flanary (02:02):Houston was a good training ground, right? That where Harris Wittels was also coming up.Will Flanary (02:07):Yeah. A lot of famous comedians have come through Houston. Even going back to Bill Hicks back in the, was that the 80s, I think? Or 90s?Eric Topol (02:17):Well, and then of course, it was I think in 2020 when you launched Dr. Glaucomflecken, I think. Is that right?Will Flanary (02:28):That's when it really started to take off. I was on Twitter telling jokes back in 2016.Kristin Flanary (02:39):GomerBlog before that, that's actually where it was born.Will Flanary (02:41):I was doing satire writing. I basically do what I'm doing now, but in article form, trying to be The Onion of medicine. And then the pandemic hit, started doing video content and that's really with lockdown. That's when, because everybody was on social media, nobody had anything else to do. So it was right place, right time for me and branching out into video content.On to Medical School Commencement AddressesEric Topol (03:11):Alright, so that's the background of some incredible foundation for humor. But since we last got together, I'll link the Medicine and the Machine interview we did back then. What has been happening with you two is nothing short of incredible. I saw your graduation speeches, Will. Yale in 2022, I watched the UCSF in 2023 and then the University of Michigan in 2024. Maybe there's other ones I don't even know.Kristin Flanary (03:45):There’s a few others.Will Flanary (03:45):There's a few. But I feel like you've done, I'm sure your fair share of commencement addresses as well. It's kind of hard to come up with different ways to be inspirational to the next generation. So fortunately, we have together, we have some life experiences and learned a thing or two by doing all of this social media stuff and just the things we've been through that I guess I have enough things to say to entertain an interest.Eric Topol (04:18):Well, you're being humble as usual, but having watched those commencement addresses, they were the best medical commencement addresses I've ever seen. And even though you might have told us some of the same jokes, they were so great that it was all right. Yeah, and you know what is great about it is you've got these, not the students, they all love you of course, because they're probably addicted to when's your next video going to get posted.(04:44):But even the old professors, all the family members, it's great. But one of the things I wanted to get at. Well, I'll start with the graduation speeches, because you were such an inspiration, not just with humor, but your message. And this gets back to you as a couple and the tragedies you've been through. So you really, I think, got into this co-survivor story and maybe Kristin, since you are the co-survivor of two bouts of Will’s testicular cancer, and then the sudden cardiac death. I mean, people don't talk about this much, so maybe you could help enlighten us.Tragedies and Being a Co-SurvivorKristin Flanary (05:26):Yeah, it’s funny because the experience of being a co-survivor is nothing new. It’s as long as we've had human beings, we've had co-survivors. But the concept around it and giving it a name and a label, a framework to be able to think about it, that is what I think is new and what people haven't talked about before. So co-survivor is just this idea that when a medical trauma happens to a patient, the patient has their experience and if they survive it, they are a survivor and they have a survivor experience. And also, most people are closely attached to at least one other person, if not many. And those people are co-surviving the medical event along with the survivor. That event is happening in their lives as was happening to them too. If someone comes in with a patient to the hospital, that person, you can just assume by default that their lives are pretty intimately or profoundly intertwined or else why would that person be there? And so, thinking of it as there's the patient and then there's also a co-patient, that family members in the past have only been thought of as caregivers if they've been thought of at all. And that is certainly one aspect of the role, but it's important to remember that whatever it is that's happening to the patient is also affecting the family members' lives in a really deep and profound way.Eric Topol (07:04):That's really helpful. Now, the fact that you recognize that in your graduation speech, Will, I think is somewhat unique. And of course, some of the other things that you touched on like playing to your creativity and the human factors, I mean, these are so important messages.Will Flanary (07:23):Well, in the discussion about co-survivorship and because I talk about that whenever I do my keynotes and when I do the commencement addresses, but all credit goes to Kristin for really being the driving force of this idea for me and for many others because as a physician, we take care of patients. Our focus is always on the patient. And it really wasn't until this happened to me and my family and Kristin in particular that I started to understand exactly what she's talking about and this idea. And so, Kristin gets a lot of credit for just really bringing that term and that idea to the forefront.Eric Topol (08:09):Yeah, well, you saved his life. It's just not many have that bond. And then the other thing I just want to mention now, you've been recognized by the American Heart Association and a whole bunch of other organizations awarded because of your advocacy for CPR. And you even mentioned that I think in one of your commencement addresses.Will Flanary (08:31):Yeah, I tried to get the crowd to do CPR. Like team up, partner up, and it kind of fell flat. It wasn't quite the right time, I think, to try to do a mass class on CPR. So maybe next time.Eric Topol (08:47):Right. Well, so you had this foundation with the Glaucomflecken General Hospital and taking on 37 specialties and all these incredible people that became part of the family, if you will, of spoof on medicine and your alter ego and these videos that you would do. And sometimes you have three or four different alter egos in there playing out, but now you've branched into new things. So one which is an outgrowth of what we were just talking about. You've been on this country tour, Wife & Death.“Wife and Death,” A Nationwide TourKristin Flanary (09:28):Yes.Eric Topol (09:29):Wife and death. I mean, yeah, I guess we can make the connect of how you named it that, but what is it you've been selling out in cities all over the country, and by the way, I'm really upset you haven't come to San Diego, but tell us about wife and death.Will Flanary (09:44):Yeah. Well, we have this amazing story and all these medical challenges we've been through, and then developing the Glaucomflecken brand and universe, and we've done keynotes together for years, and then we thought, let's have more fun with it. Let's do keynotes. They're great. We can get our message out, but sometimes they're just a bit stuffy. It's an academic environment.Kristin Flanary (10:15):They're usually at seven in the morning also, so that's the downside.Will Flanary (10:21):So we thought, let's just put together our own live show. Let's put together something that we could just creatively, we can do whatever we want with it. I could dress up as characters, Kristin, who has these beautiful writing and monologues that she's put together around her experience and just to create something that people can come into a theater and just experience this wide range of emotions from just laughter to tears of all kinds, and just have them feel the story and enjoy this story. Fortunately, it has a happy ending beca
Above is a brief video snippet from our conversation. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Transcript with links to audio and external citationsEric Topol (00:06):Well, hello it's Eric Topol with Ground Truths, and I'm really delighted to welcome Dr. Rachael Bedard, who is a physician geriatrician in New York City, and is actually much more multidimensional, if you will. She's a writer. We're going to go over some of her recent writings. She's actually quite prolific. She writes in the New Yorker, New York Magazine, New York Times, New York Review of Books. If it has New York in front of it, she's probably writing there. She's a teacher. She works on human rights, civil rights, criminal justice in the prison system. She's just done so much that makes her truly unique. That's why I really wanted a chance to meet her and talk with her today. So welcome, Rachael.Rachael Bedard (00:52):Thank you, Dr. Topol. It's an honor to be here.Eric Topol (00:55):Well, please call me Eric and it's such a joy to have a chance to get acquainted with you as a person who is into so many different things and doing all of them so well. So maybe we'd start off with, because you're the first geriatrician we've had on this podcast.Practicing Geriatrics and Internal MedicineEric Topol (01:16):And it’s especially apropos now. I wanted maybe to talk about your practice, how you got into geriatrics, and then we'll talk about the piece you had earlier this summer on aging.Rachael Bedard (01:32):Sure. I went into medicine to do social justice work and I was always on a funny interdisciplinary track. I got into the Mount Sinai School of Medicine through what was then called the Humanities and Medicine program, which was an early acceptance program for people who were humanities focused undergrads, but wanted to go into medicine. So I always was doing a mix of politics and activist focused work, humanities and writing, that was always interested in being a doctor. And then I did my residency at the Cambridge Health Alliance, which is a social medicine program in Cambridge, Massachusetts, and my chief residency there.(02:23):I loved being an internist, but I especially loved taking care of complex illness and I especially loved taking care of complex illness in situations where the decision making, there was no sort of algorithmic decision-making, where you were doing incredibly sort of complex patient-centered shared decision making around how to come up with treatment plans, what the goals of care were. I liked taking care of patients where the whole family system was sort of part of the care team and part of the patient constellation. I loved running family meetings. I was incredibly lucky when I was senior resident and chief resident. I was very close with Andy Billings, who was one of the founders of palliative care and in the field, but also very much started a program at MGH and he had come to work at Cambridge Hospital in his sort of semi-retirement and we got close and he was a very influential figure for me. So all of those things conspired to make me want to go back to New York to go to the Sinai has an integrated geriatrics and palliative care fellowship where you do both fellowships simultaneously. So I came to do that and just really loved that work and loved that medicine so much. There was a second part to your question.Eric Topol (03:52):Is that where you practice geriatrics now?Rachael Bedard (03:55):No, now I have ever since finishing fellowship had very unusual practice settings for a geriatrician. So right out of fellowship, I went to work on Rikers Island and then New York City jail system, and I was the first jail based geriatrician in the country, which is a sort of uncomfortable distinction because people don't really like to think about there being a substantial geriatric population in jails. But there is, and I was incredibly lucky when I was finishing fellowship, there was a lot of energy around jail healthcare in New York City and I wrote the guy who was then the CMO and said, do you think you have an aging problem? And he said, I'm not sure, but if you want to come find out, we'll make you a job to come find out. And so, that was an incredible opportunity for someone right out of fellowship.(04:55):It meant stepping off the sort of academic track. But I went and worked in jail for six years and took care of older folks and people with serious illness in jail and then left Rikers in 2022. And now I work in a safety net clinic in Brooklyn that takes care of homeless people or people who have serious sort of housing instability. And that is attached to Woodhull Hospital, which is one of the public hospitals in New York City. And there I do a mix of regular internal medicine primary care, but I preferentially see the older folks who come through, which is a really interesting, painful, complicated patient population because I see a fair amount of cognitive impairment in folks who are living in the shelter system. And that's a really hard problem to address.Frailty, The Aged, and LongevityEric Topol (05:54):Well, there's a theme across your medical efforts. It seems to me that you look after the neglected folks, the prisoners, the old folks, the homeless people. I mean that's kind of you. It's pretty impressive. And there's not enough of people like you in the medical field. Now, no less do you do that, but of course you are a very impressive author, writer, and of many topics I want to get into with you, these are some recent essays you've written. The one that piqued my interest to start to understand who you were and kind of discover this body of work was the one that you wrote related to aging and President Biden. And that was in New York Times. And I do want to put in a quote because as you know very well, there's so much interest in longevity now.Eric Topol (06:51):Interrupting the aging process, and this one really stuck with me from that op-ed, “Time marches forward, bodies decline, and the growing expectation that we might all live in perfect health until our 100th birthdays reflects a culture that overprizes longevity to the point of delusion.” So maybe if you could tell us, that was a rich piece, you got into frailty, you related it to the issues that were surrounding President Biden who at that time had not withdrawn from the race. But what were you thinking and what are your thoughts about the ability to change the aging process?Rachael Bedard (07:36):I am very interested in, I mean, I'm incredibly interested in the science of it. And so, I guess I think that there are a few things.(07:49):One thing is that the framework that, the part that gives me pause the most is this framework that anything less than perfect health is not a life worth living. So if you're going to have a long life, life should not just be long and sort of healthy in relative terms to your age cohort, but healthy that when you're 80 you should feel like you have the health of a 45-year-old is my understanding of the culture of longevity science. And while I understand why that's aspirational and everybody worry about my body's decline, I think it's a really problematic thing to say that sick bodies are bodies that have disability or people who have cognitive difference are somehow leading lesser lives or lives that are not meaningful or not worth living. I think it's a very, very slippery slope. It puts you in a place where it sort of comes up against another trend or another emerging cultural trend, which is really thinking a lot about physician-assisted suicide and end of life choices.(09:04):And that in some ways that conversation can also be very focused on this idea that there's just no way that it's worth living if you're sick. And that's just not true, I think, and that's not been true for many, many, many of my patients, some of whom have lived with enormous disability and incredible burden of illness, people who are chronically seriously ill and are still leading lives that for them and for the people who love them are filled with meaning. So that's my concern about the longevity stuff. I'm interested in the science around the longevity stuff for sure. I'm interested in, I think we're living in this really interesting moment where there's so much happening across so many of the chronic disease fields where the things that I think have been leading to body decay over the last several decades for the majority of the population, we're sort of seeing a lot of breakthroughs in multiple fronts all at once. And that's really exciting. I mean, that's really exciting. And so, certainly if it's possible to make it to 100 in wonderful health, that's what I'd wish for all of us. But to hold it up as the standard that we have to achieve, I think is both unrealistic and a little myopic.Eric Topol (10:28):Yeah. Well, I certainly agreed with that and I think that that particular essay resonated so well and you really got into frailty and the idea about how it can be potentially prevented or markedly delayed. And I think before we move on to one of those breakthroughs that you were alluding to, any comments about the inevitability of frailty in people who are older, who at some point start to get the dwindles, if you will, what do you have to say about that?Rachael Bedard (11:11):Well, from a clinical standpoint, I guess the caveat versus that not everybody becomes frail and dwindles exactly. Some people are in really strong health up until sort of their final years of life or year of life and then something happens, they dwindle quickly and that's how they die. Or some people die of acute events, but the vast majority of us are going to become more frail in our final decades than we are in our middle decades. And that is the normal sort of pattern of wear and tear on the body. And it is an extraordinary framework, I think frailty because the idea of this sort
Superimposed on an impressive body of work on the blood-brain-barrier and immune system, Prof Akassoglou and her collaborators just published an elegant study in Nature that centered on the direct binding os the SARS-CoV-2 spike protein to fibrin with marked downstream pro-inflammatory effects. The findings and potential treatments have implications beyond Covid, Long Covid to other neurologic diseases.Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Transcript with links to audio and to relevant papers, graphicsEric Topol (00:07):Well, hello this is Eric Topol with Ground Truths, and with me today is Katerina Akassoglou. She is at the Gladstone Institute and she is a remarkable neuroimmunologist who has been doing extraordinary work for three decades to unravel the interactions between the brain, blood vessels and the role of inflammation. So Katerina, there's a lot to discuss, so welcome.Katerina Akassoglou (00:40):Thank you. Thank you so much. It's a great pleasure to join.By Way of BackgroundEric Topol (00:43):It's really interesting going back in your career. First of all, we're thankful that you immigrated here from Greece, and you have become one of the leading scientists in this discipline of important discipline of neuroimmunology, which is not just about Covid that we're going to talk about, but Alzheimer's and neurodegenerative diseases. This is a really big hot area and you're definitely one of the leaders. And what I was impressed is that all these years that you've been working on the integrity of the blood-brain barrier, the importance of fibrinogen and fibrin, and then comes along the Covid story. So maybe what we can do is start with that, which is you've made your mark in understanding this whole interaction between what can get into the brain, through the blood-brain barrier and incite inflammation. So this has been something that you've really taken to the extreme knowledge base. So maybe we can start with your work there before we get into the important seminal Nature paper that you recently published.Katerina Akassoglou (01:57):Yes, of course. So since very early on, I was still a graduate student when we made the first discovery and at the time was like mid-90s, so it was really ahead of its time. That dysregulation of cytokine expression in the brain of mice was sufficient to induce the whole cascade of events, triggering neurodegeneration, demyelination in pathological alterations, very reminiscent of multiple sclerosis pathology. And it was really hard to publish that study at the time because it was not yet accepted that this regulation of the immune system modeling the brain can be linked to neurodegeneration. So that was 1995 when we made that discovery, and I became really interested, what are the pathogenic triggers that actually polarized the immune cells in the brain? So with this, of course, this transgenic animal was expressing TNF, it was an artificially made animal that we made, but naturally what were the triggers that would polarize the innate immune cells? So I looked really early on in this mice and what I found was that the very first event was leaks of blood-brain barrier. It was opening of the blood-brain barrier in this mouse before inflammation, before demyelination, before neuronal loss. And this is really what shaped the question that, is it possible that these blood leaks that happened very early in the pathology, could this be the instigators of pathogenic inflammation in the brain?Eric Topol (03:34):Yeah. So in a way, you got at this question because of the chicken-and-egg and what happens first, and you got to the temporal saying, which happened first as you said, the leak before you could see evidence of inflammation and being able to study this of course in the experimental model, which you couldn't really do in people. And what I love about the description of your career, which has been quite extraordinary contributions is connecting the dots between the blood, the inflammatory response and the brain. Perhaps no one has done that like you have. And before we get into the recent paper, a lot of people are not aware that a year ago, a group in the UK known as PHOSP-COVID, they published a really important paper in Nature Medicine of over 1,800 people who were hospitalized with Covid and they found that fibrinogen was the best marker for cognitive deficits at 6 and 12 months (Figure below)(04:40):So that's just one of many papers, but it's a particularly well done study that already before you got into this work that recently published had emphasized fibrinogen. And by the way, again, having spent a lot of years in clots in the arteries, for me, we have to just get it down to fibrinogen plus thrombin gets you to fibrin. Okay, so fibrin is a major player here when fibrinogen is cleaved. So here we have the basis that you established, which is the fibrinogen leakage into the brain, activating inflammation, activating microglia, which like the macrophages of the brain and inciting the whole process. And before we close, I want to not just talk about Covid, but Alzheimer's too. But now let's get into the study that you did, [Fibrin drives thromboinflammation and neuropathology in COVID-19] which is striking, I mean really striking. And can you kind of take us through, because you not only demonstrated the importance of fibrin in inciting neuroinflammation in this model, but also how you could reverse it or prevent it. So this, and you looked at it in many different ways, this was a systematic approach. Maybe you can take us through how you were able to make such compelling evidence.The Multimodal EvidenceKaterina Akassoglou (06:09):Yes, thank you. First of all, thank you for bringing up the human relevance because this was also our inspiration for the work that we did in the Covid study. So as you mentioned in Covid patients, fibrinogen unbiased mass spec analysis was identified as the predictive biomarker for cognitive impairment in Long Covid patients. And this was in addition to also neuropathology data about the abundance of fibrin deposition in the brain. And these were studies that were done by NIH that have found deposition of fibrin in the brain and the reports for the abnormal and puzzling coagulation in Covid that is not setting other infections and also in many cases not always relating with the severity of symptoms. So even mild cases of Covid also had increased coagulation. I was really intrigued by this human, all this evidence in human data, and I thought that maybe the way that we're thinking about this, that it's systemic inflammation that drives the clotting.(07:24):Maybe there's another aspect to this. Maybe there is a direct effect of the virus with the coagulation cascade, and in this way maybe this can be an instigator of inflammation. So this was the original idea to be able to reconcile this data from the clinic about why do we have this prevalence of coagulopathy in Covid. And of course, the second question is, could this also be a driver of the disease? And of course, we're in a unique position because we have been studying this pathway now for over 20 years to have all the toolbox, the genetic toolbox, the pharmacologic toolbox to be able to actually really address these questions with genetic loss of function studies, with a blood innate immunity multiomics pipeline that we have set up in the lab. And of course, with preclinical pharmacology in our ABSL3 facility. So we had the infrastructure in place and the source in place to actually really dissect this question with both genetic tools as well as also technology platforms.Eric Topol (08:29):And you had in vivo imaging, you're the director of in vivo imaging for Gladstone and UCSF. So you do have the tools to do this.Katerina Akassoglou (08:38):Yes. The imaging that you mentioned is really important because this is, we employed that very early in our studies over now 15 years ago. And the reason was sometimes from snapshots of histopathology, you cannot really understand the sequence of events. So by being able to image these processes, both neuronal activity, microglia activation, infiltration of peripheral cells in the brain, this is how we could see the steps that what happens early on and to be able to answer these chicken-and-egg questions that you mentioned. So these were very, they're very important experiments, especially at the beginning because they were hypothesis driving and we were able to ask the right questions to drive our research program.Eric Topol (09:26):Now was the binding of the spike protein to one key site in fibrinogen, was that known before? [See outstanding Figure below from Trends in Immunology]Katerina Akassoglou (09:36):No, this was not known. So there was evidence that there are abnormal clots in Covid, but it was not known whether the spike protein would directly bind to protein to the coagulation cascade. So one of the key discoveries in our study was to use peptide array mapping and be able to identify not only the binding, but exactly the domains on fibrin that spike binds too. And what we found was two key domains, one the inflammatory domain and the other the plasmin binding site, which is important for fibrin degradation. So this suggested a potential dual deleterious role for this interaction, both by maybe affecting inflammation, but also delaying fibrinolysis, which is the degradation of this toxic protein from the brain. And indeed, we found that this interaction was responsible for all these two aspects, including decreased degradation, more inflammation, but also at the same time increased, increased coagulation. So it was a really pathogenic interaction.Eric Topol (10:47):Yeah, actually it's pretty striking. You have these two sites, the plasmin cleavage site of fibrinogen, which as you say, we knew there was a problem with clots. We knew that, but we didn't know exa
When I think of digital biology, I think of Patrick Hsu—he’s the prototype, a rarified talent in both life and computer science, who recently led the team that discovered bridge RNAs, what may be considered CRISPR 3.0 for genome editing, and is building new generative A.I. models for life science. You might call them LLLMs-large language of life models. He is Co-Founder and a Core Investigator of the Arc Institute and Assistant Professor of Bioengineering and Deb Faculty Fellow at the University of California, Berkeley.Above is a brief snippet of our conversation. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Here’s the transcript with links to the audio and external links to relevant papers and things we discussed.Eric Topol (00:06):Well hello, it's Eric Topol with Ground Truths and I'm really delighted to have with me today Patrick Hsu. Patrick is a co-founder and core investigator at the Arc Institute and he is also on the faculty at the University of California Berkeley. And he has been lighting things up in the world of genome editing and AI and we have a lot to talk about. So welcome, Patrick.Patrick Hsu (00:29):Thanks so much. I'm looking forward to it. Appreciate you having me on, Eric.The Arc InstituteEric Topol (00:33):Well, the first thing I'd like to get into, because you're into so many important things, but one that stands out of course is this Arc Institute with Patrick Collison who I guess if you can tell us a bit about how you two young guys got to meet and developed something that's really quite unique that I think brings together investigators at Stanford, UCSF, and Berkeley. Is that right? So maybe you can give us the skinny about you and Patrick and how all this got going.Patrick Hsu (01:05):Yeah, sure. That sounds great. So we started Arc with Patrick C and with Silvana Konermann, a longtime colleague and chemistry faculty at Stanford about three years ago now, though we've been physically operational just over two years and we're an independent research institute working at the interface of biomedical science and machine learning. And we have a few different aspects of our model, but our overall mission is to understand and treat complex human diseases. And we have three pillars to our model. We have this PI driven side of the house where we centrally fund our investigators so that they don't have to write grants and work on their very best ideas. We have a technical staff side of the house more like you'd see in a frontier AI lab or in biotech industry where we have professional teams of R&D scientists working cross-functionally on higher level organizational wide goals that we call our institute initiatives.(02:05):One focused on Alzheimer's disease experimentally and one that we call a virtual cell initiative to simulate human biology with AI foundation models. And our third pillar over time is to have things not just end up as academic papers, but really get things out into the real world as products or as medicines that can actually help patients on the translational side. And so, we thought that some really important scientific programs could be unlocked by enabling new organizational models and we are experimenting at the institutional scale with how we can better organize and incentivize and support scientists to reach these long-term capability breakthroughs.Patrick, Patrick and SilvanaEric Topol (02:52):So the two Patrick’s. How did you, one Patrick I guess is a multi-billionaire from Stripe and then there's you who I suspect maybe not quite as wealthy as the other Patrick, how did you guys come together to do this extraordinary thing?Patrick Hsu (03:08):Yeah, no, science is certainly expensive. I met Patrick originally through Silvana actually. They actually met, so funny trivia, all three Arc founders did high school science together. Patrick and Silvana originally met in the European version of the European Young Scientist competition in high school. And Silvana and I met during our PhDs in her case at MIT and I was at Harvard, but we met at the Broad Institute sort of also a collaborative Harvard, MIT and Harvard hospitals Institute based in Kendall Square. And so, we sort of in various pairwise combinations known each other for decades and worked together for decades and have all collectively been really excited about science and technology and its potential to accelerate societal progress. Yet we also felt in our own ways that despite a lot of the tremendous progress, the structures in which we do this work, fund it, incentivize it and roll it out into the real world, seems like it's really possible that we'll undershoot that potential. And if you take 15 years ago, we didn't have the modern transformer that launched the current AI revolution, CRISPR technology, single-cell, mRNA technology or broadly addressable LNPs. That’s a tremendous amount of technologies have developed in the next 15 years. We think there's a real unique opportunity for new institutes in the 2020s to take advantage of all of these breakthroughs and the new ones that are coming to continue to accelerate biological progress but do so in a way that's fast and flexible and really focused.Eric Topol (04:58):Yeah, I did want to talk with you a bit. First of all before I get to the next related topic, I get a kick out of you saying you've worked or known each other for decades because I think you're only in your early thirties. Is that right?Patrick Hsu (05:14):I was lucky to get an early start. I first started doing research at the local university when I was 14 actually, and I was homeschooled actually until college. And so, one of the funny things that you got to do when you're homeschooled is well, you could do whatever you want. And in my case that was work in the lab. And so, I actually worked basically full time as an intern volunteer, cut my teeth in single cell patch clamp, molecular biology, protein biochemistry, two photon and focal imaging and kind of spiraled from there. I loved the lab, I loved doing bench work. It was much more exciting to me than programming computers, which was what I was doing at the time. And I think these sort of two loves have kind of brought me and us to where we are today.Eric Topol (06:07):Before you got to Berkeley and Arc, I know you were at Broad Institute, but did you also pick up formal training in computer science and AI or is that something that was just part of the flow?Patrick Hsu (06:24):So I grew up coding. I used to work through problems sets before dinner growing up. And so, it's just something that you kind of learn natively just like learning French or Mandarin.New Models of Funding Life ScienceEric Topol (06:42):That's what I figured. Okay. Now this model of Arc Institute came along in a kind of similar timeframe as the Arena BioWorks in Boston, where some of the faculty left to go to Arena like my friend Stuart Schreiber and many others. And then of course Priscilla and Mark formed the Chan Zuckerberg Institute and its biohub and its support. So can you contrast for one, these three different models because they’re both very different than of course the traditional NIH pathway, how Arc is similar or different to the others, and obviously the goal here is accelerating things that are going to really make a difference.Patrick Hsu (07:26):Yeah, the first thing I would say is zooming out. There have been lots of efforts to experiment with how we do science, the practice of science itself. And in fact, I've recently been reading this book, the Demon Under the Microscope about the history of infectious disease, and it talks about how in the 1910s through the 1930s, these German industrial dye manufacturing companies like Bayer and BASF actually launched what became essentially an early model for industrial scale science, where they were trying to develop Prontosil, Salvarsan and some of these early anti-infectives that targeted streptococcus. And these were some of the major breakthroughs that led to huge medical advances on tackling infectious disease compared to the more academic university bound model. So these trends of industrial versus academic labs and different structures to optimize breakthroughs and applications has been a through current throughout international science for the last century.(08:38):And so, the way that we do research today, and that's some of our core tenets at Arc is basically it hasn't always been this way. It doesn't need to necessarily be this way. And so, I think organizational experiments should really matter. And so, there's CZI, Altos, Arena, Calico, a variety of other organizational experiments and similarly we had MRC and Bell Labs and Xerox PARCS, NIBRT, GNF, Google Research, and so on. And so, I think there are lots of different ways that you can organize folks. I think at a high level you can think about ways that you can play with for-profit versus nonprofit structures. Whether you want to be a completely independent organization or if you want to be partnered with universities. If you want to be doing application driven science or really blue sky curiosity driven work. And I think also thinking through internally the types of expertise that you bring together.(09:42):You can think of it like a cancer institute maybe as a very vertically integrated model. You have folks working on all kinds of different areas surrounding oncology or immunotherapy and you might call that the Tower of Babel model. The other way that folks have built institutes, you might call the lily pad model where you have coverage of as many areas of biomedical research as possible. Places like the Whitehead or Salk, it will be very broad. You'll have planned epigenetics, folks looking at RNA structural biology, people studying yeast cell cycle, folks doing in vivo melanoma models. It's very broad and I think what we try to do at Arc is think about a model that you
Arvind Narayanan and Sayash Kapoor are well regarded computer scientists at Princeton University and have just published a book with a provocative title, AI Snake Oil. Here I’ve interviewed Sayash and challenged him on this dismal title, for which he provides solid examples of predictive AI’s failures. Then we get into the promise of generative AI.Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Transcript with links to audio and external links to key publications Eric Topol (00:06):Hello, it's Eric Topol with Ground Truths, and I'm delighted to welcome the co-author of a new book AI SNAKE OIL and it's Sayash Kapoor who has written this book with Arvind Narayanan of Princeton. And so welcome, Sayash. It's wonderful to have you on Ground Truths.Sayash Kapoor (00:28):Thank you so much. It's a pleasure to be here.Eric Topol (00:31):Well, congratulations on this book. What's interesting is how much you've achieved at such a young age. Here you are named in TIME100 AI’s inaugural edition as one of those eminent contributors to the field. And you're currently a PhD candidate at Princeton, is that right?Sayash Kapoor (00:54):That's correct, yes. I work at the Center for Information Technology Policy, which is a joint program between the computer science department and the school of public and international affairs.Eric Topol (01:05):So before you started working on your PhD in computer science, you already were doing this stuff, I guess, right?Sayash Kapoor (01:14):That's right. So before I started my PhD, I used to work at Facebook as a machine learning engineer.Eric Topol (01:20):Yeah, well you're taking it to a more formal level here. Before I get into the book itself, what was the background? I mean you did describe it in the book why you decided to write a book, especially one that was entitled AI Snake Oil: What Artificial Intelligence Can Do, What It Can't, and How to Tell the Difference.Background to Writing the BookSayash Kapoor (01:44):Yeah, absolutely. So I think for the longest time both Arvind and I had been sort of looking at how AI works and how it doesn't work, what are cases where people are somewhat fooled by the potential for this technology and fail to apply it in meaningful ways in their life. As an engineer at Facebook, I had seen how easy it is to slip up or make mistakes when deploying machine learning and AI tools in the real world. And had also seen that, especially when it comes to research, it's really easy to make mistakes even unknowingly that inflate the accuracy of a machine learning model. So as an example, one of the first research projects I did when I started my PhD was to look at the field of political science in the subfield of civil war prediction. This is a field which tries to predict where the next civil war will happen and in order to better be prepared for civil conflict.(02:39):And what we found was that there were a number of papers that claimed almost perfect accuracy at predicting when a civil war will take place. At first this seemed sort of astounding. If AI can really help us predict when a civil war will start like years in advance sometimes, it could be game changing, but when we dug in, it turned out that every single one of these claims where people claim that AI was better than two decades old logistic regression models, every single one of these claims was not reproducible. And so, that sort of set the alarm bells ringing for the both of us and we sort of dug in a little bit deeper and we found that this is pervasive. So this was a pervasive issue across fields that were quickly adopting AI and machine learning. We found, I think over 300 papers and the last time I compiled this list, I think it was over 600 papers that suffer from data leakage. That is when you can sort of train on the sets that you're evaluating your models on. It's sort of like teaching to the test. And so, machine learning model seems like it does much better when you evaluate it on your data compared to how it would really work out in the real world.Eric Topol (03:48):Right. You say in the book, “the goal of this book is to identify AI snake oil - and to distinguish it from AI that can work well if used in the right ways.” Now I have to tell you, it's kind of a downer book if you're an AI enthusiast because there's not a whole lot of positive here. We'll get to that in a minute. But you break down the types of AI, which I'm going to challenge a bit into three discrete areas, the predictive AI, which you take a really harsh stance on, say it will never work. Then there's generative AI, obviously the large language models that took the world by storm, although they were incubating for several years when ChatGPT came along and then content moderation AI. So maybe you could tell us about your breakdown to these three different domains of AI.Three Types of AI: Predictive, Generative, Content ModerationSayash Kapoor (04:49):Absolutely. I think one of our main messages across the book is that when we are talking about AI, often what we are really interested in are deeper questions about society. And so, our breakdown of predictive, generative, and content moderation AI sort of reflects how these tools are being used in the real world today. So for predictive AI, one of the motivations for including this in the book as a separate category was that we found that it often has nothing to do with modern machine learning methods. In some cases it can be as simple as decades old linear regression tools or logistic regression tools. And yet these tools are sold under the package of AI. Advances that are being made in generative AI are sold as if they apply to predictive AI as well. Perhaps as a result, what we are seeing is across dozens of different domains, including insurance, healthcare, education, criminal justice, you name it, companies have been selling predictive AI with the promise that we can use it to replace human decision making.(05:51):And I think that last part is where a lot of our issues really come down to because these tools are being sold as far more than they're actually capable of. These tools are being sold as if they can enable better decision making for criminal justice. And at the same time, when people have tried to interrogate these tools, what we found is these tools essentially often work no better than random, especially when it comes to some consequential decisions such as job automation. So basically deciding who gets to be called on the next level of like a job interview or who is rejected, right as soon as they submit the CV. And so, these are very, very consequential decisions and we felt like there is a lot of snake oil in part because people don't distinguish between applications that have worked really well or where we have seen tremendous advances such as generative AI and applications where essentially we've stalled for a number of decades and these tools don't really work as claimed by the developers.Eric Topol (06:55):I mean the way you partition that, the snake oil, which is a tough metaphor, and you even show the ad from 1905 of snake oil in the book. You're really getting at predictive AI and how it is using old tools and selling itself as some kind of breakthrough. Before I challenge that, are we going to be able to predict things? By the way, using generative AI, not as you described, but I would like to go through a few examples of how bad this has been and since a lot of our listeners and readers are in the medical world or biomedical world, I'll try to get to those. So one of the first ones you mentioned, which I completely agree, is how prediction of Covid from the chest x-ray and there were thousands of these studies that came throughout the pandemic. Maybe you could comment about that one.Some Flagrant ExamplesSayash Kapoor (08:04):Absolutely. Yeah, so this is one of my favorite examples as well. So essentially Michael Roberts and his team at the University of Cambridge a year or so after the pandemic looked back at what had happened. I think at the time there were around 500 studies that they included in the sample. And they looked back to see how many of these would be useful in a clinical setting beyond just the scope of writing a research paper. And they started out by using a simple checklist to see, okay, are these tools well validated? Does the training and the testing data, is it separate? And so on. So they ran through the simple checklist and that excluded all but 60 of these studies from consideration. So apart from 60 studies, none of these other studies even passed a very, very basic criteria for being included in the analysis. Now for these 60, it turns out that if you take a guess about how many were useful, I'm pretty confident most cases would be wrong.(09:03):There were exactly zero studies that were useful in a clinically relevant setting. And the reasons for this, I mean in some cases the reasons were as bizarre as training a machine learning model to predict Covid where all of the positive samples of people who had Covid were from adults. But all of the negative samples of people who didn't have Covid were from children. And so, essentially claiming that the resulting classifier can predict who has Covid is bizarre because all the classifier is doing is looking at the checks history and basically predicting which x-ray belongs to a child versus an adult. And so, this is the sort of error in some cases we saw duplicates in the training and test set. So you have the same person that is being used for training the model and that it is also used for evaluating the model. So simply memorizing a given sample of x-rays would be enough to achieve a very high performance. And so, for issues like these, I think all 60 of these studies prove to be not useful in a clinically relevant setting. And I think this is sort of the type of pattern that we've seen over and over
Francis Collins is a veritable national treasure. He directed the National Institutes of Health from 2009 to 2021. Prior to that he led the National Human Genetics Research Institute (NHGRI) from 1997-2009, during which the human genome was first sequenced. As a physician-scientist, he has made multiple seminal discoveries on the genetic underpinnings of cystic fibrosis, Huntington’s disease, neurofibromatosis, progeria, and others. This brief summary is barely scratching the surface oh his vast contributions to life science and medicine.A video clip from our conversation on hepatitis C. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Transcript with external inks and links to audioEric Topol (00:06):Well, I am really delighted to be able to have our conversation with Francis Collins. This is Eric Topol with Ground Truths and I had the chance to first meet Francis when he was on the faculty at the University of Michigan when I was a junior faculty. And he gave, still today, years later, we're talking about 40 years later, the most dazzling Grand Rounds during his discovery of cystic fibrosis. And Francis, welcome, you inspired me and so many others throughout your career.Francis Collins (00:40):Well, Eric, thank you and you've inspired me and a lot of other people as well, so it's nice to have this conversation with you in the Ground Truths format.Eric Topol (00:49):Well, thank you. We're at the occasion of an extraordinary book you put together. It's the fifth book, but it stands out quite different from the prior books as far as I can tell. It's called The Road to Wisdom: On Truth, Science, Faith and Trust, these four essential goods that build upon each other. And it's quite a book, Francis, I have to say, because you have these deep insights about these four critical domains and so we'll get into them. But I guess the first thing I thought I'd do is just say, how at some point along the way you said, “the goal of this book is to turn the focus away from hyperpartisan politics and bring it back to the most important sources of wisdom: truth, science, faith and trust, resting upon a foundation of humility, knowledge, morality, and good judgment.” So there's a lot there. Maybe you want to start off with what was in the background when you were putting this together? What were you really aiming at getting across?Reflections on CovidFrancis Collins (02:06):I'm glad to, and it's really a pleasure to have a chance to chat with you about this. I guess before Covid came along, I was probably a bit of a naive person when it came to how we make decisions. Yeah, I knew there were kind of wacky things that had gone out there from time to time, but I had a sort of Cartesian attitude that we were mostly rational actors and when presented with evidence that's been well defended and validated that most people will say, okay, I know what to do. Things really ran off the rails in the course of Covid. It was this remarkable paradox where, I don't know what you would say, but I would say the development of the vaccines that were safe and highly effective in 11 months using the mRNA platform was one of the most stunning achievements of science in all of history up until now.Francis Collins (03:02):And yet 50 million Americans decided they didn't want any part of it because of information that came to them that suggested this was not safe or there was conspiracies behind it, or maybe the syringes had chips that Bill Gates had put in there or all manner of other things that were being claimed. And good honorable people were distracted by that, lost their trust in other institutions like the CDC, maybe like the government in general like me, because I was out there a lot trying to explain what we knew and what we didn't know about Covid. And as a consequence of that, according to Kaiser Family Foundation, more than 230,000 people died between June of 2021 and April of 2022 because of a decision to reject the opportunity for vaccines that were at that time free and widely available. That is just an incredibly terribly tragic thing to say.Francis Collins (04:03):More than four times the number of people who died, Americans who died in the Vietnam War are in graveyards unnecessarily because we lost our anchor to truth, or at least the ability to discern it or we couldn't figure out who to trust while we decided science was maybe not that reliable. And people of faith for reasons that are equally tragic were among those most vulnerable to the misinformation and the least likely therefore, to take advantage of some of these lifesaving opportunities. It just completely stunned me, Eric, that this kind of thing could happen and that what should have been a shared sense of working against the real enemy, which was the SARS-CoV-2 virus became instead a polarized, divisive, vitriolic separation of people into separate camps that were many times driven more by politics than by any other real evidence. It made me begin to despair for where we're headed as a country if we can't figure out how to turn this around.Francis Collins (05:11):And I hadn't really considered it until Covid how serious this was and then I couldn't look away. And so, I felt if I have a little bit of credibility after having stepped down after 12 years as the NIH Director and maybe a chance to influence a few people. I just have to try to do something to point out the dangers here and then to offer some suggestions about what individuals can do to try to get us back on track. And that's what this book is all about. And yeah, it's called The Road to Wisdom because that's really how I want to think of all this in terms of truth and science and faith and trust. They all kind of give you the opportunities to acquire wisdom. Wisdom is of course knowledge, but it's not just knowledge, it's also understanding it has a moral character to it. It involves sophisticated judgment about difficult situations where there isn't an obvious answer. We need a lot more of that, it seems we’re at short supply.Deconvoluting TruthEric Topol (06:13):Well, what I really loved about the book among many things was how you broke things down in just a remarkably thoughtful way. So truth, you have this great diagram like a target with the four different components.in the middle, necessary truth. And then as you go further out, firmly established facts, then uncertainty and then opinion, and truth is not a dichotomous by any means. And you really got that down and you explained each of these different facets of truth with great examples. And so, this among many other things that you broke down, it wasn't just something that you read somewhere, you really had to think this through and perhaps this experience that we all went through, but especially you. But because you bring so much of the book back to the pandemic at times with each of the four domains, so that and the spider web. The spider web of where your core beliefsare and then the ones further out on the web and you might be able to work on somebody out further periphery, but it's pretty hard if you're going to get to them in the middle where their main thing is science is untrustworthy or something like that.Eric Topol (07:36):So how did you synthesize these because the graphics are quite extraordinary?Francis Collins (07:44):Well, I will say the artist for the graphics is a remarkable graphic design student at the University of Michigan who happens to be my granddaughter. So it was nice having that ability to have my scratches turned into something actually looks like artwork. The concepts I got to say, Eric, I was feeling pretty unsure of myself. I never took a course in philosophy. I know there are people who've spent their entire careers going all the way back to Socrates and on up until now about what does truth mean and here's this scientist guy who's trying to say, well, let me tell you what I think about it. I'm glad to hear that you found these circles useful. They have been very useful for me and I hadn't thought about it much until I tried to put it in some sort of framework and a lot of the problems we have right now where somebody says, well, that might be true for you, but it's not true for me, that's fine if you're talking about an opinion, like whether that movie was really good or not.Francis Collins (08:43):But it's not fine if it's about an established fact, like the fact that climate change is real and that human activity is the main contributor to the fact that we've warmed up dramatically since 1950. I'm sorry, that's just true. It doesn't care how you feel about it, it's just true. So that zone of established facts is where I think we have to re-anchor ourselves again when something's in that place. I'm sorry, you can't just decide you don't like it, but in our current climate and maybe postmodernism has crept in all kinds of ways we're not aware of, the idea that there is such a thing as objective truth even seems to be questioned in some people's minds. And that is the path towards a terrible future if we can't actually decide that we have, as Jonathan Rauch calls it, a constitution of knowledge that we can depend on, then where are we?Eric Topol (09:37):Well, and I never heard of the term old facts until the pandemic began and you really dissect that issue and like you, I never had anticipated there would be, I knew there was an anti-science, anti-vaccine sector out there, but the fact that it would become so strong, organized, supported, funded, and vociferous, it's just looking back just amazing. I do agree with the statement you made earlier as we were talking and in the book, “the development of mRNA vaccines for Covid in record time as one of the greatest medical achievements in human history.” And you mentioned besides the Kaiser Family Foundation, but the Commonwealth Fund, a bipartisan entity saved three million lives in the US, eighteen
Professor Joseph Allen directs the Healthy Buildings Program at Harvard Chan School of Public Health. His expertise extends far beyond what makes buildings healthy. He has been a leading voice and advocate during the Covid pandemic for air quality and ventilation. He coined the term “Forever Chemicals” and has written extensively on this vital topic, no less other important exposures, which we covered In our wide-ranging conversation. You will see how remarkably articulate and passionate Prof Allen is about these issues, along with his optimism for solutions.A video snippet of our conversation: buildings as the 1st line of defense vs respiratory pathogens. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Transcript with External Links and Links to AudioEric Topol (00:00:06):Well, hello. It's Eric Topol from Ground Truths and I am just delighted to have with me, Joseph Allen from the Harvard School of Public Health, where he directs the Healthy Buildings Program that he founded and does a whole lot more that we're going to get into. So welcome, Joe.Joseph Allen (00:00:24):Thanks. It's great to be here. I appreciate the invitation.Joe Allen’s Background As A DetectiveEric Topol (00:00:28):Well, you have been, as I've learned, rocking it for many years long before the pandemic. There's quite a background about you having been a son of a homicide detective, private eye agency, and then you were going to become an FBI agent. And the quote from that in the article that's the Air Investigator is truly a classic. Yeah, you have in there, “I guarantee I'm the only public health student ever to fail an FBI lie detector polygraph in the morning and start graduate school a few hours later.” That's amazing. That's amazing.Joseph Allen (00:01:29):All right. Well, you've done your deep research apparently. That's good. Yeah, my dad was a homicide detective and I was a private investigator. That's no longer my secret. It's out in the world. And I switched careers and it happened to be the day I took the polygraph at the FBI headquarters in Boston, was the same day I started graduate studies in public health.Sick vs Healthy Buildings (Pre-Covid)Eric Topol (00:01:53):Well, you're still a detective and now you're a detective of everything that can hurt us or help us environmentally and my goodness, how grateful we are that you change your career path. I don't know anyone who's had more impact on buildings, on air, and we're going to get into chemicals as well. So if we go back a bit here, you wrote a book before the pandemic, talk about being prescient. It’s called Healthy Buildings: How Indoor Spaces Can Make You Sick - or Keep You Well with John Macomber, your co-author. What was it that gave you the insight to write a book before there was this thing called Covid?Joseph Allen (00:02:41):Yeah, well, thanks for making the connection too, my past career to current career. For many years, I thought there wasn't a connection, but I agree. There's actually a lot of similarities and I also am really appreciative. I am lucky I found the field of Public Health, it's clearly where I belong. I feel like I belong here. It's a place to make an impact that I want to make in my career. So yeah, the Healthy Buildings book, we started writing years before the pandemic and was largely motivated by, I think what you and others and other people in my field have known, is that buildings have an outsized impact on our health. Yet it's not something that comes to the forefront when you ask people about what matters for their health. Right, I often start presentations by asking people that, what constitutes healthy living? They'll say, I can't smoke, I have to eat well.(00:03:30):I have to exercise. Maybe they'll say, outdoor pollution’s bad for you. Very few people, if any, will say, well, the air I breathe inside my building matters a lot. And over the years I had started my public health career doing forensic investigations of sick buildings. People really can get sick in buildings. It can be anything from headaches and not being able to concentrate all the way to cancer clusters and people dying because of the building. And I've seen this in my career, and it was quite frustrating because I knew, we all knew how to design and operate buildings in a way that can actually keep people healthy. But I was frustrated like many in my field that it wasn't advancing. In other words, the science was there, but the practice wasn't changing. We were still doing things the wrong way around ventilation, materials we put in our building, and I would lecture over and over and give presentations and I decided I want to try something new.(00:04:22):I do peer-reviewed science. That's great. I write pieces like you for the public, and I thought we'd try a longer form piece in a book, and it's published by Harvard Press. John Macomber for those who know is a professor at Harvard Business School who's an expert in real estate finance. So he'd been talking about the economic benefits of healthier buildings and some hand waving as he describes around public health. I've been talking about the public health benefits and trying to wave an economic argument. We teamed up to kind of use both of our strengths to, I hope make a compelling case that buildings are good for health and they're also just good business. In other words, try to break down as many barriers as we can to adoption. And then the book was published right as Covid hit.Indoor Air Quality and CognitionEric Topol (00:05:05):Yeah. I mean, it's amazing. I know that typically you have to have a book almost a year ahead to have it in print. So you were way, way ahead of this virus. Now, I'm going to come back to it later, but there were two things beyond the book that are pretty striking about your work. One is that you did all these studies to show with people wearing sensors to show that when the levels of CO2 were high by sensors that their cognition indoors was suffering. Maybe you could just tell us a little bit about these sensors and why aren't we all wearing sensors so that we don't lose whatever cognitive power that we have?Joseph Allen (00:05:56):Well, yeah. First I think we will start having these air quality sensors. As you know, they're starting to become a lot more popular. But yeah, when I first joined the faculty full-time at Harvard, one of the first studies I conducted with my team was to look at how indoor air quality influences cognitive function. And we performed a double-blind study where we took people, office workers and put them in a typical office setting. And unbeknownst to them, we started changing the air they were breathing in really subtle ways during the day, so they didn't know what we were doing. At the end of the day, we administered an hour and a half long cognitive function battery, and like all studies, we control for things like caffeine intake, baseline cognitive performance, all the other factors we want to account for. And after controlling for those factors in a double-blind study, we see that indoor air quality, minor improvements to indoor air quality led to dramatic increases in cognitive function test scores across domains that people recognize as important for everyday life.(00:06:59):How do you seek out and utilize information? How do you make strategic decisions? How do you handle yourself during a crisis and importantly recover after that crisis? I don't mean the world's ending crisis. I mean something happens at work that's stressful. How do you handle that and how do you respond? Well, it turns out that amongst all the factors that influence how we respond there, indoor air quality matters a lot. We call that study the COGfx Study for cognitive function. We replicated it across the US, we replicated it across the world with office workers around the world, and again, always showing these links, the subtle impact of indoor air quality on cognitive function performance. Now, that also then starts to be the basis for some of the economic analysis we perform with my colleague at Harvard Business School. We say, well, look, if you perform this much better related to air quality, what would happen if we implemented this at scale in a business?(00:07:51):And we estimate that there are just massive economic gains to be had. On a per person basis, we found and published on this, that's about $6,000 to $7,000 per person per year benefit across a company. It could lead to 10% gains to the bottom line performance of the company. And again, I'm a public health professor. My goal is to improve people's health, but we add a lens, mental health, brain health is part of health, and we add the economic lens to say, look, this is good for a worker of productivity and the costs are downright trivial when you compare it against the benefits, even just including the cognitive function benefits, not even including the respiratory health benefit.Eric Topol (00:08:33):And I mean, it's so striking that you did these studies in a time before sensors were, and they still are not widely accepted, and it really helped prove, and when we start to fall asleep in a group session indoors, it may not just be because we didn't have enough sleep the night before, right.Joseph Allen (00:08:56):It's funny you say that. I talk about that too. It's like, do we actually need the study to tell us to quantify what we've all experienced these bad conference rooms, you get tired, you can't concentrate, you get sleepy while you're driving your car. Yeah, a whole bunch of other factors. Maybe the speaker's boring, but a key factor is clearly indoor air quality and things like good ventilation, the chemical load in the space are all contributing.Eric Topol (00:09:20):Yeah. No, it's pretty darn striking. Now we're going to get into the pandemic, and this of course is when your work finally crystallized that you've been working on this fo
Steve Horvath made the seminal discovery of the—Horvath Clock— an epigenetic clock based on DNA methylation, which is now being used extensively in medical research and offered commercially for individuals (←we talk about that!). He was on the faculty at UCLA from 2000-2022 as a Professor of Human Genetics and Biostatistics, and now works on anti-aging research at Altos Labs.A perspective on the importance of epigenetic clocks this week’s Nature”This insight is crucial for deriving reliable biological markers of ageing in tissues or blood. Such a feat has been accomplished through the ingenious identification of epigenetic clocks in our genome. But these insights are even more important for revealing targets that enable intervention in the ageing process.”A video snippet on vegetable intake and epigenetic clocks. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Transcript with links to Audio and External LinksEric Topol (00:06):Hello, it's Eric Topol with Ground Truths, and I've got a terrific guest with me today, Steve Horvath. He's a geneticist, a statistician, a mathematician. He's got a lot of background that has led to what is a landmark finding in biomedicine, the Horvath clock. So Steve, welcome.Steve Horvath (00:30):Thank you for having me.Eric Topol (00:33):Well, it's really fascinating. I followed your work for well over a decade since you introduced the pan-tissue clock in 2013, and it's fascinating to go back a bit on that finding, which initially, I guess was in saliva a couple of years prior, and then you found it everywhere you looked, wherever cells had a nucleus and tissues. And what gave you the sense that these markers of methylation on the DNA would give us some clues about the aging process? How did you even come about to make this discovery?SerendipitySteve Horvath (01:17):It was an accidental discovery because before the methylation clock, I had worked very hard on a gene expression clock, a transcriptomic biomarker. I mean, I was at the height of my energy levels. I worked really on weekends, really eight hour days during the week. But all the weekends I had collected a large set of gene expression data and I dredged the data. And for two years and I couldn't get anywhere, there was nothing I could do. But nowadays, of course, you see various publications where people built transcriptomic clocks. But back in the day when we had these arrays, I just couldn't see a signal. And then at some point I got roped into a study of homosexuality where my collaborator at UCLA wanted to see whether there's an epigenetic correlate of sexual orientation in saliva. And so yeah, being a biostatistician, I said, sure, I analyzed the data and I couldn't find any signal for homosexuality.(02:48):But then I just looked for an aging signal in the same, and really within an hour of analyzing the data, I knew that I have to completely drop gene expression. I need to go after methylation. And the signal is so profound, and as you said initially we looked at saliva samples and we thought, isn't it curious? You spit in a cup and you can measure someone's age. And we were of course, hoping that this could become a valuable readout of biologic age, but it took, of course, many years to realize that potential. Nowadays, there's several companies that offer a saliva based methylation clock test. But yeah, many years passed, and it was important to fill in the details and to build the case that methylation clocks are predictive of things we care about time to death or time to various forms of morbidity. So it took many, many years to analyze large cohort studies and to accumulate the evidence that it actually works.Eric Topol (04:16):Yeah, I mean, it was pretty amazing back almost a decade ago when I would see, we would take tissue or blood sample and look at your clock and it would say, age of the person is 75 years. And then we look at the actual age of the person who is 75 years to say, wait a minute, how can this be? So I mean, the plausibility of this discovery, if you look back, I mean you say, well, this is just kind of the rust of the pipes, or how do you process that the methylation is such a marker potentially of a person's biologic age? Of course, we're going to get into how it could be a way to intervene to change the aging process. But would it be fair to say that its epigenetic clocks are not the same as biologic aging or how do you put all that together?Epigenetic Age vs Biologic AgeSteve Horvath (05:21):Yes, for sure. An epigenetic age estimate is certainly not the same as a biologic age estimate. And the reason why I say it is because biologic age is really determined by so many things and by so many organs. And as I mentioned initially, we had a clock for saliva later for blood and so on. And so, if you only have an epigenetic readout of a certain cell type, it's really too limited to assess the whole organismal state. And arguably you would want to measure also proteomics, readouts and many other data modalities. So I typically avoid the terminology biologic age, because to begin with, we don't have a definition of it. Decades of discussions, nobody really has a precise definition of it.Second Generation Epigenetic ClocksEric Topol (06:35):Well, from the first generation Horvath clock then became this newer second generation, GrimAge, PhenoAge, the DunedinPACE of aging. How has that helped to advance the field? Because as you touched on, they're measuring different things and what is it meant by kind of a second generation clock?Steve Horvath (07:03):Yeah, so a second generation clock truly aims to predict mortality or morbidity risk. As opposed to simply chronologic age or what is known as calendar age. And fortunately, there's no doubt that the second generation clocks can do that. I often finish a talk on GrimAge by telling the audience that I give them a money back guarantee, that it will be predictive of mortality in their cohort study. I'm 100% certain that it works if you analyze a hundred people or so. The question is more whether an individual could benefit from such a test. And there are now many providers of various epigenetic clock tests. These biomarkers have different names, but they're quite pricey. A couple of hundred dollars are needed to get such a measurement. And the question is, is it helpful for the individual should you get such a test? And I would say we are not quite there yet for a variety of reasons. The main reason being we don't have good interventions against accelerated epigenetic age. So because when you think about it, why does a doctor order a test for you? For example, cholesterol levels. Well, because they have a drug against elevated cholesterol levels, the statin. And at the moment, we don't have validated interventions against accelerated epigenetic age. So that's kind of missing.Eric Topol (09:13):Yeah, we're going to get to that because obviously a lot of things are in the pipeline there, but are you saying then that these people that are getting these consumer tests, that they're getting a test that really wasn't validated at an individual level, so it predicts their mortality that it may be good at a cohort or population level, but maybe it's not so helpful, accurate, or would you say it is accurate? I mean, GrimAge is a good name because since it says when you're going to die. How do you make the differentiation between the individual level or beyond?Steve Horvath (09:59):Yeah, I think it's good to compare to other biomarkers. So take glucose levels, hemoglobin A1C, nobody doubts that these levels predict mortality risk when you study couples a hundred people. But how accurate is such a test for an individual? Clearly there is substantial noise associated with a prediction. Two people could have exactly the same hemoglobin A1C levels, but live very different lifespans. And the same holds for epigenetic clocks. They do predict how long you live. In theory, one could arrive at an estimate of age and death. There's a complicated mathematical formula that allows you to do that, but there would be a substantial error bar associated with it, an order of magnitude plus minus five years. And so, for the individual, such an estimate is not that important because the error bar is substantial. But I want to add that these second generation clocks, they do predict mortality risk. There's no question.Maximal LifespanEric Topol (11:35):Well, as you know, the longevity space is now very crowded with all sorts of clubs, and it's like a circus out there. And some of these things are being promoted that really don't have the basis or have a false sense to consumers who want to live forever and be healthy forever. But maybe these markers are not really helping guide them so much. Now, you recently published you and your group a fascinating paper, so getting away from the individual for a second, but now at the species level and in Science Advances, and we'll put this diagram with the podcast, but you looked at 348 mammal species for the maximal lifespan with DNA methylation. And it was amazing to see the display from the desert hamster all the way to the humpback whale with somewhere along the way, the humans. So you could predict maximal lifespan pretty well, right?Steve Horvath (12:43):Yes. So I collected this very large dataset over seven years, and one of the reasons was to understand the mystery of maximum lifespan. The bowhead whale can live over 211 years, whereas certain mice only three or four years. And my question was, can methylation teach us something about maximum lifespan? And the answer is a resounding, yes. The methylation profiles very much predict the maximum lifespan of a species. And maybe to use a metaphor to explain the patterns. So one can visualize methylation around the DNA molecule, like a landscape. You want that certain regions exhibit high levels of methylation. These regi
Pradeep is a brilliant geneticist and Director of Preventive Cardiology, holds the Paul & Phyllis Fireman Endowed Chair in Vascular Medicine at Mass General Hospital and on faculty at Harvard Medical School and the Broad Institute. His prolific research has been illuminating for the field of improving our approach to reduce the risk of heart disease. That’s especially important because heart disease is the global (and US) #1 killer and is on the increase. We didn’t get into lifestyle factors here since there was so much ground to cover on new tests. drugs, and strategies.A video snippet of our conversation on ApoB. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Transcript with links to key publications and audioEric Topol (00:06):Well, welcome to Ground Truths. I'm Eric Topol and with me is Pradeep Natarajan from Harvard. He's Director of Preventative Cardiology at the Mass General Brigham Health System and he has been lighting it up on the field of cardiovascular. We're going to get to lots of different parts of that story and so, Pradeep welcome.Pradeep Natarajan (00:31):Thanks Eric, really delighted and honored to be with you and have this discussion.Eric Topol (00:36):Well, for years I've been admiring your work and it's just accelerating and so there's so many things to get to. I thought maybe what we'd start off with is you recently wrote a New England Journal piece about two trials, two different drugs that could change the landscape of cardiovascular prevention in the future. I mean, that's one of the themes we're going to get to today is all these different markers and drugs that will change cardiology as we know it now. So maybe you could just give us a skinny on that New England Journal piece.Two New Lipid Targets With RNA DrugsPradeep Natarajan (01:16):Yeah, yeah, so these two agents, the trials were published at the same time. These phase two clinical trials for plozasiran, which is an siRNA against APOC3 and zodasiran, which is an siRNA against ANGPTL3. The reason why we have medicines against those targets are based on human genetics observations, that individuals with loss of function mutations and either of those genes have reduced lipids. For APOC3, it's reduced triglycerides for ANGPTL3 reduced LDL cholesterol and reduced triglycerides and also individuals that have those loss of function mutations also have lower risk for coronary artery disease. Now that's a very similar parallel to PCSK9. We have successful medicines that treat that target because people have found that carriers of loss of function mutations in PCSK9 lead to lower LDL cholesterol and lower coronary artery disease.(02:11):Now that suggests that therapeutic manipulation without significant side effects from the agents themselves for APOC3 and ANGPTL3 would be anticipated to also lower coronary artery disease risk potentially in complementary pathways to PCSK9. The interesting thing with those observations is that they all came from rare loss of function mutations that are enriched in populations of individuals. However, at least for PCSK9, has been demonstrated to have efficacy in large groups of individuals across different communities. So the theme of that piece was really just the need to study diverse populations because those insights are not always predictable about which communities are going to have those loss of function mutations and when you find them, they often have profound insights across much larger groups of individuals.Eric Topol (03:02):Well, there's a lot there that we can unpack a bit of it. One of them is the use of small interfering RNAs (siRNA) as drugs. We saw in the field of PCSK9, as you mentioned. First there were monoclonal antibodies directed against this target and then more recently, there’s inclisiran which isn't an RNA play if you will, where you only have to take it twice a year and supposedly it's less expensive and I’m still having trouble in my practice getting patients covered on their insurance even though it's cheaper and much more convenient. But nonetheless, now we're seeing these RNA drugs and maybe you could comment about that part and then also the surprise that perhaps is unexplained is the glucose elevation.Pradeep Natarajan (03:53):Yeah, so for medicines and targets that have been discovered through human genetics, those I think are attractive for genetic-based therapies and longer interval dosing for the therapies, which is what siRNAs allow you to do because the individuals that have these perturbations, basically the naturally occurring loss of function mutations, they have these lifelong, so basically have had a one-time therapy and have lived, and so far, at least for these targets, have not had untoward side effects or untoward phenotypic consequences and only reduce lipids and reduce coronary artery disease. And so, instead of taking a pill daily, if we have conviction that that long amount of suppression may be beneficial, then longer interval dosing and not worrying about the pill burden is very attractive specifically for those specific therapeutics. And as you know, people continue to innovate on further prolonging as it relates to PCSK9.(04:57):Separately, some folks are also developing pills because many people do feel that there's still a market and comfort for daily pills. Now interestingly for the siRNA for zodasiran at the highest dose, actually for both of them at the highest doses, but particularly for zodasiran, there was an increase in insulin resistance parameters actually as it relates to hyperglycemia and less so as it relates to insulin resistance, that is not predicted based on the human genetics. Individuals with loss of function mutations do not have increased risks in hyperglycemia or type 2 diabetes, so that isolates it related to that specific platform or that specific technology. Now inclisiran, as you'd mentioned, Eric is out there. That's an siRNA against PCSK9 that's made by a different manufacturer. So far, the clinical trials have not shown hyperglycemia or type 2 diabetes as it relates inclisiran, so it may be related to the specific siRNAs that are used for those targets. That does merit further consideration. Now, the doses that the manufacturers do plan to use in the phase three clinical trials are at lower doses where there was not an increase in hyperglycemia, but that does merit further investigation to really understand why that's the case. Is that an expected generalized effect for siRNAs? Is it related to siRNAs for this specific target or is it just related to the platform used for these two agents which are made by the same manufacturer?Eric Topol (06:27):Right, and I think the fact that it's a mystery is intriguing at the least, and it may not come up at the doses that are used in the trials, but the fact that it did crop up at high doses is unexpected. Now that is part of a much bigger story is that up until now our armamentarium has been statins and ezetimibe to treat lipids, but it's rapidly expanding Lp(a), which for decades as a cardiologist we had nothing to offer. There may even be drugs to be able to lower people who are at high risk with high Lp(a). Maybe you could discuss that.What About Lp(a)?Pradeep Natarajan (07:13):Yeah, I mean, Eric, as you know, Lp(a) has been described as a cardiovascular disease risk factors for quite so many years and there are assays to detect lipoprotein(a) elevation and have been in widespread clinical practice increasing widespread clinical practice, but we don't yet have approved therapies. However, there is an abundance of literature preclinical data that suggests that it likely is a causal factor, meaning that if you lower lipoprotein(a) when elevated, you would reduce the risk related to lipoprotein(a). And a lot of this comes from similar human genetic studies. The major challenge of just relating a biomarker to an outcome is there are many different reasons why a biomarker might be elevated, and so if you detect a signal that correlates a biomarker, a concentration to a clinical outcome, it could be related to that biomarker, but it could be to the other reasons that the biomarker is elevated and sometimes it relates to the outcome itself.(08:10):Now human genetics is very attractive because if you find alleles that strongly relate to that exposure, you can test those alleles themselves with the clinical outcome. Now the allele assignment is established at birth. No other factor is going to change that assignment after conception, and so that provides a robust, strong causal test for that potential exposure in clinical outcome. Now, lipoprotein(a) is unique in that it is highly heritable and so there are lots of different alleles that relate to lipoprotein(a) and so in a well powered analysis can actually test the lipoprotein(a) SNPs with the clinical outcomes and similar to how there is a biomarker association with incident myocardial infarction and incident stroke, the SNPs related to lipoprotein(a) show the same. That is among the evidence that strongly supports that this might be causal. Now, fast forward to many years later, we have at least three phase three randomized clinical trials testing agents that have been shown to be very potent at lowering lipoprotein(a) that in the coming years we will know if that hypothesis is true. Importantly, we will have to understand what are the potential side effects of these medicines. There are antisense oligonucleotides and siRNAs that are primarily in investigation. Again, this is an example where there's a strong genetic observation, and so these genetic based longer interval dosing therapies may be attractive, but side effects will be a key thing as well too. Those things hard to anticipate really can anticipate based on the human genetics for off target effects, for example.(09:52):It's clearly a risk signal and hopefully in the near future we're going to ha
A video snippet of our conversation. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Shane Crotty: A Landmark Study on Upper Airway Mucosal ImmunityTranscriptThis is the first time a Ground Truths podcast is being posted simultaneous with a new publication, this one in Nature, by Professor Shane Crotty and his colleagues at La Jolla Institute for Immunology. Shane is one of the leading immunologists and virologists in the country; he and his group published in 2020 the first detailed analysis for how our immune system responds to SARS-CoV-2. Shane also, among many other notable contributions during COVID, illuminated the role of hybrid immunity vs COVID, the differences between and additivity of vaccination and infection.Today’s paper in Nature is indeed a landmark contribution doing something that hasn’t been done before—to understand the underpinnings of mucosal immunity of the upper airway. 100 participants had monthly nasal and nasopharyngeal swabs throughout the pandemic. With a median of >100,000 cells per swab recovered, they undertook single-cell sequencing and full characterization of the cells (tissue-resident memory B cells, CD4+ and CD8+ T cells, germinal center follicular helper T cells and B cells, etc.) to determine optimal immune protection of the upper airway, the effect of infections by different variants, breakthrough infections, vaccination, and age.Here is the transcript of our conversation about the new report with links to the audio:Eric Topol (00:06):Hello, it's Eric Topol with Ground Truths, and with me today is Professor Shane Crotty from the La Jolla Institute of Immunology (LJI), not too far away from where I work at Scripps. And Shane has been a go-to immunologist colleague here in the Mesa, and he and his colleagues were the ones that really first published the response to SARS-CoV-2 as far as the immunologic response. And today we're doing something very unique. We're going to go over for the first time in the two year plus history of Ground Truths, going to have a publication with at least simultaneous or near simultaneous podcast. Shane, welcome and congratulations on this really important paper in Nature.Shane Crotty (00:57):Thanks, Eric. Thanks for having me. Yeah, somebody asked if I was going to go over to Scripps for the podcast and I was like, yeah, we could.Eric Topol (01:06):You could. You could. But no, it's good. And it's nice having the logo of this great institute you work at right in the right corner. And you've done so many contributions with your colleagues at La Jolla Institute. It's really a privilege to have a chance to learn from you and particularly about what we're going to talk about today, which is mucosal immunity to upper airway infections, which is especially germane to COVID. And we're actually in the middle of a significant wave of COVID right now. And I guess it would maybe be fair to say, Shane, that we've never truly understood the underpinnings, the real details of upper airway mucosal immunity. Is that a fair statement?Shane Crotty (01:53):Yeah, it is a fair statement.Eric Topol (01:56):Okay. So today we're going to crack the case. This paper from you and your colleagues, of course, you're the senior author and first author, Sydney Ramirez did a remarkable study. I mean, just extraordinary. This is why we're doing a special podcast about it. Maybe you could just kind of give us the overview of the design because you were doing things that haven't been done before.Shane Crotty (02:24):Sure. And, I would say the genesis even of it goes back to what you were introducing. I mean, during the pandemic, we like a lot of scientists spent a lot of time and energy trying to help understanding immune responses to this virus, and immune memory to this virus, and what was involved in protective immunity. And we're certainly proud of the work that we did. And it was hard work. And after a while we were exhausted and we stopped.Shane Crotty (02:59):And then we came back to it after a while and said, well, the virus is still here. And so many people have contributed so much to better understanding the virus and creating vaccines. But there are clearly still things we don't understand. What are those biggest knowledge gaps and where might we be able to contribute? And really to me the biggest one was location, location, location. This is a virus that infects your nose, infects your upper airway—your nose, and throat, and oral cavity. And then obviously if you get severe disease, the severe disease and death are from the lungs. And it's just been a big knowledge gap in terms of understanding what actually occurs in those tissues immunologically and what is associated with protective immunity or what could be associated with protective immunity. And sort of looking forward what might be helpful for mucosal vaccine development from things that we could learn.Shane Crotty (04:12):So we started from what we would call the basics, and what does immune memory look like in the upper airways in normal people? And that hasn't been available really even in, and we started this two years ago, even in the biggest atlases published of the human body. There was no upper airway tissue representation at all. And that's because technically it's just tough to access and difficult to reproducibly get at. And so, we recruited people to a group of 20 to 30 people to come to LJI once a month, and just started testing out, published and unpublished sampling techniques to see were there ways where we could reproducibly sample immune cells in the upper airways from people. And once we got things, so the keys for us were you got to have enough cells that you can collect to learn something from. And luckily with modern techniques of flow cytometry and single cell sequencing, you don't need that many cells. And so, we could get a hundred thousand cells on a swab and that's enough to do a lot with. And second, how reproducible was it? So we showed, we had people come in every month for a year and we could reproducibly find the same things in their swab; same cell types in their swabs. And the third thing was that people would come back.Shane Crotty (06:05):We found that if you have good nurses doing the techniques, we could find ways that this would be a sampling approach that was tolerable and people would come back for repeat measures, which is really valuable to see what's happening in people over time. So that was what we started from in the study and built from.Eric Topol (06:27):And if I am correct, you sampled two places with the swabs, one in the nose and one of the throat. Or, I think one which you have in the paper as the MT for something about the median nasal turbinate and the other adenoid in the back of the throat. Is that right?Shane Crotty (06:50):So all the sampling is a swab into your nose. And when we were doing that, we were really excited to see the diversity of immune cells, particularly T cells and B cells, memory T cells and B cells that we isolated. They're like, wow, there's actually a lot of interesting immune memory up in there. And the lab said, oh, by the way, we're seeing T follicular helper cells (TFH). Now that happens to be my favorite cell type.Eric Topol (07:22):Why is that, Shane? Of all the cells, why do you say that's your favorite? I know you publish a lot on it.Shane Crotty (07:31):Because those are the T cells that are required for basically all neutralizing antibody responses. All high-quality antibody responses depend on—almost all high-quality antibody responses depend on—T cell help. That T cell help comes from T follicular helper cells. Antibody evolution is certainly one of the coolest processes of the immune system. And all of that depends on T follicular helper cells. So the fact that for example, you could get Omicron neutralizing antibodies even after only being vaccinated with ancestral vaccine, that's the immune system making guesses of what variants would look like. And those guesses come about through this antibody evolution that's driven by T follicular helper cells. So, it's really one of the most brilliant things the immune system does, and that's a cell type that's really key, but those processes happen in lymphoid tissue. That's what happens in lymph nodes and spleen. And here we were sampling epithelium, your nasal epithelium, so the cells didn't really belong there.Shane Crotty (08:37):And so, that's what turned the study in another direction. And we said, okay, let's figure out why is it that these cells are present in these swabs? And we had a couple of possibilities. One possibility was that the swab was going all the way back to the posterior wall of your nasopharynx, your top of your throat and sampling adenoid tissue. So adenoid tonsils and adenoids are a true lymphoid tissue and they're a mucosal lymphoid tissue. And so, we came up with multiple ways to validate that that's what we were testing. And in fact, it was the Sydney Ramirez, a clinician, and the ENTs involved who said, well, let's just look. And so, they actually did endoscopies with the swab to actually see where the swab went. We've got videos of the swabs going into the adenoid crypt in the back, and then we've got measurements of here are the cells that you find on those swabs.Shane Crotty (09:58):And what's cool about it is that, yes, so we did studies with two sets. We then shifted to doing studies with two sets of swabs. One where we essentially went “halfway back” where we were detecting that epithelium of your nasal passages and then one where it was all the way back and detecting the adenoid lymphoid tissue. So here we've got two different sites in your upper airways that are about an inch apart, and we're detecting essentially completely different cells of the immune system at those two places. And we tend to think of the cells present in that epithelial tissue as probably the s
Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Thank you for reading Ground Truths. This post is public so feel free to share it.Transcript with audio and external linksEric Topol (00:05):Hello, it's Eric Topol with Ground Truths, and I am really thrilled to have with me Professor Faisal Mahmood, who is lighting it up in the field of pathology with AI. He is on the faculty at Harvard Medical School, also a pathologist at Mass General Brigham and with the Broad Institute, and he has been publishing at a pace that I just can't believe we're going to review that in chronological order. So welcome, Faisal.Faisal Mahmood (00:37):Thanks so much for having me, Eric. I do want to mention I'm not a pathologist. My background is in biomedical imaging and computer science. But yeah, I work very closely with pathologists, both at Mass General and at the Brigham.Eric Topol (00:51):Okay. Well, you know so much about pathology. I just assume that you were actually, but you are taking computational biology to new levels and you're in the pathology department at Harvard, I take it, right?Faisal Mahmood (01:08):Yeah, I'm at the pathology department at Mass General Brigham. So the two hospitals are now integrated, so I'm at the joint department.Eric Topol (01:19):Good. Okay. Well, I'm glad to clarify that because as far as I knew you were hardcore pathologist, so you're changing the field in a way that is quite unique, I should say, because a number of years ago, deep learning was starting to get applied to pathology just like it was and radiology and ophthalmology. And we saw some early studies with deep learning whereby you could find so much more on a slide that otherwise would be not even looked at or considered or even that humans wouldn't be able to see. So maybe you could just take us back first to the deep learning phase before these foundation models that you've been building, just to give us a flavor for what was the warmup in this field?Faisal Mahmood (02:13):Yeah, so I think around 2016 and 2017, it was very clear to the computer vision community that deep learning was really the state of the art where you could have abstract feature representations that were rich enough to solve some of these fundamental classification problems in conventional vision. And that's around the time when deep learning started to be applied to everything in medicine, including pathology. So we saw some earlier cities in 2016 and 2017, mostly in machine learning conferences, applying this to very basic patch level pathology dataset. So then in 2018 and 2019, there were some studies in major journals including in Nature Medicine, showing that you could take large amounts of pathology data and classify what's known to us and including predicting what's now commonly referred to as non-human identifiable features where you could take a label and this could come from molecular data, other kinds of data like treatment response and so forth, and use that label to classify these images as responders versus non-responders or having a certain kind of mutation or not.(03:34):And what that does is that if there is a morphologic signal within the image, it would pick up on that morphologic signal even though humans may not have picked up on it. So it was a very exciting time of developing all of these supervised, supervised foundation models. And then I started working in this area around 2019, and one of the first studies we did was to try to see if we can make this a little bit more data efficient. And that's the CLAM method that we published in 2021. And then we took that method and applied it to the problem of cancers of unknown primary, that was also in 2021.Eric Topol (04:17):So just to review, in the phase of deep learning, which was largely we're talking about supervised with ground truth images, there already was a sign that you could pick up things like the driver mutation, the prognosis of the patient from the slide, you could structural variations, the origin of the tumor, things that would never have been conceived as a pathologist. Now with that, I guess the question is, was all this confined to whole slide imaging or could you somehow take an H&E slide conventional slide and be able to do these things without having to have a whole slide image?Faisal Mahmood (05:05):So at the time, most of the work was done on slides that were fully digital. So taking a slide and then digitizing the image and creating a whole slide image. But we did show in 2021 that you could put the slide under a microscope and then just capture it with a camera or just with a cell phone coupled to a camera, and then still make those predictions. So these models were quite robust to that kind of domain adaptation. And still I think that even today the slide digitization rate in the US remains at around 4%, and the standard of care is just looking at a glass light under a microscope. So it's very important to see how we can further democratize these models by just using the microscope, because most microscopes that pathologists use do have a camera attached to them. So can we somehow leverage that camera to just use a model that might be trained on a whole slide image, still work with the slide under a microscope?Eric Topol (06:12):Well, what you just said is actually a profound point that is only 4% of the slides are being reviewed digitally, and that means that we're still an old pathology era without the enlightenment of machine eyes. I mean these digital eyes that can be trained even without supervised learning as we'll get to see things that we'll never see. And to make, and I know we'll be recalling back in 2022, you and I wrote a Lancet piece about the work that you had done, which is very exciting with cardiac biopsies to detect whether a heart transplant was a rejection. This is a matter of life or death because you have to give more immunosuppression drugs if it's a rejection. But if you do that and it's not a rejection or you miss it, and there's lots of disagreement among pathologists, cardiac pathologists, regarding whether there's a transplant. So you had done some early work back then, and because much of what we're going to talk about, I think relates more to cancer, but it's across the board in pathology. Can you talk about the inner observer variability of pathologists when they look at regular slides?Faisal Mahmood (07:36):Yeah. So when I first started working in this field, my kind of thinking was that the slide digitization rate is very low. So how do we get people to embrace and adapt digital pathology and machine learning models that are trained on digital data if the data is not routinely digitized? So one of my kind of line of thinking was that if we focus on problems that are inherently so difficult that there isn't a good solution for them currently, and machine learning provides, or deep learning provides a tangible solution, people will be kind of forced to use these models. So along those lines, we started focusing on the cancers of unknown primary problem and the myocardial biopsy problem. So we know that the Cohen’s kappa or the intra-observer variability that also takes into account agreement by chance is around 0.22. So it's very, very low for endomyocardial biopsies. So that just means that there are a large number of patients who have a diagnosis that other pathologists might not agree with, and the downstream treatment regimen that's given is entirely based on that diagnosis. The same patient being diagnosed by a different cardiac pathologist could be receiving a very different regimen and could have a very, very different outcome.(09:14):So the goal for that study is published in Nature of Medicine in 2022, was to see if we could use deep learning to standardize that and have it act as an assistive tool for cardiac pathologists and whether they give more standardized responses when they're given a machine learning based response. So that's what we showed, and it was a pleasure to write that corresponding piece with you in the Lancet.Eric Topol (09:43):Yeah, no, I mean I think that was two years ago and so much has happened since then. So now I want to get into this. You've been on a tear every month publishing major papers and leading journals, and I want to just go back to March and we'll talk about April, May, and June. So back in March, you published two foundation models, UNI and CONCH, I believe, both of these and back-to-back papers in Nature Medicine. And so, maybe first if you could explain the foundation model, the principle, how that's different than the deep learning network in terms of transformers and also what these two different, these were mega models that you built, how they contributed to help advance the field.Faisal Mahmood (10:37):So a lot of the early work that we did relied on extracting features from a resonant trained on real world images. So by having these features extracted, we didn't need to train these models end to end and allowed us to train a lot of models and investigate a lot of different aspects. But those features that we used were still based on real world images. What foundation models led us do is they leveraged self supervised learning and large amounts of data that would be essentially unlabeled to extract rich feature representations from pathology images that can then be used for a variety of different downstream tasks. So we basically collected as much data as we could from the Brigham and MGH and some public sources while trying to keep it as diverse as possible. So the goal was to include infectious, inflammatory, neoplastic all everything across the pathology department while still being as diverse as possible, including normal tissue, everything.(11:52):And the hypothesis there, and that's been just recently confirmed that the hypothesis was that diversity would matter much more than the quantity of data. So i
Recently, a series of papers were published in Nature and Nature journals illuminating the physiologic effects of exercise from an NIH initiative called MoTrPAC. To understand the wealth of new findings, I spoke with Professor Euan Ashley, who, along with Matt Wheeler, heads up the bioinformatics center.Earlier this week, Stanford announced Euan Ashley will be the new Chair of the Department of Medicine. He has done groundbreaking work in human genomics, including rapid whole genome sequencing for critically ill patients and applying the technology for people with unknown diseases. A few years ago he published The Genome Odyssey book. As you’ll see from our conversation, he has also done extensive work on the science of exercise.Video snippet from our conversation. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Transcript with audio and external linksEric Topol (00:06):Well, hello, it's Eric Topol with Ground Truths, and I'm really delighted today to welcome my friend, Euan Ashley. He is the Roger and Joelle Burnell Chair of Genomics and Precision Health at Stanford. He's done pioneering work in genomics, but today we're going to talk about something very different, which he also is working in exercise. Exercise the cover of a Nature paper in May regarding this MoTrPAC, which we're going to talk about this big initiative to understand the benefits of exercise. But before I hand it over to Euan, and I just want to mention his description of the paper that he posted to summarize started with, “Exercise may be the single most potent medical intervention ever known.” So Euan welcome.Euan Ashley (01:01):Yeah, well, great. It's wonderful to be here, Eric, and so nice to see you.Eric Topol (01:06):Yeah. Well, we have a lot to talk about because exercise is a fascinating topic. And I guess maybe we'd start with the MoTrPAC, which is an interesting acronym that you all came up with. Maybe tell us a bit about that with the 800 rats and the 2,400 people and the 17,000 molecules, there’s a lot there.Euan Ashley (01:24):Right, right. Yeah. Well, first of all, of course, before you do any scientific study, especially with a large number of people in a consortium, you need a good acronym. So that was where we started with the idea was to focus on the molecular transducers of physical activity. As you pointed out there at the beginning, we really don’t have a more potent medical intervention, especially for prevention of disease. I mean, it’s just such a powerful thing that we have, and yet we don’t really understand how it works. And so, the MoTrPAC Consortium was designed to really work together, bring groups of people across the US together who all have some interest in exercise and some ability to measure molecules and really put together the world's largest study of exercise to try and start answering some of the questions about where the potency of this intervention come from.Eric Topol (02:20):So the first crop of papers, and there were several of them that came out all on the same day in Nature publications, was about the rats. The people part is incubating, but can you give us a skinny on, there was a lot there, but maybe you could just summarize what you thought were the main findings.Key MoTrPAC FindingsEuan Ashley (02:43):Yeah, of course, of course. And the MoTrPAC Consortium, I'll say first of all, yeah, large group is probably I think 36 principal investigators funded by the Common Fund. And so, it brings together large numbers of people, some of whom who spend most of their time thinking about let’s say animal exercise. Some have spent a lot of time thinking about humans in exercise and many of whom think about measuring technologies. And as you say, these first group of papers were focused on the rat study, but actually the study goes much more broadly than that. But of course, there are some advantages to the animal protocols. We can look at tissue and we'll talk about that in a moment. But the humans, of course, are where we're most interested in the end. And we do have tissues coming from humans blood and adipose tissue and skeletal muscle, but those are obviously the only organs we can really access.(03:31):So there's a rat study, which is this one we'll talk about, and that's aerobic exercise and training. There's human studies that include aerobic exercise, strengths studies as well. There's a study in kids, pediatric study and then also a study of people who are very fit because here we're focusing on the change from sedentary to fit. And so that gives us the key exercise signal. So this first crop of papers was really our first look, cross-tissue, cross multi-omics, so multiple different modalities of measurement. And I think, yeah, we were like about nine and a half thousand assays, 19 tissues, 25 different measurement platforms, and then four training points for these rats. So let's talk about the rats for a minute. What do they do? So they normally live at night. They're active at night. In this study, we reverse that so that we can actually do the studies during the day.(04:25):So we reverse their at night cycle and they do their treadmill exercise over the course of several weeks. They start with about 20 minutes, and they do more every day. There's a control group of rats that just get placed on the treadmill and then don't do any exercise. And so, this is a controlled study as well. And over the course of time, we work more, it's about eight weeks in total and then two days after each of those bouts of exercise. So it's not an acute study, we measure to see where we are. So we also have this time trajectory of exercise. So what did we find? I mean, I think the first thing I would say, we talked about just how potent exercise is. It's very, very clear from looking at all these tissues that when you exercise regularly, you are just a different person, or in this case a different rat.(05:15):Like literally every tissue is changed dramatically and some in quite surprising ways. So I give you a couple of the things that surprised me or that I thought were most interesting. The first thing was this question of how does exercise actually work? Because exercise is a stress. You go out and you pound the pavement or you're on the bike or whatever, and then your body recovers. And so, there's been this idea, it's referred to as hormesis, this idea that some of the benefit of exercise might come from this recurrent stress. So your body learns how to deal with stress. And so given that we were very interested that this heat shock response was so prominent across multiple tissues. So heat shock proteins are molecular chaperones and they take care of protein folding to make sure it's appropriately done and they prevent protein aggregation. And when proteins need degraded because they're damaged, the heat shock system jumps in.(06:10):So perhaps not surprising, but pretty interesting that the heat shock proteins were very prominent part of the stress response to exercise. And remember, this is not acute exercise, so these are benefits that are built up over time, so that was one. A surprising one to me, the adrenal gland. So we're used to thinking of adrenaline as an epinephrine, as a stress hormone, but actually we saw dramatic changes in the adrenal gland and we don't necessarily think too much. You think about the exercising muscles, you think about the heart, we think about the lungs, when we think about exercise, you don't necessarily think that you're changing your adrenal gland, but it was one of the most changed tissues. The immune system was a common upregulated system. We saw that. And in fact, some of the tissues in which the immune genes were most changed were somewhat surprising.(07:02):So the small intestine, for example, was a place where there was a highest enrichment of immune mediated pathways. And then some tissues changed pretty early, like the small intestine changed after just one or two weeks of training other tissues like the brown adipose tissue. It was more like seven or eight weeks of training before we saw the real changes in there. So just one or two little things that struck out, but I think this really the first molecular map of exercise. So we're looking across the whole system across multiple modalities of measurement across multiple tissues.Simulating StressEric Topol (07:34):So as far as understanding the benefits of exercise, does this tell us that it really does simulate stress that it's conditioning the body to deal with stress as reflected by the various points you just summarized?Euan Ashley (07:51):Yeah, I think that is exactly right. I mean, part of what we were trying to understand was in what way are you changed after you do exercise regularly? And I think if we think about things that are positive, then the ability to deal with stress at a cellular level, quite literally repair mechanisms seems to be a big part of it. The other aspect that was interesting is that when you're measuring this many analytes, you can also compare that with disease. And so, we understand that exercises is preventive benefit against disease. So in some cases, and this was work highlighted by my colleague Maléne Lindholm in the mitochondrial paper that came along with the main paper and she looked with a team across all mitochondrial changes across all of the tissues of the cell. So these are the workhorses of the individual cells that like the batteries inside the cells of the mitochondria.(08:54):And we saw big changes across, it's not surprisingly, but it's the energy source for cells, big changes across many tissues. But interestingly for two specific really important diseases, a liver disease in one case and type 2 diabetes on the other, it was very clear that the training upregulated a network that was exactly the opposite of that of the disease. And so, it really was intervening in a way that was very specific
A book that reads like a novel; it’s humorous, it’s a love story. Dr. Christopher Labos, an imaginative cardiologist and epidemiologist at McGill University, takes us through multiple longstanding misconceptions about different foods and drinks, and along the way provides outstanding educational value.Video snippet from our conversation. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Transcript with external links and links to the audio recordingEric Topol (00:07):Hello, it's Eric Topol with Ground Truths, and with me today is a cardiologist, Chris Labos from Montreal, who has written an extraordinary book. I just read it on my Kindle, “Does Coffee Cause Cancer? And 8 More Myths about the Food We Eat. Chris teaches at McGill University. He is a prolific writer at the Montreal Gazette and Canadian broadcast system, CBC, CJAD radio, CTV News. And he also has a podcast on the Body of Evidence and he probably has other stuff, but welcome Chris.Christopher Labos (00:49):Hello. Hello. Hello. Thank you for having me. It is a great honor to be on your podcast. I am in awe of the work that you've been doing, I mean, for all your career, but especially during Covid. So it's a big thrill for me to be on the podcast.Eric Topol (01:03):Well, for me, I have to say I learned about a person who is not only remarkably imaginative but also humorous. And so, have you ever done standup comedy?Christopher Labos (01:16):I have not. Although I was asked to chair the research awards that we did here at McGill one year because I've been doing local media stuff and they said, can you come and be like the MC? And I said, sure. And I said, do you want me to be funny? And they were like, well, if you can. And I went up there and people were laughing and laughing and laughing and then people, like some of my former attendings had come up to me and they're like, Chris, I don't remember you being this funny as a resident. And I was like, well, I guess you come into your own when you start your own career. But I think people were very, it's tough MCing a research awards because you're essentially, it's kind of like a high school graduation where you don't read the names in alphabetical order, right? It's like one name after the other. And I went up there and I tried to throw in a little bit of humor and people seem to like it. So I think that was the first, that was when I started to realize, oh, if you inject a little bit of levity into what you're doing, it tends to resonate a little bit more with people.Eric Topol (02:13):Well, no question about that. And what I love about this book is that it wasn't anything like I thought it was going to be.Eric Topol (02:21):Amazing. It was a surprise. So basically you took these nine myths, which we'll talk to, hopefully we'll get to several of them, but you didn't just get into that myth. You get into teaching medical statistics, how to read papers, all the myths. I mean, you are the master debunker with entertainment, with funny stuff. It's really great. So this is great, before we get into some of these myths and for you to amplify, but this is a gift of communication, science communication that is you get people to learn about things like p-hacking and you throw in love stories and all kinds of stuff. I mean, I don't know how you can dream this stuff up. I really don't.Christopher Labos (03:10):I sort of look back at the inception of this. This book did have sort of a few iterations. And I think the first time I was thinking about it, I mean I wrote it during Covid and so I was really thinking about this type of stuff. It's like how do we educate the public to become better consumers of scientific information? Because there was a lot of nonsense during Covid. So teaching them about confounding, which I think through a lot of people when we started talking about low vitamin D levels and Covid and outcomes and all that. And so, I started like, how do I write this type of book? And I thought, yeah, this should probably be a serious science book. And the first version of it was a very serious science book. And then the idea came and try to make it a conversation. And I think I sort of wrote it.(04:02):There's a book that may not be that popular in the US but it was kind of popular here in Canada. It was called The Wealthy Barber. And it was all about personal finance. And the idea of the book was these people would go into a barbershop and the barber would talk to them about how to save money and how to invest in all that. And it was fairly popular and people liked that back and forth. And I said, oh, maybe I could do something like that. And then I wrote the first chapter of the doctor who goes in to talk to the barista and I showed it to a friend of mine. I said, what do you think? Do you think this would work? And her response to me by email was two lines. It was pretty good period. But I kept expecting him to ask her out at the end. And the minute she said that I thought, oh my God, this is a love story. And so, I reshaped everything to make this a love story. And I don't think the publishers were expecting that either because they were like, the first comment from the editor was, most science books don't have a narrative arc to them in character, but this one does. So there you go.Eric Topol (05:00):This is a unique book. I hope that people who listen or read the transcript will realize that this is a gift. It's a model of communication and it just is teaching things almost like you don't realize it. You're just learning all this stuff. So let's get into some of these because they're just masterful. I guess I should start ask you, you have nine of them. You could have picked 20 more, but which one is your favorite? Or do you have one?Christopher Labos (05:31):I think the one, it's hard to say. I think the first one in the book is the vitamin C one. And I think it's the most interesting one to explain to people, not just because vitamin C to fight the common cold is so pervasive as a product and a thing that people believe. But it also, I think has the greatest opportunity to teach people about what is one of the most important ones, which is subgroup analysis and p-hacking. And it's so easy to bring that back into a comedic level with some of the graphs that I put in there. I think a close second would probably be the coffee one where I was talking about selection bias, because those examples of online dating and then all the jokes that came from it. And it's hard to say how much of it was the subject and how much of it was the character.(06:21):Because I'd always heard stories of authors when they say like, oh, the characters will tell me what to say. And I always thought that sounds like bollocks. How could that be possible? You're the author, you write what's on the page. But then the minute I started actually writing it and started envisaging these characters, all of a sudden the characters took on a life of their own and they were dictating how the story ended up. So the coffee one I think is also good too. And I guess it became the title of the book. So I guess that's a good indication that was popular. But when you can really spin it out and make it obvious to people using common examples, I think those are interesting ones. So the vitamin C and the coffee ones, I think were probably the most interesting.Eric Topol (07:02):Let's take those first because you've mentioned them and then hopefully we'll get into some others. Now in the vitamin C, you're going on a plane and you hook up with this guy, Jim, on the plane. I know none of this stuff really happened, and you're explaining to him the famous ISIS-2 trial about the Gemini and Libra subgroup. So for those of people who are listening, can you review that? Because that of course is just one of so many things you get into.Christopher Labos (07:33):I know it's almost amazing how short a memory we have in medicine, right? And again, this is sort of surprising me. I sort of knew the study and then I went back, and I looked at it and I thought ISIS-2 was in 1988. That's not that long ago. The fact that we didn't give aspirin. So for people who don't know, I mean, we did not give aspirin to people with cardiac disease for a very long time. And it was really from 1988 afterwards. So relatively recently, I mean I realized it's been a couple of decades, but still. So ISIS-2 was really the first trial to show that if you give aspirin to somebodywhen they're having a heart attack, you see a benefit. But what was fascinating in the study was this one subgroup analysis of people in whom it did not work.(08:19):And when I give public lectures, I often use this example because it's such a beautiful teaching case, and I go ask people, what do you think it was? And people are like, oh, hemophiliacs, smokers, people who drink alcohol. And then you find out, no, the subgroup in whom aspirin does not work is Geminis and Libras. And everybody sort of laughs and they think it's funny. And it's a beautiful example because a lot of people think it's like, oh, it was a joke or it was sort of silly science. But no, it was actually done purposefully. And the authors put that in there because they wanted to make the point that subgroup analysis are potentially misleading. And I sort of am a little bit in awe of, I mean the power or the intelligence to actually make it a point with the editors like, no, we're going to put this in here essentially as a teaching tool.(09:09):And it's amazing to me that we're still using it as a teaching tool decades after the fact. But it was just to show that when you have these tables where you have umpteen subgroup analysis, just by random chance, you will get some spurious results. And though our brain understands that Zodiac signs have nothing to do with the effectiveness of aspirin, you do the same subgroup analysis and diabetics and non-diabetics, and eve
The most enthralling conversation I’ve ever had with anyone on cancer. It’s with Charlie Swanton who is a senior group leader at the Francis Crick Institute, the Royal Society Napier Professor in Cancer and medical oncologist at University College London, co-director of Cancer Research UK.Video snippet from our conversation. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Transcript with audio links and many external linksEric Topol (00:07):Well, hello, this is Eric Topol with Ground Truths, and I am really fortunate today to connect us with Charlie Swanton, who is if not the most prolific researcher in the space of oncology and medicine, and he's right up there. Charlie is a physician scientist who is an oncologist at Francis Crick and he heads up the lung cancer area there. So Charlie, welcome.Charles Swanton (00:40):Thank you, Eric. Nice to meet you.Learning from a FailureEric Topol (00:43):Well, it really is a treat because I've been reading your papers and they're diverse. They're not just on cancer. Could be connecting things like air pollution, it could be Covid, it could be AI, all sorts of things. And it's really quite extraordinary. So I thought I'd start out with a really interesting short paper you wrote towards the end of last year to give a sense about you. It was called Turning a failing PhD around. And that's good because it's kind of historical anchoring. Before we get into some of your latest contributions, maybe can you tell us about that story about what you went through with your PhD?Charles Swanton (01:26):Yeah, well thank you, Eric. I got into research quite early. I did what you in the US would call the MD PhD program. So in my twenties I started a PhD in a molecular biology lab at what was then called the Imperial Cancer Research Fund, which was the sort of the mecca for DNA tumor viruses, if you like. It was really the place to go if you wanted to study how DNA tumor viruses worked, and many of the components of the cell cycle were discovered there in the 80s and 90s. Of course, Paul Nurse was the director of the institute at the time who discovered cdc2, the archetypal regulator of the cell cycle that led to his Nobel Prize. So it was a very exciting place to work, but my PhD wasn't going terribly well. And sort of 18, 19 months into my PhD, I was summoned for my midterm reports and it was not materializing rapidly enough.(02:25):And I sat down with my graduate student supervisors who were very kind, very generous, but basically said, Charlie, this isn't going well, is it? You've got two choices. You can either go back to medical school or change PhD projects. What do you want to do? And I said, well, I can't go back to medical school because I’m now two years behind. So instead I think what I'll do is I'll change PhD projects. And they asked me what I'd like to do. And back then we didn't know how p21, the CDK inhibitor bound to cyclin D, and I said, that's what I want to understand how these proteins interact biochemically. And they said, how are you going to do that? And I said, I'm not too sure, but maybe we'll try yeast two-hybrid screen and a mutagenesis screen. And that didn't work either. And in the end, something remarkable happened.(03:14):My PhD boss, Nic Jones, who's a great guy, still is, retired though now, but a phenomenal scientist. He put me in touch with a colleague who actually works next door to me now at the Francis Crick Institute called Neil McDonald, a structural biologist. And they had just solved, well, the community had just solved the structure. Pavletich just solved the structure of cyclin A CDK2. And so, Neil could show me this beautiful image of the crystal structure in 3D of cyclin A, and we could mirror cyclin D onto it and find the surface residue. So I spent the whole of my summer holiday mutating every surface exposed acid on cyclin D to an alanine until I found one that failed to interact with p21, but could still bind the CDK. And that little breakthrough, very little breakthrough led to this discovery that I had where the viral cyclins encoded by Kaposi sarcoma herpes virus, very similar to cyclin D, except in this one region that I had found interactive with a CDK inhibitor protein p21.(04:17):And so, I asked my boss, what do you think about the possibility this cyclin could have evolved from cyclin D but now mutated its surface residues in a specific area so that it can't be inhibited by any of the control proteins in the mammalian cell cycle? He said, it's a great idea, Charlie, give it a shot. And it worked. And then six months later, we got a Nature paper. And that for me was like, I cannot tell you how exciting, not the Nature paper so much as the discovery that you were the first person in the world to ever see this beautiful aspect of evolutionary biology at play and how this cyclin had adapted to just drive the cell cycle without being inhibited. For me, just, I mean, it was like a dream come true, and I never experienced anything like it before, and I guess it's sizes the equivalent to me of a class A drug. You get such a buzz out of it and over the years you sort of long for that to happen again. And occasionally it does, and it's just a wonderful profession.Eric Topol (05:20):Well, I thought that it was such a great story because here you were about to fail. I mean literally fail, and you really were able to turn it around and it should give hope to everybody working in science out there that they could just be right around the corner from a significant discovery.Charles Swanton (05:36):I think what doesn't break you makes you stronger. You just got to plow on if you love it enough, you'll find a way forward eventually, I hope.Tracing the Evolution of Cancer (TRACERx)Eric Topol (05:44):Yeah, no question about that. Now, some of your recent contributions, I mean, it's just amazing to me. I just try to keep up with the literature just keeping up with you.Charles Swanton (05:58):Eric, it's sweet of you. The first thing to say is it's not just me. This is a big community of lung cancer researchers we have thanks to Cancer Research UK funded around TRACERx and the lung cancer center. Every one of my papers has three corresponding authors, multiple co-first authors that all contribute in this multidisciplinary team to the sort of series of small incremental discoveries. And it's absolutely not just me. I've got an amazing team of scientists who I work with and learn from, so it's sweet to give me the credit.Eric Topol (06:30):I think what you're saying is really important. It is a team, but I think what I see through it all is that you're an inspiration to the team. You pull people together from all over the world on these projects and it's pretty extraordinary, so that's what I would say.Charles Swanton (06:49):The lung community, Eric, the lung cancer community is just unbelievably conducive to collaboration and advancing understanding of the disease together. It's just such a privilege to be working in this field. I know that sounds terribly corny, but it is true. I don't think I recall a single email to anybody where I've asked if we can collaborate where they've said, no, everybody wants to help. Everybody wants to work together on this challenge. It's just such an amazing field to be working in.Eric Topol (07:19):Yeah. Well I was going to ask you about that. And of course you could have restricted your efforts or focused on different cancers. What made you land in lung cancer? Not that that's only part of what you're working on, but that being the main thing, what drew you to that area?Charles Swanton (07:39):So I think the answer to your question is back in 2008 when I was looking for a niche, back then it was lung cancer was just on the brink of becoming an exciting place to work, but back then nobody wanted to work in that field. So there was a chair position in thoracic oncology and precision medicine open at University College London Hospital that had been open, as I understand it for two years. And I don't think anybody had applied. So I applied and because I was the only one, I got it and the rest is history.(08:16):And of course that was right at the time when the IPASS draft from Tony Mok was published and was just a bit after when the poster child of EGFR TKIs and EGFR mutant lung cancer had finally proven that if you segregate that population of patients with EGFR activating mutation, they do incredibly well on an EGFR inhibitor. And that was sort of the solid tumor poster child along with Herceptin of precision medicine, I think. And you saw the data at ASCO this week of Lorlatinib in re-arranged lung cancer. Patients are living way beyond five years now, and people are actually talking about this disease being more like CML. I mean, it's extraordinary the progress that's been made in the last two decades in my short career.Eric Topol (09:02):Actually, I do want to have you put that in perspective because it's really important what you just mentioned. I was going to ask you about this ASCO study with the AKT subgroup. So the cancer landscape of the lung has changed so much from what used to be a disease of cigarette smoking to now one of, I guess adenocarcinoma, non-small cell carcinoma, not related to cigarettes. We're going to talk about air pollution in a minute. This group that had, as you say, 60 month, five year plus survival versus what the standard therapy was a year plus is so extraordinary. But is that just a small subgroup within small cell lung cancer?Charles Swanton (09:48):Yes, it is, unfortunately. It’s just a small subgroup. In our practice, probably less than 1% of all presentations often in never smokers, often in female, never smokers. So it is still in the UK at least a minority subset of adenocarcinomas, but it's still, as you rightly say, a minority of patients that we can make a big difference to with a drug that's pretty wel
In this podcast, Thomas Czech, Distinguished Professor at the University of Colorado, Boulder, with a lineage of remarkable contributions on RNA, ribozyme, and telomeres, discuss why RNA is so incredibly versatile.Video snippet from our conversation. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Transcript with links to the audio and external linksEric Topol (00:07):Well, hello, this is Eric Topol from Ground Truths, and it's really a delight for me to welcome Tom Cech who just wrote a book, the Catalyst, and who is a Nobel laureate for his work in RNA. And is at the University of Colorado Boulder as an extraordinary chemist and welcome Tom.Tom Cech (00:32):Eric, I'm really pleased to be here.The RNA GuyEric Topol (00:35):Well, I just thoroughly enjoyed your book, and I wanted to start out, if I could, with a quote, which gets us right off the story here, and let me just get to it here. You say, “the DNA guy would need to become an RNA guy. Though I didn’t realize it at the time, jumping ship would turn out to be the most momentous decision in my life.” Can you elaborate a bit on that?Tom Cech (01:09):As a graduate student at Berkeley, I was studying DNA and chromosomes. I thought that DNA was king and really somewhat belittled the people in the lab next door who were working on RNA, I thought it was real sort of second fiddle material. Of course, when RNA is acting just as a message, which is an important function, a critical function in all life on earth, but still, it's a function that's subservient to DNA. It's just copying the message that's already written in the playbook of DNA. But little did I know that the wonders of RNA were going to excite me and really the whole world in unimaginable ways.Eric Topol (02:00):Well, they sure have, and you've lit up the world well before you had your Nobel Prize in 1989 was Sid Altman with ribozyme. And I think one of the things that struck me, which are so compelling in the book as I think people might know, it's divided in two sections. The first is much more on the biology, and the second is much more on the applications and how it's changing the world. We'll get into it particularly in medicine, but the interesting differentiation from DNA, which is the one trick pony, as you said, all it does is store stuff. And then the incredible versatility of RNA as you discovered as a catalyst, that challenging dogma, that proteins are supposed to be the only enzymes. And here you found RNA was one, but also so much more with respect to genome editing and what we're going to get into here. So I thought what we might get into is the fact that you kind of went into the scum of the pond with this organism, which by the way, you make a great case for the importance of basic science towards the end of the book. But can you tell us about how you, and then of course, many others got into the Tetrahymena thermophila, which I don't know that much about that organism.Tom Cech (03:34):Yeah, it's related to Tetrahymena is related to paramecium, which is probably more commonly known because it's an even larger single celled animal. And therefore, in an inexpensive grade school microscope, kids can look through and see these ciliated protozoa swimming around on a glass slide. But I first learned about them when I was a postdoc at MIT and I would drive down to Joe Gall's lab at Yale University where Liz Blackburn was a postdoc at the time, and they were all studying Tetrahymena. It has the remarkable feature that it has 10,000 identical copies of a particular gene and for a higher organism, one that has its DNA in the nucleus and does its protein synthesis in the cytoplasm. Typically, each gene's present in two copies, one from mom, one from dad. And if you're a biochemist, which I am having lots of stuff is a real advantage. So 10,000 copies of a particular gene pumping out RNA copies all the time was a huge experimental advantage. And that's what I started working on when I started my own lab at Boulder.Eric Topol (04:59):Well, and that's where, I guess the title of the book, the Catalyst ultimately, that grew into your discovery, right?Tom Cech (05:08):Well, at one level, yes, but I also think that the catalyst in a more general conversational sense means just facilitating life in this case. So RNA does much more than just serve as a biocatalyst or a message, and we'll get into that with genome editing and with telomerase as well.The Big Bang and 11 Nobel Prizes on RNA since 2000Eric Topol (05:32):Yes, and I should note that as you did early in the book, that there's been an 11 Nobel prize awardees since 2000 for RNA work. And in fact, we just had Venki who I know you know very well as our last podcast. And prior to that, Kati Karikó, Jennifer Doudna who worked in your lab, and the long list of people working RNA in the younger crowd like David Liu and Fyodor Urnov and just so many others, we need to have an RNA series because it's just exploding. And that one makes me take you back for a moment to 2007. And when I was reading the book, it came back to me about the Economist cover. You may recall almost exactly 17 years ago. It was called the Biology’s Big Bang – Unravelling the secrets of RNA. And in that, there was a notable quote from that article. Let me just get to that. And it says, “it is probably no exaggeration to say that biology is now undergoing its neutron moment.”(06:52):This is 17 years ago. “For more than half a century the fundamental story of living things has been a tale of the interplay between genes, in the form of DNA, and proteins, which is genes encode and which do the donkey work of keeping living organisms living. The past couple of years, 17 years ago, however, has seen the rise and rise of a third type of molecule, called RNA.” Okay, so that was 2007. It's pretty extraordinary. And now of course we're talking about the century of biology. So can you kind of put these last 17 years in perspective and where we're headed?Tom Cech (07:34):Well, Eric, of course, this didn't all happen in one moment. It wasn't just one big bang. And the scientific community has been really entranced with the wonders of RNA since the 1960s when everyone was trying to figure out how messenger RNA stored the genetic code. But the general public has been really kept in the dark about this, I think. And as scientists, were partially to blame for not reaching out and sharing what we have found with them in a way that's more understandable. The DNA, the general public's very comfortable with, it's the stuff of our heredity. We know about genetic diseases, about tracing our ancestry, about solving crimes with DNA evidence. We even say things like it's in my DNA to mean that it's really fundamental to us. But I think that RNA has been sort of kept in the closet, and now with the mRNA vaccines against Covid-19, at least everyone's heard of RNA. And I think that that sort of allowed me to put my foot in the door and say, hey, if you were curious about the mRNA vaccines, I have some more stories for you that you might be really interested in.RNA vs RNAEric Topol (09:02):Yeah, well, we'll get to that. Maybe we should get to that now because it is so striking the RNA versus RNA chapter in your book, and basically the story of how this RNA virus SARS-CoV-2 led to a pandemic and it was fought largely through the first at scale mRNA nanoparticle vaccine package. Now, that takes us back to some seminal work of being able to find, giving an mRNA to a person without inciting massive amount of inflammation and the substitution of pseudouridine or uridine in order to do that. Does that really get rid of all the inflammation? Because obviously, as you know, there's been some negativism about mRNA vaccines for that and also for the potential of not having as much immune cell long term activation. Maybe you could speak to that.Tom Cech (10:03):Sure. So the discovery by Kati Karikó and Drew Weissman of the pseudouridine substitution certainly went a long way towards damping down the immune response, the inflammatory response that one naturally gets with an RNA injection. And the reason for that is that our bodies are tuned to be on the lookout for foreign RNA because so many viruses don't even mess with DNA at all. They just have a genome made of RNA. And so, RNA replicating itself is a danger sign. It means that our immune system should be on the lookout for this. And so, in the case of the vaccination, it's really very useful to dampen this down. A lot of people thought that this might make the mRNA vaccines strange or foreign or sort of a drug rather than a natural substance. But in fact, modified nucleotides, nucleotides being the building blocks of RNA, so these modified building blocks such as pseudoU, are in fact found in natural RNAs more in some than in others. And there are about 200 modified versions of the RNA building blocks found in cells. So it's really not an unusual modification or something that's all that foreign, but it was very useful for the vaccines. Now your other question Eric had to do with the, what was your other question, Eric?Eric Topol (11:51):No, when you use mRNA, which is such an extraordinary way to get the spike protein in a controlled way, exposed without the virus to people, and it saved millions of lives throughout the pandemic. But the other question is compared to other vaccine constructs, there's a question of does it give us long term protective immunity, particularly with T cells, both CD8 cytotoxic, maybe also CD4, as I know immunology is not your main area of interest, but that's been a rub that's been put out there, that it isn't just a weaning of immunity from the virus, but also perhaps that the vaccines themselves are not as good for that purpose. Any thoughts on that?Tom Cech (12:43):Well, so my main thought on that is that this is a property of the virus more than of the vaccine.
Professor Venki Ramakrishnan, a Nobel laureate for his work on unraveling the structure of function of the ribosome, has written a new book WHY WE DIE which is outstanding. Among many posts and recognitions for his extraordinary work in molecular biology, Venki has been President of the Royal Society, knighted in 2012, and was made a Member of the Order of Merit in 2022. He is a group leader at the MRC Laboratory of Molecular Biology research institute in Cambridge, UK.A brief video snippet of our conversation below. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are available on Apple and Spotify.Transcript with links to audio and external linksEric Topol (00:06):Hello, this is Eric Topol with Ground Truths, and I have a really special guest today, Professor Venki Ramakrishnan from Cambridge who heads up the MRC Laboratory of Molecular Biology, and I think as you know a Nobel laureate for his seminal work on ribosomes. So thank you, welcome.Venki Ramakrishnan (00:29):Thank you. I just want to say that I'm not the head of the lab. I'm simply a staff member here.Eric Topol (00:38):Right. No, I don't want to give you more authority than you have, so that was certainly not implied. But today we're here to talk about this amazing book, Why We Die, which is a very provocative title and it mainly gets into the biology of aging, which Venki is especially well suited to be giving us a guided tour and his interpretations and views. And I read this book with fascination, Venki. I have three pages of typed notes from your book.The Compression of MorbidityEric Topol (01:13):And we could talk obviously for hours, but this is fascinating delving into this hot area, as you know, very hot area of aging. So I thought I'd start off more towards the end of the book where you kind of get philosophical into the ethics. And there this famous concept by James Fries of compression of morbidity that's been circulating for well over two decades. That's really the big question about all this aging effort. So maybe you could give us, do you think there is evidence for compression of morbidity so that you can just extend healthy aging and then you just fall off the cliff?Venki Ramakrishnan (02:00):I think that's the goal of most of the sort of what I call the saner end of the aging research community is to improve our health span. That is the number of years we have healthy lives, not so much to extend lifespan, which is how long we live. And the idea is that you take those years that we now spend in poor health or decrepitude and compress them down to just very short time, so you're healthy almost your entire life, and then suddenly go into a rapid decline and die. Now Fries who actually coined that term compression or morbidity compares this to the One-Hoss Shay after poem by Oliver Wendell Holmes from the 19th century, which is about this horse carriage that was designed so perfectly that all its parts wore out equally. And so, a farmer was riding along in this carriage one minute, and the next minute he found himself on the ground surrounded by a heap of dust, which was the entire carriage that had disintegrated.Venki Ramakrishnan (03:09):So the question I would ask is, if you are healthy and everything about you is healthy, why would you suddenly go into decline? And it's a fair question. And every advance we've made that has kept us healthier in one respect or another. For example, tackling diabetes or tackling heart disease has also extended our lifespan. So people are not living a bigger fraction of their lives healthily now, even though we're living longer. So the result is we're spending the same or even more number of years with one or more health problems in our old age. And you can see that in the explosion of nursing homes and care homes in almost all western countries. And as you know, they were big factors in Covid deaths. So I'm not sure it can be accomplished. I think that if we push forward with health, we're also going to extend our lifespan.Venki Ramakrishnan (04:17):Now the argument against that comes from studies of these, so-called super centenarians and semi super centenarians. These are people who live to be over 105 or 110. And Tom Perls who runs the New England study of centenarians has published findings which show that these supercentenarians live extraordinarily healthy lives for most of their life and undergo rapid decline and then die. So that's almost exactly what we would want. So they have somehow accomplished compression of morbidity. Now, I would say there are two problems with that. One is, I don't know about the data sample size. The number of people who live over 110 is very, very small. The other is they may be benefiting from their own unique genetics. So they may have a particular combination of genetics against a broad genetic background that's unique to each person. So I'm not sure it's a generally translatable thing, and it also may have to do with their particular life history and lifestyle. So I don't know how much of what we learned from these centenarians is going to be applicable to the population as a whole. And otherwise, I don't even know how this would be accomplished. Although some people feel there's a natural limit to our biology, which restricts our lifespan to about 115 or 120 years. Nobody has lived more than 122. And so, as we improve our health, we may come up against that natural limit. And so, you might get a compression of morbidity. I'm skeptical. I think it's an unsolved problem.Eric Topol (06:14):I think I'm with you about this, but there's a lot of conflation of the two concepts. One is to suppress age related diseases, and the other is to actually somehow modulate control the biologic aging process. And we lump it all together as you're getting at, which is one of the things I loved about your book is you really give a balanced view. You present the contrarians and the different perspectives, the perspective about people having age limits potentially much greater than 120, even though as you say, we haven't seen anyone live past 122 since 1997, so it's quite a long time. So this, I think, conflation of what we do today as far as things that will reduce heart disease or diabetes, that’s age related diseases, that's very different than controlling the biologic aging process. Now getting into that, one of the things that's particularly alluring right now, my friend here in San Diego, Juan Carlos Belmonte, who went over from Salk, which surprised me to the Altos Labs, as you pointed on in the book.Venki Ramakrishnan (07:38):I'm not surprised. I mean, you have a huge salary and all the resources you want to carry out the same kind of research. I wouldn't blame any of these guys.Rejuvenating Animals With Yamanaka FactorsEric Topol (07:50):No, I understand. I understand. It's kind of like the LIV Golf tournament versus the PGA. It's pretty wild. At any rate, he's a good friend of mine, and I visited with him recently, and as you mentioned, he has over a hundred people working on this partial epigenetic reprogramming. And just so reviewing this for the uninitiated is giving the four Yamanaka transcription factors here to the whole animal or the mouse and rejuvenating old mice, essentially at least those with progeria. And then others have, as you point out in the book, done this with just old mice. So one of the things that strikes me about this, and in talking with him recently is it's going to be pretty hard to give these Yamanaka factors to a person, an intravenous infusion. So what are your thoughts about this rejuvenation of a whole person? What do you think?Venki Ramakrishnan (08:52):If I hadn't seen some of these papers would've been even more skeptical. But the data from, well, Belmonte's work was done initially on progeria mice. These are mice that age prematurely. And then people thought, well, they may not represent natural aging, and what you're doing is simply helping with some abnormal form of aging. But he and other groups have now done it with normal mice and observed similar effects. Now, I would say reprogramming is one way. It's a very exciting and powerful way to almost try to reverse aging because you're trying to take cells back developmentally. You're taking possibly fully differentiated cells back to stem cells and then helping regenerate tissue, which one of the problems as we age is we start losing stem cells. So we have stem cell depletion, so we can no longer replace our tissues as we do when we're younger. And I think anyone who knows who's had a scrape or been hurt in a fall or something knows this because if I fall and scrape my elbow and get a big bruise and my grandson falls, we repair our tissues at very, very different rates. It takes me days or weeks to recover, and my grandson's fine in two or three days. You can hardly see he had a scrape at all. So I think that's the thing that these guys want to do.Venki Ramakrishnan (10:48):And the problem is Yamanaka factors are cancer. Two of them are oncogenic factors, right? If you give Yamanaka factors to cells, you can take them all the way back to what are called pluripotent cells, which are the cells that are capable of forming any tissue in the body. So for example, a fertilized egg or an early embryo cells from the early embryo are pluripotent. They could form anything in the body. Now, if you do that to cells with Yamanaka factors, they often form teratomas, which are these unusual forms of cancer tumors. And so, I think there's a real risk. And so, what these guys say is, well, we'll give these factors transiently, so we'll only take the cells back a little ways and not all the way back to pluripotency. And that way if you start with skin cells, you'll get the progenitor stem cells for skin cells. And the problem with that is when you do it with a population, you're getting a distribution. Some of them will go back just a little, some of them may go back
After finishing her training in neurology at Mayo Clinic, Dr. Svetlana Blitshteyn started a Dysautonomia Clinic in 2009. Little did she know what was in store many years later when Covid hit!Ground Truths podcasts are on Apple and Spotify. The video interviews are on YouTubeTranscript with audio and external linksEric Topol (00:07):Well, hello, it's Eric Topol from Ground Truths, and I have with me a really great authority on dysautonomia and POTS. We will get into what that is for those who aren't following this closely. And it's Svetlana Blitshteyn who is a faculty member at University of Buffalo and a neurologist who long before there was such a thing as Covid was already onto one of the most important pathways of the body, the autonomic nervous system and how it can go off track. So welcome, Svetlana.Svetlana Blitshteyn (00:40):Thank you so much, Eric for having me. And I want to say it's a great honor for me to be here and just to be on the list with your other guests. It's remarkable and I'm very grateful and congratulations on being on the TIME100 Health list for influential people in 2024. And I am grateful for everything that you've done. As I mentioned earlier, I'm a big fan of your work before the pandemic and of course with Covid I followed your podcast and posts because you became the best science communicator and I'm very happy to see you being a strong advocate and thank you for everything you've done.Eric Topol (01:27):Well, that's so kind to you. And I think talking about getting things going before the pandemic, back in 2011, you published a book with Jodi Epstein Rhum called POTS - Together We Stand: Riding the Waves of Dysautonomia. And you probably didn't have an idea that there would be an epidemic of that more than a decade later, I guess, right?Svetlana Blitshteyn (01:54):Yeah, absolutely. Of course, SARS-CoV-2 is a new virus and we can technically say that Long Covid and post Covid complications could be viewed as a new entity. But practically speaking, we know that post-infectious syndromes have been happening for many decades. And so, the most common trigger for POTS happened to be infection, whether it was influenza or mononucleosis or Lyme or enterovirus. We knew this was happening. So I think it didn't take long for me and my colleagues to realize that we're going to be seeing a lot of patients with autonomic dysfunction after Covid.On the Front LineEric Topol (02:40):Well, one of the things that's important for having you on is you're in the front lines taking care of lots of patients with Long Covid and this postural orthostatic tachycardia syndrome (POTS). And I wonder if you could tell us what it's care for these patients because so many of them are incapacitated. As a cardiologist, I see of course some because of the cardiovascular aspects, but you are dealing with this on a day-to-day basis.Svetlana Blitshteyn (03:14):Yeah, absolutely. As early as April 2020 when everything was closed, I got a call from a young doctor in New York City saying that he had Covid and he couldn't recover, he couldn't return to the hospital. And his colleagues and cardiology attendants also had the same symptoms and the symptoms were palpitations, orthostatic intolerance, tachycardia, fatigue. Now, how he knew to contact me is that his sister was my patient with POTS before Covid pandemic. So he kind of figured this looked like my sister, let me check this out. And it didn't take long for me to have a lot of patience from the early wave. And then fairly soon, I think within months I was thinking, we have to write this up because this is important. And to some of us it was not news, but I was sure that to many physicians and public health officials, this would be something new.Svetlana Blitshteyn (04:18):So because I'm a busy clinician and don't have a lot of time for publications, I had to recruit a graduate student from McMasters and together we had this paper out, which was the first and largest case series on post Covid POTS and other autonomic disorders. And interestingly, even though it came out I think in 2021, by the time it was published, it became the most citable paper for me. And so I think from then on organizations and societies became interested in the work that I do because prior to that, I must say in the kind of a niche specialty was I don't think it was very popular or of interest to me.How Did You Get Interested in Dysautonomia?Eric Topol (05:06):Yeah, so that's why I wanted to just take a step back with you Svetlana, because you had the foresight to be the founder and director of the Dysautonomia Clinic when a lot of people weren't in touch with this as an important entity. What prompted you as a neurologist to really zoom in on dysautonomia when you started this clinic?Svetlana Blitshteyn (05:28):Sure. So the reasons are how I ended up in this field is kind of a convoluted road and the reasons are many, but one, I will say that I trained at Mayo Clinic where we received very good training on autonomic disorders and EMG and coming back to returning back to Buffalo, I began working at the large multiple sclerosis clinic because Western New York has a high incidence MS. And so, what they quickly realized in that clinic is that there was a subset of women who did not qualify for the diagnostic criteria of multiple sclerosis, yet they had a lot of the same symptoms and they were certainly very disabled. Now I recognize that these women had autonomic disorders of all sorts and small fiber neuropathy, and I think this population sort of grew and eventually I realized there is no one not only in Buffalo but the entire Western New York who is doing this work.Svetlana Blitshteyn (06:34):So I kind of fell into that. But another reason is actually more personal that I haven’t talked about. So years ago I was traveling to Toronto, Canada for a neurology meeting to present my big study on meningioma and hormone replacement therapy using Mayo Clinic database. And so, in that year, the study received top 10 noteworthy studies of the year award from the Society of Neuro-Oncology, and it was profiled in Reuters Health. Now, on the way back from the conference, I had the flu, and when they returned I could no longer walk the same hallways of the hospital where I walked previously. And no matter how hard I try to push my body, we all do this in medicine, we push through, I just couldn’t do it. No amount of wishing or positive thinking. And so, I think that’s how I came to know personally the post-infectious syndromes. And I think it almost became a duality of experiencing this and also practicing it.Eric Topol (07:52):No, that’s really striking and it wasn’t so common to hear about this post flu, but certainly it changed in 2020. So how does a person with POTS typically present to you?Clinical PresentationSvetlana Blitshteyn (08:08):So these are very important questions because what I want to stress is though POTS is one of the most common autonomic disorders. Even if you don’t have POTS by the diagnostic criteria, you may still have autonomic dysfunction and significant autonomic symptoms. How do they present? Well, they present like most Long Covid patients, the most common symptoms are orthostatic intolerance, fatigue, exercise intolerance, post exertional malaise, dizziness, tachycardia, brain fog. And these are common themes across the board in Long Covid patients, but also in pre-Covid post-acute infection syndrome patients. And you have to recognize because I think what I tell my colleagues is that oftentimes patients are not going to present to you saying, I have orthostatic intolerance. Many times they will say, I’m very tired. I can no longer go to the gym or when I go to the store, I have to be out of there in 15 minutes because the orthostatic intolerance symptoms come up.Svetlana Blitshteyn (09:22):So sometimes the patients themselves don’t recognize that and it’s up to us physicians to ask the right questions to get the information down. History is very important, knowing the pattern. And then of course, as I always say in all of my papers and lectures, you have to do a 10-minute stand test by measuring supine and standing blood pressure and heart rate on every Long Covid patients. And that’s how you spot those that have excessive postural tachycardia or their blood pressure dropping or so forth. So we have the tools. We don’t need fancy autonomic labs. We don’t even need a tilt table test. The diagnostic criteria for POTS is that you need to have either a 10-minute stand test or a tilt table test to get the diagnosis for POTS, orthostatic hypotension or even neurocardiogenic syncope. Now I think it's important to stress that even if a patient doesn't qualify, and let's say many patients with Long Covid will not elevate their heart rate by at least 30 beats per minute, it could be 20, it could be 25. These criteria are of course essential when we do research studies. But I think practically speaking, in patient care where everything is gray and nothing is black or white, especially in autonomic disorders, you really have to make a diagnosis saying, this sounds like autonomic dysfunction. Let me treat the patient for this problem.Eric Topol (11:07):Well, you brought up something that’s really important because doctors don’t have much time and they’re inpatient. They don’t wait 10 minutes to do a test to check your blood pressure. They send the patients for a tilt table, which nobody likes to have that test done, and it’s unnecessary added appointment and expense and whatnot. So that’s a good tip right there that you can get the same information just by checking the blood pressure and heart rate on standing for an extended period of time, which 10 minutes is a long time in the clinic of course. Now, what is the mechanism, what do you think is going on with the SARS-CoV-2 virus and its predilection to affect the autonomic nervous system? As you know, so many studies have questioned wh
“We haven't invested this much money into an infrastructure like this really until you go back to the pyramids”—Kate CrawfordTranscript with links to audio and external links. Ground Truths podcasts are on Apple and Spotify. The video interviews are on YouTube Eric Topol (00:06):Well, hello, this is Eric Topol with Ground Truths, and I'm really delighted today to welcome Kate Crawford, who we're very lucky to have as an Australian here in the United States. And she's multidimensional, as I've learned, not just a scholar of AI, all the dimensions of AI, but also an artist, a musician. We're going to get into all this today, so welcome Kate.Kate Crawford (00:31):Thank you so much, Eric. It's a pleasure to be here.Eric Topol (00:34):Well, I knew of your work coming out of the University of Southern California (USC) as a professor there and at Microsoft Research, and I'm only now learning about all these other things that you've been up to including being recognized in TIME 2023 as one of 100 most influential people in AI and it's really fascinating to see all the things that you've been doing. But I guess I'd start off with one of your recent publications in Nature. It was a world view, and it was about generative AI is guzzling water and energy. And in that you wrote about how these large AI systems, which are getting larger seemingly every day are needing as much energy as entire nations and the water consumption is rampant. So maybe we can just start off with that. You wrote a really compelling piece expressing concerns, and obviously this is not just the beginning of all the different aspects you've been tackling with AI.Exponential Growth, Exponential Concerns Kate Crawford (01:39):Well, we're in a really interesting moment. What I've done as a researcher in this space for a very long time now is really introduce a material analysis of artificial intelligence. So we are often told that AI is a very immaterial technology. It's algorithms in the cloud, it's objective mathematics, but in actual fact, it comes with an enormous material infrastructure. And this is something that I took five years to research for my last book, Atlas of AI. It meant going to the mines where lithium and cobalt are being extracted. It meant going into the Amazon fulfillment warehouses to see how humans collaborate with robotic and AI systems. And it also meant looking at the large-scale labs where training data is being gathered and then labeled by crowd workers. And for me, this really changed my thinking. It meant that going from being a professor for 15 years focusing on AI from a very traditional perspective where we write papers, we're sitting in our offices behind desks, that I really had to go and do these journeys, these field trips, to understand that full extractive infrastructure that is needed to run AI at a planetary scale.(02:58):So I've been keeping a very close eye on what would change with generative AI and what we've seen particularly in the last two years has been an extraordinary expansion of the three core elements that I really write about in Atlas, so the extraction of data of non-renewable resources, and of course hidden labor. So what we've seen, particularly on the resources side, is a gigantic spike both in terms of energy and water and that's often the story that we don't hear. We're not aware that when we're told about the fact that there gigantic hundred billion computers that are now being developed for the next stage of generative AI that has an enormous energy and water footprint. So I've been researching that along with many others who are now increasingly concerned about how we might think about AI more holistically.Eric Topol (03:52):Well, let's go back to your book, which is an extraordinary book, the AI Atlas and how you dissected not just the well power of politics and planetary costs, but that has won awards and it was a few years back, and I wonder so much has changed since then. I mean ChatGPT in late 2022 caught everybody off guard who wasn't into this knowing that this has been incubating for a number of years, and as you said, these base models are just extraordinary in every parameter you can think about, particularly the computing resource and consumption. So your concerns were of course registered then, have they gone to exponential growth now?Kate Crawford (04:45):I love the way you put that. I think you're right. I think my concerns have grown exponentially with the models. But I was like everybody else, even though I've been doing this for a long time and I had something of a heads up in terms of where we were moving with transformer models, I was also quite taken aback at the extraordinary uptake of ChatGPT back in November 2022 in fact, gosh, it still feels like yesterday it's been such an extraordinary timescale. But looking at that shift to a hundred million users in two months and then the sort of rapid competition that was emerging from the major tech companies that I think really took me by surprise, the degree to which everybody was jumping on the bandwagon, applying some form of large language model to everything and anything suddenly the hammer was being applied to every single nail.(05:42):And in all of that sound and fury and excitement, I think there will be some really useful applications of these tools. But I also think there's a risk that we apply it in spaces where it's really not well suited that we are not looking at the societal and political risks that come along with these approaches, particularly next token prediction as a way of generating knowledge. And then finally this bigger set of questions around what is it really costing the planet to build these infrastructures that are really gargantuan? I mean, as a species, we haven't invested this much money into an infrastructure like this really until you go back to the pyramids, you really got to go very far back to say that type of just gargantuan spending in terms of capital, in terms of labor, in terms of all of the things are required to really build these kinds of systems. So for me, that's the moment that we're in right now and perhaps here together in 2024, we can take a breath from that extraordinary 18 month period and hopefully be a little more reflective on what we're building and why and where will it be best used.Propagation of BiasesEric Topol (06:57):Yeah. Well, there's so many aspects of this that I'd like to get into with you. I mean, one of course, you're as a keen observer and activist in this whole space, you've made I think a very clear point about how our culture is mirrored in our AI that is our biases, and people are of course very quick to blame AI per se, but it seems like it's a bigger problem than just that. Maybe you could comment about, obviously biases are a profound concern about propagation of them, and where do you see where the problem is and how it can be attacked?Kate Crawford (07:43):Well, it is an enormous problem, and it has been for many years. I was first really interested in this question in the era that was known as the big data era. So we can think about the mid-2000s, and I really started studying large scale uses of data in scientific applications, but also in what you call social scientific settings using things like social media to detect and predict opinion, movement, the way that people were assessing key issues. And time and time again, I saw the same problem, which is that we have this tendency to assume that with scale comes greater accuracy without looking at the skews from the data sources. Where is that data coming from? What are the potential skews there? Is there a population that's overrepresented compared to others? And so, I began very early on looking at those questions. And then when we had very large-scale data sets start to emerge, like ImageNet, which was really perhaps the most influential dataset behind computer vision that was released in 2009, it was used widely, it was freely available.(09:00):That version was available for over a decade and no one had really looked inside it. And so, working with Trevor Paglen and others, we analyzed how people were being represented in this data set. And it was really quite extraordinary because initially people are labeled with terms that might seem relatively unsurprising, like this is a picture of a nurse, or this is a picture of a doctor, or this is a picture of a CEO. But then you look to see who is the archetypical CEO, and it's all pictures of white men, or if it's a basketball player, it's all pictures of black men. And then the labeling became more and more extreme, and there are terms like, this is an alcoholic, this is a corrupt politician, this is a kleptomaniac, this is a bad person. And then a whole series of labels that are simply not repeatable on your podcast.(09:54):So in finding this, we were absolutely horrified. And again, to know that so many AI models had trained on this as a way of doing visual recognition was so concerning because of course, very few people had even traced who was using this model. So trying to do the reverse engineering of where these really problematic assumptions were being built in hardcoded into how AI models see and interpret the world, that was a giant unknown and remains to this day quite problematic. We did a recent study that just came out a couple of months ago looking at one of the biggest data sets behind generative AI systems that are doing text to image generation. It's called LAION-5B, which stands for 5 billion. It has 5 billion images and text captions drawn from the internet. And you might think, as you said, this will just mirror societal biases, but it's actually far more weird than you might imagine.(10:55):It's not a representative sample even of the internet because particularly for these data sets that are now trying to use the ALT tags that are used around images, who uses ALT tags the most on the internet? Well, it's e-commerce sites and
If there’s one person you’d want to talk to about immunology, the immune system and Covid, holes in our knowledge base about the complex immune system, and where the field is headed, it would be Professor Iwasaki. And add to that the topic of Women in Science. Here’s our wide-ranging conversation.A snippet of the video, Full length Ground Truths videos are posted here and you can subscribe. Ground Truths is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.Transcript with many external link and links to the audio, recorded 30 April 2024 Eric Topol (00:06):Hello, it's Eric Topol and I'm really thrilled to have my friend Akiko Iwasaki from Yale, and before I start talking with Akiko, I just want to mention there aren't too many silver linings of the pandemic, but one for me was getting to know Professor Iwasaki. She is my go-to immunologist. I've learned so much from her over the last four years and she's amazing. She just, as you may know, she was just recently named one of the most influential people in the world by TIME100. [and also recognized this week in TIME 100 Health]. And besides that, she's been elected to the National Academy of Medicine, National Academy of Sciences. She's the president of the American Association of Immunologists and she's a Howard Hughes principal investigator. So Akiko, it's wonderful to have you to join into an extended discussion of things that we have of mutual interest.Akiko Iwasaki (01:04):Thank you so much, Eric, for having me. I equally appreciate all of what you do, and I follow your blog and tweets and everything. So thank you Eric.Eric Topol (01:14):Well, you are a phenom. I mean just, that's all I can say because I think it was so appropriate that TIME recognize your contributions, not just over the pandemic, but of course throughout your career, a brilliant career in immunology. I thought we'd start out with our topic of great interest on Long Covid. You've done seminal work here and this is an evolving topic obviously. I wonder what your latest thoughts are on the pathogenesis and where things are headed.Long CovidAkiko Iwasaki (01:55):Yeah, so as I have been saying throughout the pandemic, I think that Long Covid is not one disease. It's a collection of multiple diseases and that are sort of ending up in similar sets of symptoms. Obviously, there are over 200 symptoms and not everyone has the same set of symptoms, but what we are going for is trying to understand the disease drivers, so persistent viral infection is one of them. There are overwhelming evidence for that theory now, all the way from autopsy and biopsy studies to looking at peripheral blood RNA signatures as well as circulating spike protein and nucleocapsid proteins that are detected in people with Long Covid. Now whether that persistent virus or remnants of virus is driving the disease itself is unclear still. And that's why trials like the one that we are engaging with Harlan Krumholz on Paxlovid should tell us what percentage of the people are suffering from that type of driver and whether antivirals like Paxlovid might be able to mitigate those. If I may, I'd like to talk about three other hypotheses.Eric Topol (03:15):Yeah, I'd love for you to do that.Akiko Iwasaki (03:18):Okay, great. So the second hypothesis that we've been working on is autoimmune disease. And so, this is clearly happening in a subset of people, again, it's a heterogeneous disease, but we can actually not only look at reactogenicity of antibodies from people with Long Covid where we can transfer IgG from patients with Long Covid into an animal, a healthy animal, and really measure outcomes of a pathogenesis. So that's a functional evidence that antibodies in some people with Long Covid is really actually causing some of the damages that are occurring in vivo. And the third hypothesis is the reactivation of herpes viruses. So many of us adults have multiple latent herpes virus family members that are just dormant and are not really causing any pathologies. But in people with Long Covid, we're seeing elevated reactivation of viruses like Epstein-Barr virus (EBV) or Varicella-zoster virus (VZV) and that may again be just a signature of Long Covid, but it may also be driving some of the symptoms that people are suffering from.(04:32):So that's again, we see the signature over and over, not just our group, but multiple other groups, Michael Peluso's group, Jim Heath, and many others. So that's also an emerging evidence from multiple groups showing that. And finally, we think that inflammation that occurs during the acute phase can sort of chronically change some tissue tone. For instance, in the brain with Michelle Monje’s team, we developed a sort of localized mild Covid model of infection and showed that changes in microglia can be seen seven weeks post infection even though the virus is completely gone. So that means that inflammation that's established as a result of this initial infection can have prolonged sequence and sequela within the person and that may also be driving disease. And Eric, the reason we need to understand these diseases separately is because not only for diagnostic purposes, but for therapeutic purposes because to target a persistent virus is very different approach from targeting autoantibodies, for example.Eric Topol (05:49):Well, that's great. There's a lot to unpack there as you laid out four distinct paths that could result in the clinical syndrome and sequelae. I think you know I had the chance to have a really fun conversation with Michelle about their joint work that you've done, and she reminded me how she made a cold call to you to start as a collaboration, which I thought was fantastic. Look what that yielded. But yeah, this is fascinating because as I think you're getting at is that it may not be the same pathogenesis in any given individual so that all these, and even others might be operative. I guess maybe I first delve into the antibody story as you're well aware, we see after people get Covid a higher rate of autoimmune diseases crop up, which is really interesting because it seems to rev up self-directed immune response. And this I think many people haven't really noted yet, although obviously you're well aware of this, it's across all the different autoimmune diseases, connective tissue disease, not just one in particular. And it's, as you say, the idea that you could take the blood from a person suffering from Long Covid and give it to an experimental animal model and be able to recapitulate some of the abnormalities, it's really pretty striking. So the question I guess is if you were to do plasmapheresis and try to basically expunge these autoantibodies, wouldn't you expect people to have some symptomatic benefit pretty rapidly or is it just that the process is already far from the initiating step?Akiko Iwasaki (07:54):That's a great question. Plasmapheresis may be able to transiently improve the person if they're suffering from these autoantibody mediated diseases. People have reported, for example, IVIG treatment has dramatically improved their symptoms, but not in everybody. So it's really critical to understand who's suffering from this particular driver and appropriately treat those people. And there are many other very effective therapies in autoimmune disease field that can be repurposed for treating these patients as well.Eric Topol (08:34):The only clinical trial that has clicked so far, interestingly, came out of Hong Kong with different types of ways to manipulate the gut microbiome, which again, you know better than me is a major modulator of our immune system response. What are your thoughts about taking advantage of that way to somehow modulate this untoward immune response in people with this condition?Akiko Iwasaki (09:07):Yeah, so that is an exciting sort of development, and I don't mean to discount the importance of microbiome at all. It's just the drivers that are mentioning are something that can be directly linked to disease, but certainly dysbiosis and translocation of metabolites and microbiome itself could trigger Long Covid as well. So it's something that we're definitely keeping our eyes on. And as you say, Eric, the immune system is in intimate contact with the gut microbiome and also the gut is intimate contact with the brain. So there's a lot of connections that we really need to be paying attention to. So yeah, absolutely. This is a very exciting development.Eric Topol (09:57):And it is intriguing of course, the reactivation of viruses. I mean, we’ve learned in recent years how important EBV is in multiple sclerosis (MS). The question I have for you on that pathway, is this just an epiphenomena or do you actually think that could be a driving force in some people?Akiko Iwasaki (10:19):Yeah, so that's really hard to untangle in people. I mean, David Putrino and my team we're planning a clinical trial using Truvada. Truvada obviously is an HIV drug, but it has reported antiviral activity to Epstein-Barr virus (EBV) and others. So potentially we can try to interrogate that in people, but we're also developing mouse models that can sort of recapitulate EBV like viral reactivation and to see whether there's any sort of causal link between the reactivation and disease process.Eric Topol (10:57):Right now, recently there's been a bunch of anecdotes of people who get the glucagon-like peptide one (GLP-1) drugs which have a potent anti-inflammatory, both systemic and in the brain. I'd love to test these drugs, but of course these companies that make them or have other interests outside of Long Covid, do you think there's potential for a drug like that?Akiko Iwasaki (11:23):Yeah, so those drugs seem to have a lot of miraculous effects on every disease. So obviously it has to be used carefully because many people with Long Covid have issues with liver functions and other existing conditions that may
“Where do I think the next amazing revolution is going to come? … There’s no question that digital biology is going to be it. For the very first time in our history, in human history, biology has the opportunity to be engineering, not science.” —Jensen Huang, NVIDIA CEOAviv Regev is one of the leading life scientists of our time. In this conversation, we cover the ongoing revolution in digital biology that has been enabled by new deep knowledge on cells, proteins and genes, and the use of generative A.I .Transcript with audio and external linksEric Topol (00:05):Hello, it's Eric Topol with Ground Truths and with me today I've really got the pleasure of welcoming Aviv Regev, who is the Executive Vice President of Research and Early Development at Genentech, having been 14 years a leader at the Broad Institute and who I view as one of the leading life scientists in the world. So Aviv, thanks so much for joining.Aviv Regev (00:33):Thank you for having me and for the very kind introduction.The Human Cell AtlasEric Topol (00:36):Well, it is no question in my view that is the truth and I wanted to have a chance to visit a few of the principal areas that you have been nurturing over many years. First of all, the Human Cell Atlas (HCA), the 37 trillion cells in our body approximately a little affected by size and gender and whatnot, but you founded the human cell atlas and maybe you can give us a little background on what you were thinking forward thinking of course when you and your colleagues initiated that big, big project.Aviv Regev (01:18):Thanks. Co-founded together with my very good friend and colleague, Sarah Teichmann, who was at the Sanger and just moved to Cambridge. I think our community at the time, which was still small at the time, really had the vision that has been playing out in the last several years, which is a huge gratification that if we had a systematic map of the cells of the body, we would be able both to understand biology better as well as to provide insight that would be meaningful in trying to diagnose and to treat disease. The basic idea behind that was that cells are the basic unit of life. They're often the first level at which you understand disease as well as in which you understand health and that in the human body, given the very large number of individual cells, 37.2 trillion give or take, and there are many different characteristics.(02:16):Even though biologists have been spending decades and centuries trying to characterize cells, they still had a haphazard view of them and that the advancing technology at the time – it was mostly single cell genomics, it was the beginnings also of spatial genomics – suggested that now there would be a systematic way, like a shared way of doing it across all cells in the human body rather than in ways that were niche and bespoke and as a result didn't unify together. I will also say, and if you go back to our old white paper, you will see some of it that we had this feeling because many of us were computational scientists by training, including both myself and Sarah Teichmann, that having a map like this, an atlas as we call it, a data set of this magnitude and scale, would really allow us to build a model to understand cells. Today, we call them foundational models or foundation models. We knew that machine learning is hungry for these kinds of data and that once you give it to machine learning, you get amazing things in return. We didn't know exactly what those things would be, and that has been playing out in front of our eyes as well in the last couple of years.Spatial OmicsEric Topol (03:30):Well, that gets us to the topic you touched on the second area I wanted to get into, which is extraordinary, which is the spatial omics, which is related to the ability to the single cell sequencing of cells and nuclei and not just RNA and DNA and methylation and chromatin. I mean, this is incredible that you can track the evolution of cancer, that the old word that we would say is a tumor is heterogeneous, is obsolete because you can map every cell. I mean, this is just changing insights about so much of disease health mechanisms, so this is one of the hottest areas of all of life science. It's an outgrowth of knowing about cells. How do you summarize this whole era of spatial omics?Aviv Regev (04:26):Yeah, so there's a beautiful sentence in the search for lost time from Marcel Proust that I'm going to mess up in paraphrasing, but it is roughly that going on new journeys is not about actually going somewhere physically but looking with new eyes and I butchered the quote completely.[See below for actual quote.] I think that is actually what single cells and then spatial genomics or spatial omics more broadly has given us. It's the ability to look at the same phenomenon that we looked at all along, be it cancer or animal development or homeostasis in the lung or the way our brain works, but having new eyes in looking and because these new eyes are not just seeing more of something we've seen before, but actually seeing things that we couldn't realize were there before. It starts with finding cells we didn't know existed, but it's also the processes that these cells undergo, the mechanisms that actually control that, the causal mechanisms that control that, and especially in the case of spatial genomics, the ways in which cells come together.(05:43):And so we often like to think about the cell because it's the unit of life, but in a multicellular organism we just as much have to think about tissues and after that organs and systems and so on. In a tissue, you have this amazing orchestration of the interactions between different kinds of cells, and this happens in space and in time and as we're able to look at this in biology often structure is tightly associated to function. So the structure of the protein to the function of the protein in the same way, the way in which things are structured in tissue, which cells are next to each other, what molecules are they expressing, how are they physically interacting, really tells us how they conduct the business of the tissue. When the tissue functions well, it is this multicellular circuit that performs this amazing thing known as homeostasis.(06:36):Everything changes and yet the tissue stays the same and functions, and in disease, of course, when these connections break, they're not done in the right way you end up with pathology, which is of course something that even historically we have always looked at in the level of the tissue. So now we can see it in a much better way, and as we see it in a better way, we resolve better things. Yes, we can understand better the mechanisms that underlie the resistance to therapeutics. We can follow a temporal process like cancer as it unfortunately evolves. We can understand how autoimmune disease plays out with many cells that are actually bent out of shape in their interactions. We can also follow magnificent things like how we start from a single cell, the fertilized egg, and we become 37.2 trillion cell marvel. These are all things that this ability to look in a different way allows us to do.Eric Topol (07:34):It's just extraordinary. I wrote at Ground Truths about this. I gave all the examples at that time, and now there's about 50 more in the cardiovascular arena, knowing with single cell of the pineal gland that the explanation of why people with heart failure have sleep disturbances. I mean that's just one of the things of so many now these new insights it's really just so remarkable. Now we get to the current revolution, and I wanted to read to you a quote that I have.Digital BiologyAviv Regev (08:16):I should have prepared mine. I did it off the top of my head.Eric Topol (08:20):It's actually from Jensen Huang at NVIDIA about the digital biology [at top of the transcript] and how it changes the world and how you're changing the world with AI and lab in the loop and all these things going on in three years that you've been at Genentech. So maybe you can tell us about this revolution of AI and how you're embracing it to have AI get into positive feedbacks as to what experiment to do next from all the data that is generated.Aviv Regev (08:55):Yeah, so Jensen and NVIDIA are actually great partners for us in Genentech, so it's fun to contemplate any quote that comes from there. I'll actually say this has been in the making since the early 2010s. 2012 I like to reflect on because I think it was a remarkable year for what we're seeing right now in biology, specifically in biology and medicine. In 2012, we had the beginnings of really robust protocols for single cell genomics, the first generation of those, we had CRISPR happen as a method to actually edit cells, so we had the ability to manipulate systems at a much better way than we had before, and deep learning happened in the same year as well. Wasn't that a nice year? But sometimes people only realize the magnitude of the year that happened years later. I think the deep learning impact people realized  first, then the single cells, and then the CRISPR, then the single cells.(09:49):So in order maybe a little bit, but now we're really living through what that promise can deliver for us. It's still the early days of that, of the delivery, but we are really seeing it. The thing to realize there is that for many, many of the problems that we try to solve in biomedicine, the problem is bigger than we would ever be able to perform experiments or collect data. Even if we had the genomes of all the people in the world, all billions and billions of them, that's just a smidge compared to all of the ways in which their common variants could combine in the next person. Even if we can perturb and perturb and perturb, we cannot do all of the combinations of perturbations even in one cell type, let alone the many different cell types that are out there. So even if we searched for all the small molecules that are out there, the
loading