DiscoverLatent Space: The AI Engineer Podcast
Latent Space: The AI Engineer Podcast
Claim Ownership

Latent Space: The AI Engineer Podcast

Author: swyx + Alessio

Subscribed: 427Played: 10,268
Share

Description

The podcast by and for AI Engineers! In 2023, over 1 million visitors came to Latent Space to hear about news, papers and interviews in Software 3.0.

We cover Foundation Models changing every domain in Code Generation, Multimodality, AI Agents, GPU Infra and more, directly from the founders, builders, and thinkers involved in pushing the cutting edge. Striving to give you both the definitive take on the Current Thing down to the first introduction to the tech you'll be using in the next 3 months! We break news and exclusive interviews from OpenAI, tiny (George Hotz), Databricks/MosaicML (Jon Frankle), Modular (Chris Lattner), Answer.ai (Jeremy Howard), et al.

Full show notes always on https://latent.space

www.latent.space
117 Episodes
Reverse
The free livestreams for AI Engineer Summit are now up! Please hit the bell to help us appease the algo gods. We’re also announcing a special Online Track later today.Today’s Deep Research episode is our last in our series of AIE Summit preview podcasts - thanks for following along with our OpenAI, Portkey, Pydantic, Bee, and Bret Taylor episodes, and we hope you enjoy the Summit! Catch you on livestream.Everybody’s going deep now. Deep Work. Deep Learning. DeepMind. If 2025 is the Year of Agents, then the 2020s are the Decade of Deep.While “LLM-powered Search” is as old as Perplexity and SearchGPT, and open source projects like GPTResearcher and clones like OpenDeepResearch exist, the difference with “Deep Research” products is they are both “agentic” (loosely meaning that an LLM decides the next step in a workflow, usually involving tools) and bundling custom-tuned frontier models (custom tuned o3 and Gemini 1.5 Flash).The reception to OpenAI’s Deep Research agent has been nothing short of breathless:"Deep Research is the best public-facing AI product Google has ever released. It's like having a college-educated researcher in your pocket." - Jason Calacanis“I have had [Deep Research] write a number of ten-page papers for me, each of them outstanding. I think of the quality as comparable to having a good PhD-level research assistant, and sending that person away with a task for a week or two, or maybe more. Except Deep Research does the work in five or six minutes.” - Tyler Cowen“Deep Research is one of the best bargains in technology.” - Ben Thompson“my very approximate vibe is that it can do a single-digit percentage of all economically valuable tasks in the world, which is a wild milestone.” - sama“Using Deep Research over the past few weeks has been my own personal AGI moment. It takes 10 mins to generate accurate and thorough competitive and market research (with sources) that previously used to take me at least 3 hours.” - OAI employee“It's like a bazooka for the curious mind” - Dan Shipper“Deep research can be seen as a new interface for the internet, in addition to being an incredible agent… This paradigm will be so powerful that in the future, navigating the internet manually via a browser will be "old-school", like performing arithmetic calculations by hand.” - Jason Wei“One notable characteristic of Deep Research is its extreme patience. I think this is rapidly approaching “superhuman patience”. One realization working on this project was that intelligence and patience go really well together.” - HyungWon“I asked it to write a reference Interaction Calculus evaluator in Haskell. A few exchanges later, it gave me a complete file, including a parser, an evaluator, O(1) interactions and everything. The file compiled, and worked on my test inputs. There are some minor issues, but it is mostly correct. So, in about 30 minutes, o3 performed a job that would take me a day or so.” - Victor Taelin“Can confirm OpenAI Deep Research is quite strong. In a few minutes it did what used to take a dozen hours. The implications to knowledge work is going to be quite profound when you just ask an AI Agent to perform full tasks for you and come back with a finished result.” - Aaron Levie“Deep Research is genuinely useful” - Gary MarcusWith the advent of “Deep Research” agents, we are now routinely asking models to go through 100+ websites and generate in-depth reports on any topic. The Deep Research revolution has hit the AI scene in the last 2 weeks: * Dec 11th: Gemini Deep Research (today’s guest!) rolls out with Gemini Advanced* Feb 2nd: OpenAI releases Deep Research* Feb 3rd: a dozen “Open Deep Research” clones launch* Feb 5th: Gemini 2.0 Flash GA* Feb 15th: Perplexity launches Deep Research * Feb 17th: xAI launches Deep SearchIn today’s episode, we welcome Aarush Selvan and Mukund Sridhar, the lead PM and tech lead for Gemini Deep Research, the originators of the entire category. We asked detailed questions from inspiration to implementation, why they had to finetune a special model for it instead of using the standard Gemini model, how to run evals for them, and how to think about the distribution of use cases. (We also have an upcoming Gemini 2 episode with our returning first guest Logan Kilpatrick so stay tuned 👀)Two Kinds of Inference Time ComputeIn just ~2 months since NeurIPS, we’ve moved from “scaling has hit a wall, LLMs might be over” to “is this AGI already?” thanks to the releases of o1, o3, and DeepSeek R1 (see our o3 post and R1 distillation lightning pod). This new jump in capabilities is now accelerating many other applications; you might remember how “needle in a haystack” was one of the benchmarks people often referenced when looking at model’s capabilities over long context (see our 1M Llama context window ep for more). It seems that we have broken through the “wall” by scaling “inference time” in two meaningful ways — one with more time spent in the model, and the other with more tool calls.Both help build better agents which are clearly more intelligent. But as we discuss on the podcast, we are currently in a “honeymoon” period of agent products where taking more time (or tool calls, or search results) is considered good, because 1) quality is hard to evaluate and 2) we don’t know the realistic upper bound to quality. We know that they’re correlated, but we don’t know to what extent and if the correlation breaks down over extended research periods (they may not).It doesn’t take a PhD to spot the perverse incentives here.Agent UX: From Sync to Async to HybridWe also discussed the technical challenges in moving from a synchronous “chat” paradigm to the “async” world where every agent builder needs to handroll their own orchestration framework in the background.For now, most simple, first-cut implementations including Gemini and OpenAI and Bolt tend to make “locking” async experiences — while the report is generating or the plan is being executed, you can’t continue chatting with the model or editing the plan. In this case we think the OG Agent here is Devin (now GA), which has gotten it right from the beginning.Full Episode on YouTubewith demo!Show Notes* Deep Research* Aarush Selvan* Mukund Sridhar* NotebookLM episode (Raiza / Usama)* Bolt* Bret TaylorChapters* [00:00:00] Introductions* [00:00:22] Overview + Demo of Deep Research* [00:04:31] Editable chain of thought* [00:08:18] Search ranking for sources* [00:09:31] Can you DIY Deep Research?* [00:15:52] UX and research plan editing* [00:16:21] Follow-up queries and context retention* [00:21:06] Evaluating Deep Research* [00:28:06] Ontology of use cases and research patterns* [00:32:56] User perceptions of latency in Deep Research* [00:40:59] Lessons from other AI products* [00:42:12] Multimodal capabilities* [00:45:02] Technical challenges in Deep Research* [00:51:56] Can Deep Research discover new insights?* [00:54:11] Open challenges in agents* [00:57:04] Wrap upTranscriptAlessio [00:00:04]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:13]: Hey, and today we're very honored to have in our studio Aarush and Mukund from the Deep Research team, the OG Deep Research team. Welcome.Aarush [00:00:20]: Thanks for having us.Swyx [00:00:22]: Yeah, thanks for making the trip up. I was fortunate enough to be one of the early beta testers of Deep Research when he came out. I would say I was very keen on, I think even at the end of last year, people were already saying it was one of the most exciting agents that was coming out of Google. You know that previously we had on Ryza and Usama from the Novoca LM team. And I think this is an increasing trend that Gemini and Google are shipping interesting user-facing products that use AI. So congrats on your success so far. Yeah, it's been great. Thanks so much for having us here. Yeah. Yeah, thanks for making the trip up. And I'm also excited for your talk that is happening next week. Obviously, we have to talk about what exactly it is, but I'll ask you towards the end. So basically, okay, you know, we have the screen up. Maybe we just start at a high level for people who don't yet know. Like, what is Deep Research? Sure. Aarush [00:01:10]: So Deep Research is a feature where Gemini can act as your personal research assistant to help you learn about any topic that you want more deeply. It's really helpful for those queries. So you want to go from zero to 50 really fast on a new thing. And the way it works is it takes your query, browses the web for about five minutes, and then outputs a research report for you to review and ask follow-up questions. This is one of the first times, you know, something takes about five, six minutes trying to perform your research. So there's a few challenges that brings. Like, you want to make sure you're spending that time in the computer doing what the user wants. So there's some ways of the UX design that we can talk about. As we go through an example, and then there's also challenges in the browsers, the web is super fragmented and being able to plan iteratively and as, as you pass through this noisy information is a challenge by itself.Swyx [00:02:11]: Yeah. This is like the first time sort of Google automating yourself as searching, like you're, you know, you're supposed to be the experts at search, but now you're like meta-searching and like determining the search strategy.Aarush [00:02:22]: Yeah, I think, at least we see it as two different use cases. There are things that, you know, you know exactly what you're looking for and there's a search is still probably, you know, a very, you know, probably one of the best places to go. I think when deep research really shines is there like multiple facets to your question and you spend like a weekend, you know, just opening like 50, 60 tabs and many times I just give up and we wanted to solve that probl
Bundle tickets for AIE Summit NYC have now sold out. You can now sign up for the livestream — where we will be making a big announcement soon. NYC-based readers and Summit attendees should check out the meetups happening around the Summit.2024 was a very challenging year for AI Hardware. After the buzz of CES last January, 2024 was marked by the meteoric rise and even harder fall of AI Wearables companies like Rabbit and Humane, with an assist from a pre-wallpaper-app MKBHD. Even Friend.com, the first to launch in the AI pendant category, and which spurred Rewind AI to rebrand to Limitless and follow in their footsteps, ended up delaying their wearable ship date and launching an experimental website chatbot version. We have been cautiously excited about this category, keeping tabs on most of the top entrants, including Omi and Compass. However, to date the biggest winner still standing from the AI Wearable wars is Bee AI, founded by today's guests Maria and Ethan. Bee is an always on hardware device with beamforming microphones, 7 day battery life and a mute button, that can be worn as a wristwatch or a clip-on pin, backed by an incredible transcription, diarization and very long context memory processing pipeline that helps you to remember your day, your todos, and even perform actions by operating a virtual cloud phone. This is one of the most advanced, production ready, personal AI agents we've ever seen, so we were excited to be their first podcast appearance. We met Bee when we ran the world's first Personal AI meetup in April last year.As a user of Bee (and not an investor! just a friend!) it’s genuinely been a joy to use, and we were glad to take advantage of the opportunity to ask hard questions about the privacy and legal/ethical side of things as much as the AI and Hardware engineering side of Bee. We hope you enjoy the episode and tune in next Friday for Bee’s first conference talk: Building Perfect Memory.Full YouTube Video VersionWatch this for the live demo!Show Notes* Bee Website* Ethan Sutin, Maria de Lourdes Zollo* Bee @ Personal AI Meetup* Buy Bee with Listener Discount Code!Timestamps* 00:00:00 Introductions and overview of Bee Computer* 00:01:58 Personal context and use cases for Bee* 00:03:02 Origin story of Bee and the founders' background* 00:06:56 Evolution from app to hardware device* 00:09:54 Short-term value proposition for users* 00:12:17 Demo of Bee's functionality* 00:17:54 Hardware form factor considerations* 00:22:22 Privacy concerns and legal considerations* 00:30:57 User adoption and reactions to wearing Bee* 00:35:56 CES experience and hardware manufacturing challenges* 00:41:40 Software pipeline and inference costs* 00:53:38 Technical challenges in real-time processing* 00:57:46 Memory and personal context modeling* 01:02:45 Social aspects and agent-to-agent interactions* 01:04:34 Location sharing and personal data exchange* 01:05:11 Personality analysis capabilities* 01:06:29 Hiring and future of always-on AITranscriptAlessio [00:00:04]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of SmallAI.swyx [00:00:12]: Hey, and today we are very honored to have in the studio Maria and Ethan from Bee.Maria [00:00:16]: Hi, thank you for having us.swyx [00:00:20]: And you are, I think, the first hardware founders we've had on the podcast. I've been looking to have had a hardware founder, like a wearable hardware, like a wearable hardware founder for a while. I think we're going to have two or three of them this year. And you're the ones that I wear every day. So thank you for making Bee. Thank you for all the feedback and the usage. Yeah, you know, I've been a big fan. You are the speaker gift for the Engineering World's Fair. And let's start from the beginning. What is Bee Computer?Ethan [00:00:52]: Bee Computer is a personal AI system. So you can think of it as AI living alongside you in first person. So it can kind of capture your in real life. So with that understanding can help you in significant ways. You know, the obvious one is memory, but that's that's really just the base kind of use case. So recalling and reflective. I know, Swyx, that you you like the idea of journaling, but you don't but still have some some kind of reflective summary of what you experienced in real life. But it's also about just having like the whole context of a human being and understanding, you know, giving the machine the ability to understand, like, what's going on in your life. Your attitudes, your desires, specifics about your preferences, so that not only can it help you with recall, but then anything that you need it to do, it already knows, like, if you think about like somebody who you've worked with or lived with for a long time, they just know kind of without having to ask you what you would want, it's clear that like, that is the future that personal AI, like, it's just going to be very, you know, the AI is just so much more valuable with personal context.Maria [00:01:58]: I will say that one of the things that we are really passionate is really understanding this. Personal context, because we'll make the AI more useful. Think about like a best friend that know you so well. That's one of the things that we are seeing from the user. They're using from a companion standpoint or professional use cases. There are many ways to use B, but companionship and professional are the ones that we are seeing now more.swyx [00:02:22]: Yeah. It feels so dry to talk about use cases. Yeah. Yeah.Maria [00:02:26]: It's like really like investor question. Like, what kind of use case?Ethan [00:02:28]: We're just like, we've been so broken and trained. But I mean, on the base case, it's just like, don't you want your AI to know everything you've said and like everywhere you've been, like, wouldn't you want that?Maria [00:02:40]: Yeah. And don't stay there and repeat every time, like, oh, this is what I like. You already know that. And you do things for me based on that. That's I think is really cool.swyx [00:02:50]: Great. Do you want to jump into a demo? Do you have any other questions?Alessio [00:02:54]: I want to maybe just cover the origin story. Just how did you two meet? What was the was this the first idea you started working on? Was there something else before?Maria [00:03:02]: I can start. So Ethan and I, we know each other from six years now. He had a company called Squad. And before that was called Olabot and was a personal AI. Yeah, I should. So maybe you should start this one. But yeah, that's how I know Ethan. Like he was pivoting from personal AI to Squad. And there was a co-watching with friends product. I had experience working with TikTok and video content. So I had the pivoting and we launched Squad and was really successful. And at the end. The founders decided to sell that to Twitter, now X. So both of us, we joined X. We launched Twitter Spaces. We launched many other products. And yeah, till then, we basically continue to work together to the start of B.Ethan [00:03:46]: The interesting thing is like this isn't the first attempt at personal AI. In 2016, when I started my first company, it started out as a personal AI company. This is before Transformers, no BERT even like just RNNs. You couldn't really do any convincing dialogue at all. I met Esther, who was my previous co-founder. We both really interested in the idea of like having a machine kind of model or understand a dynamic human. We wanted to make personal AI. This was like more geared towards because we had obviously much limited tools, more geared towards like younger people. So I don't know if you remember in 2016, there was like a brief chatbot boom. It was way premature, but it was when Zuckerberg went up on F8 and yeah, M and like. Yeah. The messenger platform, people like, oh, bots are going to replace apps. It was like for about six months. And then everybody realized, man, these things are terrible and like they're not replacing apps. But it was at that time that we got excited and we're like, we tried to make this like, oh, teach the AI about you. So it was just an app that you kind of chatted with and it would ask you questions and then like give you some feedback.Maria [00:04:53]: But Hugging Face first version was launched at the same time. Yeah, we started it.Ethan [00:04:56]: We started out the same office as Hugging Face because Betaworks was our investor. So they had to think. They had a thing called Bot Camp. Betaworks is like a really cool VC because they invest in out there things. They're like way ahead of everybody else. And like back then it was they had something called Bot Camp. They took six companies and it was us and Hugging Face. And then I think the other four, I'm pretty sure, are dead. But and Hugging Face was the one that really got, you know, I mean, 30% success rate is pretty good. Yeah. But yeah, when we it was, it was like it was just the two founders. Yeah, they were kind of like an AI company in the beginning. It was a chat app for teenagers. A lot of people don't know that Hugging Face was like, hey, friend, how was school? Let's trade selfies. But then, you know, they built the Transformers library, I believe, to help them make their chat app better. And then they open sourced and it was like it blew up. And like they're like, oh, maybe this is the opportunity. And now they're Hugging Face. But anyway, like we were obsessed with it at that time. But then it was clear that there's some people who really love chatting and like answering questions. But it's like a lot of work, like just to kind of manually.Maria [00:06:00]: Yeah.Ethan [00:06:01]: Teach like all these things about you to an AI.Maria [00:06:04]: Yeah, there were some people that were super passionate, for example, teenagers. They really like, for example, to speak about themselves a lot. So they will reply to a lot of questions an
If you’re in SF, join us tomorrow for a fun meetup at CodeGen Night!If you’re in NYC, join us for AI Engineer Summit! The Agent Engineering track is now sold out, but 25 tickets remain for AI Leadership and 5 tickets for the workshops. You can see the full schedule of speakers and workshops at https://ai.engineer!It’s exceedingly hard to introduce someone like Bret Taylor. We could recite his Wikipedia page, or his extensive work history through Silicon Valley’s greatest companies, but everyone else already does that.As a podcast by AI engineers for AI engineers, we had the opportunity to do something a little different. We wanted to dig into what Bret sees from his vantage point at the top of our industry for the last 2 decades, and how that explains the rise of the AI Architect at Sierra, the leading conversational AI/CX platform.“Across our customer base, we are seeing a new role emerge - the role of the AI architect. These leaders are responsible for helping define, manage and evolve their company's AI agent over time. They come from a variety of both technical and business backgrounds, and we think that every company will have one or many AI architects managing their AI agent and related experience.”In our conversation, Bret Taylor confirms the Paul Buchheit legend that he rewrote Google Maps in a weekend, armed with only the help of a then-nascent Google Closure Compiler and no other modern tooling. But what we find remarkable is that he was the PM of Maps, not an engineer, though of course he still identifies as one. We find this theme recurring throughout Bret’s career and worldview. We think it is plain as day that AI leadership will have to be hands-on and technical, especially when the ground is shifting as quickly as it is today:“There's a lot of power in combining product and engineering into as few people as possible… few great things have been created by committee.”“If engineering is an order taking organization for product you can sometimes make meaningful things, but rarely will you create extremely well crafted breakthrough products. Those tend to be small teams who deeply understand the customer need that they're solving, who have a maniacal focus on outcomes.”“And I think the reason why is if you look at like software as a service five years ago, maybe you can have a separation of product and engineering because most software as a service created five years ago. I wouldn't say there's like a lot of technological breakthroughs required for most business applications. And if you're making expense reporting software or whatever, it's useful… You kind of know how databases work, how to build auto scaling with your AWS cluster, whatever, you know, it's just, you're just applying best practices to yet another problem. "When you have areas like the early days of mobile development or the early days of interactive web applications, which I think Google Maps and Gmail represent, or now AI agents, you're in this constant conversation with what the requirements of your customers and stakeholders are and all the different people interacting with it and the capabilities of the technology. And it's almost impossible to specify the requirements of a product when you're not sure of the limitations of the technology itself.”This is the first time the difference between technical leadership for “normal” software and for “AI” software was articulated this clearly for us, and we’ll be thinking a lot about this going forward. We left a lot of nuggets in the conversation, so we hope you’ll just dive in with us (and thank Bret for joining the pod!)Full YouTubePlease Like and Subscribe :)Timestamps* 00:00:02 Introductions and Bret Taylor's background* 00:01:23 Bret's experience at Stanford and the dot-com era* 00:04:04 The story of rewriting Google Maps backend* 00:11:06 Early days of interactive web applications at Google* 00:15:26 Discussion on product management and engineering roles* 00:21:00 AI and the future of software development* 00:26:42 Bret's approach to identifying customer needs and building AI companies* 00:32:09 The evolution of business models in the AI era* 00:41:00 The future of programming languages and software development* 00:49:38 Challenges in precisely communicating human intent to machines* 00:56:44 Discussion on Artificial General Intelligence (AGI) and its impact* 01:08:51 The future of agent-to-agent communication* 01:14:03 Bret's involvement in the OpenAI leadership crisis* 01:22:11 OpenAI's relationship with Microsoft* 01:23:23 OpenAI's mission and priorities* 01:27:40 Bret's guiding principles for career choices* 01:29:12 Brief discussion on pasta-making* 01:30:47 How Bret keeps up with AI developments* 01:32:15 Exciting research directions in AI* 01:35:19 Closing remarks and hiring at Sierra Transcript[00:02:05] Introduction and Guest Welcome[00:02:05] Alessio: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co host swyx, founder of smol.ai.[00:02:17] swyx: Hey, and today we're super excited to have Bret Taylor join us. Welcome. Thanks for having me. It's a little unreal to have you in the studio.[00:02:25] swyx: I've read about you so much over the years, like even before. Open AI effectively. I mean, I use Google Maps to get here. So like, thank you for everything that you've done. Like, like your story history, like, you know, I think people can find out what your greatest hits have been.[00:02:40] Bret Taylor's Early Career and Education[00:02:40] swyx: How do you usually like to introduce yourself when, you know, you talk about, you summarize your career, like, how do you look at yourself?[00:02:47] Bret: Yeah, it's a great question. You know, we, before we went on the mics here, we're talking about the audience for this podcast being more engineering. And I do think depending on the audience, I'll introduce myself differently because I've had a lot of [00:03:00] corporate and board roles. I probably self identify as an engineer more than anything else though.[00:03:04] Bret: So even when I was. Salesforce, I was coding on the weekends. So I think of myself as an engineer and then all the roles that I do in my career sort of start with that just because I do feel like engineering is sort of a mindset and how I approach most of my life. So I'm an engineer first and that's how I describe myself.[00:03:24] Bret: You majored in computer[00:03:25] swyx: science, like 1998. And, and I was high[00:03:28] Bret: school, actually my, my college degree was Oh, two undergrad. Oh, three masters. Right. That old.[00:03:33] swyx: Yeah. I mean, no, I was going, I was going like 1998 to 2003, but like engineering wasn't as, wasn't a thing back then. Like we didn't have the title of senior engineer, you know, kind of like, it was just.[00:03:44] swyx: You were a programmer, you were a developer, maybe. What was it like in Stanford? Like, what was that feeling like? You know, was it, were you feeling like on the cusp of a great computer revolution? Or was it just like a niche, you know, interest at the time?[00:03:57] Stanford and the Dot-Com Bubble[00:03:57] Bret: Well, I was at Stanford, as you said, from 1998 to [00:04:00] 2002.[00:04:02] Bret: 1998 was near the peak of the dot com bubble. So. This is back in the day where most people that they're coding in the computer lab, just because there was these sun microsystems, Unix boxes there that most of us had to do our assignments on. And every single day there was a. com like buying pizza for everybody.[00:04:20] Bret: I didn't have to like, I got. Free food, like my first two years of university and then the dot com bubble burst in the middle of my college career. And so by the end there was like tumbleweed going to the job fair, you know, it was like, cause it was hard to describe unless you were there at the time, the like level of hype and being a computer science major at Stanford was like, A thousand opportunities.[00:04:45] Bret: And then, and then when I left, it was like Microsoft, IBM.[00:04:49] Joining Google and Early Projects[00:04:49] Bret: And then the two startups that I applied to were VMware and Google. And I ended up going to Google in large part because a woman named Marissa Meyer, who had been a teaching [00:05:00] assistant when I was, what was called a section leader, which was like a junior teaching assistant kind of for one of the big interest.[00:05:05] Bret: Yes. Classes. She had gone there. And she was recruiting me and I knew her and it was sort of felt safe, you know, like, I don't know. I thought about it much, but it turned out to be a real blessing. I realized like, you know, you always want to think you'd pick Google if given the option, but no one knew at the time.[00:05:20] Bret: And I wonder if I'd graduated in like 1999 where I've been like, mom, I just got a job at pets. com. It's good. But you know, at the end I just didn't have any options. So I was like, do I want to go like make kernel software at VMware? Do I want to go build search at Google? And I chose Google. 50, 50 ball.[00:05:36] Bret: I'm not really a 50, 50 ball. So I feel very fortunate in retrospect that the economy collapsed because in some ways it forced me into like one of the greatest companies of all time, but I kind of lucked into it, I think.[00:05:47] The Google Maps Rewrite Story[00:05:47] Alessio: So the famous story about Google is that you rewrote the Google maps back in, in one week after the map quest quest maps acquisition, what was the story there?[00:05:57] Alessio: Is it. Actually true. Is it [00:06:00] being glorified? Like how, how did that come to be? And is there any detail that maybe Paul hasn't shared before?[00:06:06] Bret: It's largely true, but I'll give the color commentary. So it was actually the front end, not the back end, but it turns out for Google maps, the front end was sort of the hard part just because Google maps was.[00:06:1
Did you know that adding a simple Code Interpreter took o3 from 9.2% to 32% on FrontierMath? The Latent Space crew is hosting a hack night Feb 11th in San Francisco focused on CodeGen use cases, co-hosted with E2B and Edge AGI; watch E2B’s new workshop and RSVP here!We’re happy to announce that today’s guest Samuel Colvin will be teaching his very first Pydantic AI workshop at the newly announced AI Engineer NYC Workshops day on Feb 22! 25 tickets left.If you’re a Python developer, it’s very likely that you’ve heard of Pydantic. Every month, it’s downloaded >300,000,000 times, making it one of the top 25 PyPi packages. OpenAI uses it in its SDK for structured outputs, it’s at the core of FastAPI, and if you’ve followed our AI Engineer Summit conference, Jason Liu of Instructor has given two great talks about it: “Pydantic is all you need” and “Pydantic is STILL all you need”. Now, Samuel Colvin has raised $17M from Sequoia to turn Pydantic from an open source project to a full stack AI engineer platform with Logfire, their observability platform, and PydanticAI, their new agent framework.Logfire: bringing OTEL to AIOpenTelemetry recently merged Semantic Conventions for LLM workloads which provides standard definitions to track performance like gen_ai.server.time_per_output_token. In Sam’s view at least 80% of new apps being built today have some sort of LLM usage in them, and just like web observability platform got replaced by cloud-first ones in the 2010s, Logfire wants to do the same for AI-first apps. If you’re interested in the technical details, Logfire migrated away from Clickhouse to Datafusion for their backend. We spent some time on the importance of picking open source tools you understand and that you can actually contribute to upstream, rather than the more popular ones; listen in ~43:19 for that part.Agents are the killer app for graphsPydantic AI is their attempt at taking a lot of the learnings that LangChain and the other early LLM frameworks had, and putting Python best practices into it. At an API level, it’s very similar to the other libraries: you can call LLMs, create agents, do function calling, do evals, etc.They define an “Agent” as a container with a system prompt, tools, structured result, and an LLM. Under the hood, each Agent is now a graph of function calls that can orchestrate multi-step LLM interactions. You can start simple, then move toward fully dynamic graph-based control flow if needed.“We were compelled enough by graphs once we got them right that our agent implementation [...] is now actually a graph under the hood.”Why Graphs?* More natural for complex or multi-step AI workflows.* Easy to visualize and debug with mermaid diagrams.* Potential for distributed runs, or “waiting days” between steps in certain flows.In parallel, you see folks like Emil Eifrem of Neo4j talk about GraphRAG as another place where graphs fit really well in the AI stack, so it might be time for more people to take them seriously.Full Video EpisodeLike and subscribe!Chapters* 00:00:00 Introductions* 00:00:24 Origins of Pydantic* 00:05:28 Pydantic's AI moment * 00:08:05 Why build a new agents framework?* 00:10:17 Overview of Pydantic AI* 00:12:33 Becoming a believer in graphs* 00:24:02 God Model vs Compound AI Systems* 00:28:13 Why not build an LLM gateway?* 00:31:39 Programmatic testing vs live evals* 00:35:51 Using OpenTelemetry for AI traces* 00:43:19 Why they don't use Clickhouse* 00:48:34 Competing in the observability space* 00:50:41 Licensing decisions for Pydantic and LogFire* 00:51:48 Building Pydantic.run* 00:55:24 Marimo and the future of Jupyter notebooks* 00:57:44 London's AI sceneShow Notes* Sam Colvin* Pydantic* Pydantic AI* Logfire* Pydantic.run* Zod* E2B* Arize* Langsmith* Marimo* Prefect* GLA (Google Generative Language API)* OpenTelemetry* Jason Liu* Sebastian Ramirez* Bogomil Balkansky* Hood Chatham* Jeremy Howard* Andrew LambTranscriptAlessio [00:00:03]: Hey, everyone. Welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:12]: Good morning. And today we're very excited to have Sam Colvin join us from Pydantic AI. Welcome. Sam, I heard that Pydantic is all we need. Is that true?Samuel [00:00:24]: I would say you might need Pydantic AI and Logfire as well, but it gets you a long way, that's for sure.Swyx [00:00:29]: Pydantic almost basically needs no introduction. It's almost 300 million downloads in December. And obviously, in the previous podcasts and discussions we've had with Jason Liu, he's been a big fan and promoter of Pydantic and AI.Samuel [00:00:45]: Yeah, it's weird because obviously I didn't create Pydantic originally for uses in AI, it predates LLMs. But it's like we've been lucky that it's been picked up by that community and used so widely.Swyx [00:00:58]: Actually, maybe we'll hear it. Right from you, what is Pydantic and maybe a little bit of the origin story?Samuel [00:01:04]: The best name for it, which is not quite right, is a validation library. And we get some tension around that name because it doesn't just do validation, it will do coercion by default. We now have strict mode, so you can disable that coercion. But by default, if you say you want an integer field and you get in a string of 1, 2, 3, it will convert it to 123 and a bunch of other sensible conversions. And as you can imagine, the semantics around it. Exactly when you convert and when you don't, it's complicated, but because of that, it's more than just validation. Back in 2017, when I first started it, the different thing it was doing was using type hints to define your schema. That was controversial at the time. It was genuinely disapproved of by some people. I think the success of Pydantic and libraries like FastAPI that build on top of it means that today that's no longer controversial in Python. And indeed, lots of other people have copied that route, but yeah, it's a data validation library. It uses type hints for the for the most part and obviously does all the other stuff you want, like serialization on top of that. But yeah, that's the core.Alessio [00:02:06]: Do you have any fun stories on how JSON schemas ended up being kind of like the structure output standard for LLMs? And were you involved in any of these discussions? Because I know OpenAI was, you know, one of the early adopters. So did they reach out to you? Was there kind of like a structure output console in open source that people were talking about or was it just a random?Samuel [00:02:26]: No, very much not. So I originally. Didn't implement JSON schema inside Pydantic and then Sebastian, Sebastian Ramirez, FastAPI came along and like the first I ever heard of him was over a weekend. I got like 50 emails from him or 50 like emails as he was committing to Pydantic, adding JSON schema long pre version one. So the reason it was added was for OpenAPI, which is obviously closely akin to JSON schema. And then, yeah, I don't know why it was JSON that got picked up and used by OpenAI. It was obviously very convenient for us. That's because it meant that not only can you do the validation, but because Pydantic will generate you the JSON schema, it will it kind of can be one source of source of truth for structured outputs and tools.Swyx [00:03:09]: Before we dive in further on the on the AI side of things, something I'm mildly curious about, obviously, there's Zod in JavaScript land. Every now and then there is a new sort of in vogue validation library that that takes over for quite a few years and then maybe like some something else comes along. Is Pydantic? Is it done like the core Pydantic?Samuel [00:03:30]: I've just come off a call where we were redesigning some of the internal bits. There will be a v3 at some point, which will not break people's code half as much as v2 as in v2 was the was the massive rewrite into Rust, but also fixing all the stuff that was broken back from like version zero point something that we didn't fix in v1 because it was a side project. We have plans to move some of the basically store the data in Rust types after validation. Not completely. So we're still working to design the Pythonic version of it, in order for it to be able to convert into Python types. So then if you were doing like validation and then serialization, you would never have to go via a Python type we reckon that can give us somewhere between three and five times another three to five times speed up. That's probably the biggest thing. Also, like changing how easy it is to basically extend Pydantic and define how particular types, like for example, NumPy arrays are validated and serialized. But there's also stuff going on. And for example, Jitter, the JSON library in Rust that does the JSON parsing, has SIMD implementation at the moment only for AMD64. So we can add that. We need to go and add SIMD for other instruction sets. So there's a bunch more we can do on performance. I don't think we're going to go and revolutionize Pydantic, but it's going to continue to get faster, continue, hopefully, to allow people to do more advanced things. We might add a binary format like CBOR for serialization for when you'll just want to put the data into a database and probably load it again from Pydantic. So there are some things that will come along, but for the most part, it should just get faster and cleaner.Alessio [00:05:04]: From a focus perspective, I guess, as a founder too, how did you think about the AI interest rising? And then how do you kind of prioritize, okay, this is worth going into more, and we'll talk about Pydantic AI and all of that. What was maybe your early experience with LLAMP, and when did you figure out, okay, this is something we should take seriously and focus more resources on it?Samuel [00:05:28]: I'll answer that, but I'll answer what I think is a kind of parallel question, which is Pydantic's weird, because Pyda
Sponsorships and tickets for the AI Engineer Summit are selling fast! See the new website with speakers and schedules live! If you are building AI agents or leading teams of AI Engineers, this will be the single highest-signal conference of the year for you, this Feb 20-22nd in NYC.We’re pleased to share that Karina will be presenting OpenAI’s closing keynote at the AI Engineer Summit. We were fortunate to get some time with her today to introduce some of her work, and hope this serves as nice background for her talk!There are very few early AI careers that have been as impactful as Karina Nguyen’s. After stints at Notion, Square, Dropbox, Primer, the New York Times, and UC Berkeley, She joined Anthropic as employee ~60 and worked on a wide range of research/product roles for Claude 1, 2, and 3. We’ll just let her LinkedIn speak for itself:Now, as Research manager and Post-training lead in Model Behavior at OpenAI, she creates new interaction paradigms for reasoning interfaces and capabilities, like ChatGPT Canvas, Tasks, SimpleQA, streaming chain-of-thought for o1 models, and more via novel synthetic model training. Ideal AI Research+Product ProcessIn the podcast we got a sense of what Karina has found works for her and her team to be as productive as they have been:* Write PRD (Define what you want)* Funding (Get resources)* Prototype Prompted Baseline (See what’s possible)* Write and Run Evals (Get failures to hillclimb)* Model training (Exceed baseline without overfitting)* Bugbash (Find bugs and solve them)* Ship (Get users!)We could turn this into a snazzy viral graphic but really this is all it is. Simple to say, difficult to do well. Hopefully it helps you define your process if you do similar product-research work. Show Notes* Our Reasoning Price War post * Karina LinkedIn, Website, Twitter* OSINT visualization work* Ukraine 3D storytelling* Karina on Claude Artifacts* Karina on Claude 3 Benchmarks* Inspiration for Artifacts / Canvas from early UX work she did on GPT-3* “i really believe that things like canvas and tasks should and could have happened like 2 yrs ago, idk why we are lagging in the form factors” (tweet)* Our article on prompting o1 vs Karina’s Claude prompting principles* Canvas: https://openai.com/index/introducing-canvas/ * We trained GPT-4o to collaborate as a creative partner. The model knows when to open a canvas, make targeted edits, and fully rewrite. It also understands broader context to provide precise feedback and suggestions.To support this, our research team developed the following core behaviors:* Triggering the canvas for writing and coding* Generating diverse content types* Making targeted edits* Rewriting documents* Providing inline critiqueWe measured progress with over 20 automated internal evaluations. We used novel synthetic data generation techniques, such as distilling outputs from OpenAI o1-preview, to post-train the model for its core behaviors. This approach allowed us to rapidly address writing quality and new user interactions, all without relying on human-generated data.* Tasks: https://www.theverge.com/2025/1/14/24343528/openai-chatgpt-repeating-tasks-agent-ai* * Agents and Operator* What are agents? “Agents are a gradual progression of tasks: starting with one-off actions, moving to collaboration, and ultimately fully trustworthy long-horizon delegation in complex envs like multi-player/multiagents.” (tweet)* tasks and canvas fall within the first two, and we are def. marching towards the third—though the form factor for 3 will take time to develop * Operator/Computer Use Agents* https://openai.com/index/introducing-operator/* Misc:* Andrew Ng* Prediction: Personal AI Consumer playbook* ChatGPT as generative OSTimestamps* 00:00 Welcome to the Latent Space Podcast* 00:11 Introducing Karina Nguyen* 02:21 Karina's Journey to OpenAI* 04:45 Early Prototypes and Projects* 05:25 Joining Anthropic and Early Work* 07:16 Challenges and Innovations at Anthropic* 11:30 Launching Claude 3* 21:57 Behavioral Design and Model Personality* 27:37 The Making of ChatGPT Canvas* 34:34 Canvas Update and Initial Impressions* 34:46 Differences Between Canvas and API Outputs* 35:50 Core Use Cases of Canvas* 36:35 Canvas as a Writing Partner* 36:55 Canvas vs. Google Docs and Future Improvements* 37:35 Canvas for Coding and Executing Code* 38:50 Challenges in Developing Canvas* 41:45 Introduction to Tasks* 41:53 Developing and Iterating on Tasks* 46:27 Future Vision for Tasks and Proactive Models* 52:23 Computer Use Agents and Their Potential* 01:00:21 Cultural Differences Between OpenAI and Anthropic* 01:03:46 Call to Action and Final ThoughtsTranscriptAlessio [00:00:04]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel, and I'm joined by my usual co-host, Swyx.swyx [00:00:11]: Hey, and today we're very, very blessed to have Karina Nguyen in the studio. Welcome.Karina [00:00:15]: Nice to meet you.swyx [00:00:16]: We finally made it happen. We finally made it happen. First time we tried this, you were working at a different company, and now we're here. Fortunately, you had some time, so thank you so much for joining us. Yeah, thank you for inviting me. Karina, your website says you lead a research team in OpenAI, creating new interaction paradigms for reasoning interfaces and capabilities like ChatGPT Canvas, and most recently, ChatGPT TAS. I don't know, is that what we're calling it? Streaming chain of thought for O1 models and more via novel synthetic model training. What is this research team?Karina [00:00:45]: Yeah, I need to clarify this a little bit more. I think it changed a lot since the last time we launched. So we launched Canvas, and it was the first project. I was a tech lead, basically, and then I think over time I was trying to refine what my team is, and I feel like it's at the intersection of human-computer interaction, defining what the next interaction paradigms might look like with some of the most recent reasoning models, as well as actually trying to come up with novel methods, how to improve those models for certain tasks if you want to. So for Canvas, for example, one of the most common use cases is basically writing and coding. And we're continually working on, okay, how do we make Canvas coding to go beyond what is possible right now? And that requires us to actually do our own training and coming up with new methods of synthetic data generation. The way I'm thinking about it is that my team is going from very full stack, from training models all the way up to deployment and making sure that we create novel product features that is coherent to what you're doing. So we're really working on that.swyx [00:02:08]: So it's, it's a lot of work to do right now. And I think that's why I think it's such a great opportunity. You know, how could something this big work in like an industrial space and in the things that we're doing, you know, it's a really exciting time for us. And it's just, you know, it's a lot of work, but what I really like about working in digital space is the, you know, the visual space is always the best place to stay. It's not just the skill sets that need to be done.Alessio [00:02:17]: Like we have, like, a lot of things to be done, but like, we've got a lot of different, you know, things to come up with. I know you have some early UX prototypes with GPT-3 as well, and kind of like maybe how that is informed, the way you build products.Karina [00:02:32]: I think my background was mostly like working on computer vision applications for like investigative journalism. Back when I was like at school at Berkeley, and I was working a lot with like Human Rights Center and like investigative journalists from various media. And that's how I learned more about like AI, like with vision transformers. And at that time, I was working with some of the professors at Berkeley AI Research.swyx [00:03:00]: There are some Pulitzer Prize winning professors, right, that teach there?Karina [00:03:04]: No, so it's mostly like was reporting for like teams like the New York Times, like the AP Associated Press. So it was like all in the context of like Human Rights Center. Got it. Yeah. So that was like in computer vision. And then I saw... I saw Crisolo's work around, you know, like interpretability from Google. And that's how I found out about like Anthropic. And at that time, I was just like, I think it was like the year when like Ukraine's war happened. And I was like trying to find a full-time job. And it was kind of like all got distracted. It was like kind of like spring. And I was like very focused on like figuring out like what to do. And then my best option at that time was just like continue my internship. At the New York Times and convert to like full-time. At the New York Times, it was just like working on like mostly like product engineering work around like R&D prototypes, kind of like storytelling features on the mobile experience. So it kind of like storytelling experiences. And like at that time, we were like thinking about like how do we employ like NLP techniques to like scrape some of the archives from the New York Times or something. But then I always wanted to like get into like AI. And like I knew OpenAI for a while, like since I was like, and I was like, I don't know, I don't know. So I kind of like applied to Anthropic just on the website. And I was rejected the first time. But then at that time, they were not hiring for like anything like product engineering or front-end engineering, which was something I was like, at that time, I was like interested in. And then there was like a new opening at Anthropic was like kind of like you are front-end engineer. And so I applied. And that's how my journey began. But like the earlier prototypes was mostly like I used like Clip.swyx [00:05:13]: We'll briefly mention that the Ukrainian crisis actually hit home more for you than most people because you're fro
One last Gold sponsor slot is available for the AI Engineer Summit in NYC. Our last round of invites is going out soon - apply here - If you are building AI agents or AI eng teams, this will be the single highest-signal conference of the year for you!While the world melts down over DeepSeek, few are talking about the OTHER notable group of former hedge fund traders who pivoted into AI and built a remarkably profitable consumer AI business with a tiny team with incredibly cracked engineering team — Chai Research. In short order they have:* Started a Chat AI company well before Noam Shazeer started Character AI, and outlasted his departure.* Crossed 1m DAU in 2.5 years - William updates us on the pod that they’ve hit 1.4m DAU now, another +40% from a few months ago. Revenue crossed >$22m. * Launched the Chaiverse model crowdsourcing platform - taking 3-4 week A/B testing cycles down to 3-4 hours, and deploying >100 models a week.While they’re not paying million dollar salaries, you can tell they’re doing pretty well for an 11 person startup:The Chai Recipe: Building infra for rapid evalsRemember how the central thesis of LMarena (formerly LMsys) is that the only comprehensive way to evaluate LLMs is to let users try them out and pick winners?At the core of Chai is a mobile app that looks like Character AI, but is actually the largest LLM A/B testing arena in the world, specialized on retaining chat users for Chai’s usecases (therapy, assistant, roleplay, etc). It’s basically what LMArena would be if taken very, very seriously at one company (with $1m in prizes to boot):Chai publishes occasional research on how they think about this, including talks at their Palo Alto office:William expands upon this in today’s podcast (34 mins in):Fundamentally, the way I would describe it is when you're building anything in life, you need to be able to evaluate it. And through evaluation, you can iterate, we can look at benchmarks, and we can say the issues with benchmarks and why they may not generalize as well as one would hope in the challenges of working with them. But something that works incredibly well is getting feedback from humans. And so we built this thing where anyone can submit a model to our developer backend, and it gets put in front of 5000 users, and the users can rate it. And we can then have a really accurate ranking of like which model, or users finding more engaging or more entertaining. And it gets, you know, it's at this point now, where every day we're able to, I mean, we evaluate between 20 and 50 models, LLMs, every single day, right. So even though we've got only got a team of, say, five AI researchers, they're able to iterate a huge quantity of LLMs, right. So our team ships, let's just say minimum 100 LLMs a week is what we're able to iterate through. Now, before that moment in time, we might iterate through three a week, we might, you know, there was a time when even doing like five a month was a challenge, right? By being able to change the feedback loops to the point where it's not, let's launch these three models, let's do an A-B test, let's assign, let's do different cohorts, let's wait 30 days to see what the day 30 retention is, which is the kind of the, if you're doing an app, that's like A-B testing 101 would be, do a 30-day retention test, assign different treatments to different cohorts and come back in 30 days. So that's insanely slow. That's just, it's too slow. And so we were able to get that 30-day feedback loop all the way down to something like three hours.In Crowdsourcing the leap to Ten Trillion-Parameter AGI, William describes Chai’s routing as a recommender system, which makes a lot more sense to us than previous pitches for model routing startups:William is notably counter-consensus in a lot of his AI product principles:* No streaming: Chats appear all at once to allow rejection sampling* No voice: Chai actually beat Character AI to introducing voice - but removed it after finding that it was far from a killer feature.* Blending: “Something that we love to do at Chai is blending, which is, you know, it's the simplest way to think about it is you're going to end up, and you're going to pretty quickly see you've got one model that's really smart, one model that's really funny. How do you get the user an experience that is both smart and funny? Well, just 50% of the requests, you can serve them the smart model, 50% of the requests, you serve them the funny model.” (that’s it!)But chief above all is the recommender system.We also referenced Exa CEO Will Bryk’s concept of SuperKnowlege:Full Video versionOn YouTube. please like and subscribe!Timestamps* 00:00:04 Introductions and background of William Beauchamp* 00:01:19 Origin story of Chai AI* 00:04:40 Transition from finance to AI* 00:11:36 Initial product development and idea maze for Chai* 00:16:29 User psychology and engagement with AI companions* 00:20:00 Origin of the Chai name* 00:22:01 Comparison with Character AI and funding challenges* 00:25:59 Chai's growth and user numbers* 00:34:53 Key inflection points in Chai's growth* 00:42:10 Multi-modality in AI companions and focus on user-generated content* 00:46:49 Chaiverse developer platform and model evaluation* 00:51:58 Views on AGI and the nature of AI intelligence* 00:57:14 Evaluation methods and human feedback in AI development* 01:02:01 Content creation and user experience in Chai* 01:04:49 Chai Grant program and company culture* 01:07:20 Inference optimization and compute costs* 01:09:37 Rejection sampling and reward models in AI generation* 01:11:48 Closing thoughts and recruitmentTranscriptAlessio [00:00:04]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel, and today we're in the Chai AI office with my usual co-host, Swyx.swyx [00:00:14]: Hey, thanks for having us. It's rare that we get to get out of the office, so thanks for inviting us to your home. We're in the office of Chai with William Beauchamp. Yeah, that's right. You're founder of Chai AI, but previously, I think you're concurrently also running your fund?William [00:00:29]: Yep, so I was simultaneously running an algorithmic trading company, but I fortunately was able to kind of exit from that, I think just in Q3 last year. Yeah, congrats. Yeah, thanks.swyx [00:00:43]: So Chai has always been on my radar because, well, first of all, you do a lot of advertising, I guess, in the Bay Area, so it's working. Yep. And second of all, the reason I reached out to a mutual friend, Joyce, was because I'm just generally interested in the... ...consumer AI space, chat platforms in general. I think there's a lot of inference insights that we can get from that, as well as human psychology insights, kind of a weird blend of the two. And we also share a bit of a history as former finance people crossing over. I guess we can just kind of start it off with the origin story of Chai.William [00:01:19]: Why decide working on a consumer AI platform rather than B2B SaaS? So just quickly touching on the background in finance. Sure. Originally, I'm from... I'm from the UK, born in London. And I was fortunate enough to go study economics at Cambridge. And I graduated in 2012. And at that time, everyone in the UK and everyone on my course, HFT, quant trading was really the big thing. It was like the big wave that was happening. So there was a lot of opportunity in that space. And throughout college, I'd sort of played poker. So I'd, you know, I dabbled as a professional poker player. And I was able to accumulate this sort of, you know, say $100,000 through playing poker. And at the time, as my friends would go work at companies like ChangeStreet or Citadel, I kind of did the maths. And I just thought, well, maybe if I traded my own capital, I'd probably come out ahead. I'd make more money than just going to work at ChangeStreet.swyx [00:02:20]: With 100k base as capital?William [00:02:22]: Yes, yes. That's not a lot. Well, it depends what strategies you're doing. And, you know, there is an advantage. There's an advantage to being small, right? Because there are, if you have a 10... Strategies that don't work in size. Exactly, exactly. So if you have a fund of $10 million, if you find a little anomaly in the market that you might be able to make 100k a year from, that's a 1% return on your 10 million fund. If your fund is 100k, that's 100% return, right? So being small, in some sense, was an advantage. So started off, and the, taught myself Python, and machine learning was like the big thing as well. Machine learning had really, it was the first, you know, big time machine learning was being used for image recognition, neural networks come out, you get dropout. And, you know, so this, this was the big thing that's going on at the time. So I probably spent my first three years out of Cambridge, just building neural networks, building random forests to try and predict asset prices, right, and then trade that using my own money. And that went well. And, you know, if you if you start something, and it goes well, you You try and hire more people. And the first people that came to mind was the talented people I went to college with. And so I hired some friends. And that went well and hired some more. And eventually, I kind of ran out of friends to hire. And so that was when I formed the company. And from that point on, we had our ups and we had our downs. And that was a whole long story and journey in itself. But after doing that for about eight or nine years, on my 30th birthday, which was four years ago now, I kind of took a step back to just evaluate my life, right? This is what one does when one turns 30. You know, I just heard it. I hear you. And, you know, I looked at my 20s and I loved it. It was a really special time. I was really lucky and fortunate to have worked with this amazing team, been successful, had a lot of hard times. And through the hard times, learned wisdom and then a l
Sponsorships and applications for the AI Engineer Summit in NYC are live! (Speaker CFPs have closed) If you are building AI agents or leading teams of AI Engineers, this will be the single highest-signal conference of the year for you.Right after Christmas, the Chinese Whale Bros ended 2024 by dropping the last big model launch of the year: DeepSeek v3. Right now on LM Arena, DeepSeek v3 has a score of 1319, right under the full o1 model, Gemini 2, and 4o latest. This makes it the best open weights model in the world in January 2025.There has been a big recent trend in Chinese labs releasing very large open weights models, with TenCent releasing Hunyuan-Large in November and Hailuo releasing MiniMax-Text this week, both over 400B in size. However these extra-large language models are very difficult to serve.Baseten was the first of the Inference neocloud startups to get DeepSeek V3 online, because of their H200 clusters, their close collaboration with the DeepSeek team and early support of SGLang, a relatively new VLLM alternative that is also used at frontier labs like X.ai. Each H200 has 141 GB of VRAM with 4.8 TB per second of bandwidth, meaning that you can use 8 H200's in a node to inference DeepSeek v3 in FP8, taking into account KV Cache needs. We have been close to Baseten since Sarah Guo introduced Amir Haghighat to swyx, and they supported the very first Latent Space Demo Day in San Francisco, which was effectively the trial run for swyx and Alessio to work together! Since then, Philip Kiely also led a well attended workshop on TensorRT LLM at the 2024 World's Fair. We worked with him to get two of their best representatives, Amir and Lead Model Performance Engineer Yineng Zhang, to discuss DeepSeek, SGLang, and everything they have learned running Mission Critical Inference workloads at scale for some of the largest AI products in the world.The Three Pillars of Mission Critical InferenceWe initially planned to focus the conversation on SGLang, but Amir and Yineng were quick to correct us that the choice of inference framework is only the simplest, first choice of 3 things you need for production inference at scale:“I think it takes three things, and each of them individually is necessary but not sufficient: * Performance at the model level: how fast are you running this one model running on a single GPU, let's say. The framework that you use there can, can matter. The techniques that you use there can matter. The MLA technique, for example, that Yineng mentioned, or the CUDA kernels that are being used. But there's also techniques being used at a higher level, things like speculative decoding with draft models or with Medusa heads. And these are implemented in the different frameworks, or you can even implement it yourself, but they're not necessarily tied to a single framework. But using speculative decoding gets you massive upside when it comes to being able to handle high throughput. But that's not enough. Invariably, that one model running on a single GPU, let's say, is going to get too much traffic that it cannot handle.* Horizontal scaling at the cluster/region level: And at that point, you need to horizontally scale it. That's not an ML problem. That's not a PyTorch problem. That's an infrastructure problem. How quickly do you go from, a single replica of that model to 5, to 10, to 100. And so that's the second, that's the second pillar that is necessary for running these machine critical inference workloads.And what does it take to do that? It takes, some people are like, Oh, You just need Kubernetes and Kubernetes has an autoscaler and that just works. That doesn't work for, for these kinds of mission critical inference workloads. And you end up catching yourself wanting to bit by bit to rebuild those infrastructure pieces from scratch. This has been our experience. * And then going even a layer beyond that, Kubernetes runs in a single. cluster. It's a single cluster. It's a single region tied to a single region. And when it comes to inference workloads and needing GPUs more and more, you know, we're seeing this that you cannot meet the demand inside of a single region. A single cloud's a single region. In other words, a single model might want to horizontally scale up to 200 replicas, each of which is, let's say, 2H100s or 4H100s or even a full node, you run into limits of the capacity inside of that one region. And what we had to build to get around that was the ability to have a single model have replicas across different regions. So, you know, there are models on Baseten today that have 50 replicas in GCP East and, 80 replicas in AWS West and Oracle in London, etc.* Developer experience for Compound AI Systems: The final one is wrapping the power of the first two pillars in a very good developer experience to be able to afford certain workflows like the ones that I mentioned, around multi step, multi model inference workloads, because more and more we're seeing that the market is moving towards those that the needs are generally in these sort of more complex workflows. We think they said it very well.Show Notes* Amir Haghighat, Co-Founder, Baseten* Yineng Zhang, Lead Software Engineer, Model Performance, BasetenFull YouTube EpisodePlease like and subscribe!Timestamps* 00:00 Introduction and Latest AI Model Launch* 00:11 DeepSeek v3: Specifications and Achievements* 03:10 Latent Space Podcast: Special Guests Introduction* 04:12 DeepSeek v3: Technical Insights* 11:14 Quantization and Model Performance* 16:19 MOE Models: Trends and Challenges* 18:53 Baseten's Inference Service and Pricing* 31:13 Optimization for DeepSeek* 31:45 Three Pillars of Mission Critical Inference Workloads* 32:39 Scaling Beyond Single GPU* 33:09 Challenges with Kubernetes and Infrastructure* 33:40 Multi-Region Scaling Solutions* 35:34 SG Lang: A New Framework* 38:52 Key Techniques Behind SG Lang* 48:27 Speculative Decoding and Performance* 49:54 Future of Fine-Tuning and RLHF* 01:00:28 Baseten's V3 and Industry TrendsBaseten’s previous TensorRT LLM workshop: Get full access to Latent Space at www.latent.space/subscribe
Due to overwhelming demand (>15x applications:slots), we are closing CFPs for AI Engineer Summit NYC today. Last call! Thanks, we’ll be reaching out to all shortly!The world’s top AI blogger and friend of every pod, Simon Willison, dropped a monster 2024 recap: Things we learned about LLMs in 2024. Brian of the excellent TechMeme Ride Home pinged us for a connection and a special crossover episode, our first in 2025. The target audience for this podcast is a tech-literate, but non-technical one. You can see Simon’s notes for AI Engineers in his World’s Fair Keynote.Timestamp* 00:00 Introduction and Guest Welcome* 01:06 State of AI in 2025* 01:43 Advancements in AI Models* 03:59 Cost Efficiency in AI* 06:16 Challenges and Competition in AI* 17:15 AI Agents and Their Limitations* 26:12 Multimodal AI and Future Prospects* 35:29 Exploring Video Avatar Companies* 36:24 AI Influencers and Their Future* 37:12 Simplifying Content Creation with AI* 38:30 The Importance of Credibility in AI* 41:36 The Future of LLM User Interfaces* 48:58 Local LLMs: A Growing Interest* 01:07:22 AI Wearables: The Next Big Thing* 01:10:16 Wrapping Up and Final ThoughtsTranscript[00:00:00] Introduction and Guest Welcome[00:00:00] Brian: Welcome to the first bonus episode of the Tech Meme Write Home for the year 2025. I'm your host as always, Brian McCullough. Listeners to the pod over the last year know that I have made a habit of quoting from Simon Willison when new stuff happens in AI from his blog. Simon has been, become a go to for many folks in terms of, you know, Analyzing things, criticizing things in the AI space.[00:00:33] Brian: I've wanted to talk to you for a long time, Simon. So thank you for coming on the show. No, it's a privilege to be here. And the person that made this connection happen is our friend Swyx, who has been on the show back, even going back to the, the Twitter Spaces days but also an AI guru in, in their own right Swyx, thanks for coming on the show also.[00:00:54] swyx (2): Thanks. I'm happy to be on and have been a regular listener, so just happy to [00:01:00] contribute as well.[00:01:00] Brian: And a good friend of the pod, as they say. Alright, let's go right into it.[00:01:06] State of AI in 2025[00:01:06] Brian: Simon, I'm going to do the most unfair, broad question first, so let's get it out of the way. The year 2025. Broadly, what is the state of AI as we begin this year?[00:01:20] Brian: Whatever you want to say, I don't want to lead the witness.[00:01:22] Simon: Wow. So many things, right? I mean, the big thing is everything's got really good and fast and cheap. Like, that was the trend throughout all of 2024. The good models got so much cheaper, they got so much faster, they got multimodal, right? The image stuff isn't even a surprise anymore.[00:01:39] Simon: They're growing video, all of that kind of stuff. So that's all really exciting.[00:01:43] Advancements in AI Models[00:01:43] Simon: At the same time, they didn't get massively better than GPT 4, which was a bit of a surprise. So that's sort of one of the open questions is, are we going to see huge, but I kind of feel like that's a bit of a distraction because GPT 4, but way cheaper, much larger context lengths, and it [00:02:00] can do multimodal.[00:02:01] Simon: is better, right? That's a better model, even if it's not.[00:02:05] Brian: What people were expecting or hoping, maybe not expecting is not the right word, but hoping that we would see another step change, right? Right. From like GPT 2 to 3 to 4, we were expecting or hoping that maybe we were going to see the next evolution in that sort of, yeah.[00:02:21] Brian: We[00:02:21] Simon: did see that, but not in the way we expected. We thought the model was just going to get smarter, and instead we got. Massive drops in, drops in price. We got all of these new capabilities. You can talk to the things now, right? They can do simulated audio input, all of that kind of stuff. And so it's kind of, it's interesting to me that the models improved in all of these ways we weren't necessarily expecting.[00:02:43] Simon: I didn't know it would be able to do an impersonation of Santa Claus, like a, you know, Talked to it through my phone and show it what I was seeing by the end of 2024. But yeah, we didn't get that GPT 5 step. And that's one of the big open questions is, is that actually just around the corner and we'll have a bunch of GPT 5 class models drop in the [00:03:00] next few months?[00:03:00] Simon: Or is there a limit?[00:03:03] Brian: If you were a betting man and wanted to put money on it, do you expect to see a phase change, step change in 2025?[00:03:11] Simon: I don't particularly for that, like, the models, but smarter. I think all of the trends we're seeing right now are going to keep on going, especially the inference time compute, right?[00:03:21] Simon: The trick that O1 and O3 are doing, which means that you can solve harder problems, but they cost more and it churns away for longer. I think that's going to happen because that's already proven to work. I don't know. I don't know. Maybe there will be a step change to a GPT 5 level, but honestly, I'd be completely happy if we got what we've got right now.[00:03:41] Simon: But cheaper and faster and more capabilities and longer contexts and so forth. That would be thrilling to me.[00:03:46] Brian: Digging into what you've just said one of the things that, by the way, I hope to link in the show notes to Simon's year end post about what, what things we learned about LLMs in 2024. Look for that in the show notes.[00:03:59] Cost Efficiency in AI[00:03:59] Brian: One of the things that you [00:04:00] did say that you alluded to even right there was that in the last year, you felt like the GPT 4 barrier was broken, like IE. Other models, even open source ones are now regularly matching sort of the state of the art.[00:04:13] Simon: Well, it's interesting, right? So the GPT 4 barrier was a year ago, the best available model was OpenAI's GPT 4 and nobody else had even come close to it.[00:04:22] Simon: And they'd been at the, in the lead for like nine months, right? That thing came out in what, February, March of, of 2023. And for the rest of 2023, nobody else came close. And so at the start of last year, like a year ago, the big question was, Why has nobody beaten them yet? Like, what do they know that the rest of the industry doesn't know?[00:04:40] Simon: And today, that I've counted 18 organizations other than GPT 4 who've put out a model which clearly beats that GPT 4 from a year ago thing. Like, maybe they're not better than GPT 4. 0, but that's, that, that, that barrier got completely smashed. And yeah, a few of those I've run on my laptop, which is wild to me.[00:04:59] Simon: Like, [00:05:00] it was very, very wild. It felt very clear to me a year ago that if you want GPT 4, you need a rack of 40, 000 GPUs just to run the thing. And that turned out not to be true. Like the, the, this is that big trend from last year of the models getting more efficient, cheaper to run, just as capable with smaller weights and so forth.[00:05:20] Simon: And I ran another GPT 4 model on my laptop this morning, right? Microsoft 5. 4 just came out. And that, if you look at the benchmarks, it's definitely, it's up there with GPT 4. 0. It's probably not as good when you actually get into the vibes of the thing, but it, it runs on my, it's a 14 gigabyte download and I can run it on a MacBook Pro.[00:05:38] Simon: Like who saw that coming? The most exciting, like the close of the year on Christmas day, just a few weeks ago, was when DeepSeek dropped their DeepSeek v3 model on Hugging Face without even a readme file. It was just like a giant binary blob that I can't run on my laptop. It's too big. But in all of the benchmarks, it's now by far the best available [00:06:00] open, open weights model.[00:06:01] Simon: Like it's, it's, it's beating the, the metalamas and so forth. And that was trained for five and a half million dollars, which is a tenth of the price that people thought it costs to train these things. So everything's trending smaller and faster and more efficient.[00:06:15] Brian: Well, okay.[00:06:16] Challenges and Competition in AI[00:06:16] Brian: I, I kind of was going to get to that later, but let's, let's combine this with what I was going to ask you next, which is, you know, you're talking, you know, Also in the piece about the LLM prices crashing, which I've even seen in projects that I'm working on, but explain Explain that to a general audience, because we hear all the time that LLMs are eye wateringly expensive to run, but what we're suggesting, and we'll come back to the cheap Chinese LLM, but first of all, for the end user, what you're suggesting is that we're starting to see the cost come down sort of in the traditional technology way of Of costs coming down over time,[00:06:49] Simon: yes, but very aggressively.[00:06:51] Simon: I mean, my favorite thing, the example here is if you look at GPT-3, so open AI's g, PT three, which was the best, a developed model in [00:07:00] 2022 and through most of 20 2023. That, the models that we have today, the OpenAI models are a hundred times cheaper. So there was a 100x drop in price for OpenAI from their best available model, like two and a half years ago to today.[00:07:13] Simon: And[00:07:14] Brian: just to be clear, not to train the model, but for the use of tokens and things. Exactly,[00:07:20] Simon: for running prompts through them. And then When you look at the, the really, the top tier model providers right now, I think, are OpenAI, Anthropic, Google, and Meta. And there are a bunch of others that I could list there as well.[00:07:32] Simon: Mistral are very good. The, the DeepSeq and Quen models have got great. There's a whole bunch of providers serving really good models. But even if you just look at the sort of big brand name providers, they all offer models now that are
Applications close Monday for the NYC AI Engineer Summit focusing on AI Leadership and Agent Engineering! If you applied, invites should be rolling out shortly.The search landscape is experiencing a fundamental shift. Google built a >$2T company with the “10 blue links” experience, driven by PageRank as the core innovation for ranking. This was a big improvement from the previous directory-based experiences of AltaVista and Yahoo. Almost 4 decades later, Google is now stuck in this links-based experience, especially from a business model perspective. This legacy architecture creates fundamental constraints:* Must return results in ~400 milliseconds* Required to maintain comprehensive web coverage* Tied to keyword-based matching algorithms* Cost structures optimized for traditional indexingAs we move from the era of links to the era of answers, the way search works is changing. You’re not showing a user links, but the goal is to provide context to an LLM. This means moving from keyword based search to more semantic understanding of the content:The link prediction objective can be seen as like a neural PageRank because what you're doing is you're predicting the links people share... but it's more powerful than PageRank. It's strictly more powerful because people might refer to that Paul Graham fundraising essay in like a thousand different ways. And so our model learns all the different ways.All of this is now powered by a $5M cluster with 144 H200s:This architectural choice enables entirely new search capabilities:* Comprehensive result sets instead of approximations* Deep semantic understanding of queries* Ability to process complex, natural language requestsAs search becomes more complex, time to results becomes a variable:People think of searches as like, oh, it takes 500 milliseconds because we've been conditioned... But what if searches can take like a minute or 10 minutes or a whole day, what can you then do?Unlike traditional search engines' fixed-cost indexing, Exa employs a hybrid approach:* Front-loaded compute for indexing and embeddings* Variable inference costs based on query complexity* Mix of owned infrastructure ($5M H200 cluster) and cloud resourcesExa sees a lot of competition from products like Perplexity and ChatGPT Search which layer AI on top of traditional search backends, but Exa is betting that true innovation requires rethinking search from the ground up. For example, the recently launched Websets, a way to turn searches into structured output in grid format, allowing you to create lists and databases out of web pages. The company raised a $17M Series A to build towards this mission, so keep an eye out for them in 2025. Chapters* 00:00:00 Introductions* 00:01:12 ExaAI's initial pitch and concept* 00:02:33 Will's background at SpaceX and Zoox* 00:03:45 Evolution of ExaAI (formerly Metaphor Systems)* 00:05:38 Exa's link prediction technology* 00:09:20 Meaning of the name "Exa"* 00:10:36 ExaAI's new product launch and capabilities* 00:13:33 Compute budgets and variable compute products* 00:14:43 Websets as a B2B offering* 00:19:28 How do you build a search engine?* 00:22:43 What is Neural PageRank?* 00:27:58 Exa use cases * 00:35:00 Auto-prompting* 00:38:42 Building agentic search* 00:44:19 Is o1 on the path to AGI?* 00:49:59 Company culture and nap pods* 00:54:52 Economics of AI search and the future of search technologyFull YouTube TranscriptPlease like and subscribe!Show Notes* ExaAI* Web Search Product* Websets* Series A Announcement* Exa Nap Pods* Perplexity AI* Character.AITranscriptAlessio [00:00:00]: Hey, everyone. Welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol.ai.Swyx [00:00:10]: Hey, and today we're in the studio with my good friend and former landlord, Will Bryk. Roommate. How you doing? Will, you're now CEO co-founder of ExaAI, used to be Metaphor Systems. What's your background, your story?Will [00:00:30]: Yeah, sure. So, yeah, I'm CEO of Exa. I've been doing it for three years. I guess I've always been interested in search, whether I knew it or not. Like, since I was a kid, I've always been interested in, like, high-quality information. And, like, you know, even in high school, wanted to improve the way we get information from news. And then in college, built a mini search engine. And then with Exa, like, you know, it's kind of like fulfilling the dream of actually being able to solve all the information needs I wanted as a kid. Yeah, I guess. I would say my entire life has kind of been rotating around this problem, which is pretty cool. Yeah.Swyx [00:00:50]: What'd you enter YC with?Will [00:00:53]: We entered YC with, uh, we are better than Google. Like, Google 2.0.Swyx [00:01:12]: What makes you say that? Like, that's so audacious to come out of the box with.Will [00:01:16]: Yeah, okay, so you have to remember the time. This was summer 2021. And, uh, GPT-3 had come out. Like, here was this magical thing that you could talk to, you could enter a whole paragraph, and it understands what you mean, understands the subtlety of your language. And then there was Google. Uh, which felt like it hadn't changed in a decade, uh, because it really hadn't. And it, like, you would give it a simple query, like, I don't know, uh, shirts without stripes, and it would give you a bunch of results for the shirts with stripes. And so, like, Google could barely understand you, and GBD3 could. And the theory was, what if you could make a search engine that actually understood you? What if you could apply the insights from LLMs to a search engine? And it's really been the same idea ever since. And we're actually a lot closer now, uh, to doing that. Yeah.Alessio [00:01:55]: Did you have any trouble making people believe? Obviously, there's the same element. I mean, YC overlap, was YC pretty AI forward, even 2021, or?Will [00:02:03]: It's nothing like it is today. But, um, uh, there were a few AI companies, but, uh, we were definitely, like, bold. And I think people, VCs generally like boldness, and we definitely had some AI background, and we had a working demo. So there was evidence that we could build something that was going to work. But yeah, I think, like, the fundamentals were there. I think people at the time were talking about how, you know, Google was failing in a lot of ways. And so there was a bit of conversation about it, but AI was not a big, big thing at the time. Yeah. Yeah.Alessio [00:02:33]: Before we jump into Exa, any fun background stories? I know you interned at SpaceX, any Elon, uh, stories? I know you were at Zoox as well, you know, kind of like robotics at Harvard. Any stuff that you saw early that you thought was going to get solved that maybe it's not solved today?Will [00:02:48]: Oh yeah. I mean, lots of things like that. Like, uh, I never really learned how to drive because I believed Elon that self-driving cars would happen. It did happen. And I take them every night to get home. But it took like 10 more years than I thought. Do you still not know how to drive? I know how to drive now. I learned it like two years ago. That would have been great to like, just, you know, Yeah, yeah, yeah. You know? Um, I was obsessed with Elon. Yeah. I mean, I worked at SpaceX because I really just wanted to work at one of his companies. And I remember they had a rule, like interns cannot touch Elon. And, um, that rule actually influenced my actions.Swyx [00:03:18]: Is it, can Elon touch interns? Ooh, like physically?Will [00:03:22]: Or like talk? Physically, physically, yeah, yeah, yeah, yeah. Okay, interesting. He's changed a lot, but, um, I mean, his companies are amazing. Um,Swyx [00:03:28]: What if you beat him at Diablo 2, Diablo 4, you know, like, Ah, maybe.Alessio [00:03:34]: I want to jump into, I know there's a lot of backstory used to be called metaphor system. So, um, and it, you've always been kind of like a prominent company, maybe at least RAI circles in the NSF.Swyx [00:03:45]: I'm actually curious how Metaphor got its initial aura. You launched with like, very little. We launched very little. Like there was, there was this like big splash image of like, this is Aurora or something. Yeah. Right. And then I was like, okay, what this thing, like the vibes are good, but I don't know what it is. And I think, I think it was much more sort of maybe consumer facing than what you are today. Would you say that's true?Will [00:04:06]: No, it's always been about building a better search algorithm, like search, like, just like the vision has always been perfect search. And if you do that, uh, we will figure out the downstream use cases later. It started on this fundamental belief that you could have perfect search over the web and we could talk about what that means. And like the initial thing we released was really just like our first search engine, like trying to get it out there. Kind of like, you know, an open source. So when OpenAI released, uh, ChachBt, like they didn't, I don't know how, how much of a game plan they had. They kind of just wanted to get something out there.Swyx [00:04:33]: Spooky research preview.Will [00:04:34]: Yeah, exactly. And it kind of morphed from a research company to a product company at that point. And I think similarly for us, like we were research, we started as a research endeavor with a, you know, clear eyes that like, if we succeed, it will be a massive business to make out of it. And that's kind of basically what happened. I think there are actually a lot of parallels to, of w between Exa and OpenAI. I often say we're the OpenAI of search. Um, because. Because we're a research company, we're a research startup that does like fundamental research into, uh, making like AGI for search in a, in a way. Uh, and then we have all these like, uh, business products that come out of that.Swyx [00:05:08]: Interesting. I want to ask a little bit more about Metaf
Applications for the NYC AI Engineer Summit, focused on Agents at Work, are open!When we first started Latent Space, in the lightning round we’d always ask guests: “What’s your favorite AI product?”. The majority would say Midjourney. The simple UI of prompt → very aesthetic image turned it into a $300M+ ARR bootstrapped business as it rode the first wave of AI image generation.In open source land, StableDiffusion was congregating around AUTOMATIC1111 as the de-facto web UI. Unlike Midjourney, which offered some flags but was mostly prompt-driven, A1111 let users play with a lot more parameters, supported additional modalities like img2img, and allowed users to load in custom models. If you’re interested in some of the SD history, you can look at our episodes with Lexica, Replicate, and Playground.One of the people involved with that community was comfyanonymous, who was also part of the Stability team in 2023, decided to build an alternative called ComfyUI, now one of the fastest growing open source projects in generative images, and is now the preferred partner for folks like Black Forest Labs’s Flux Tools on Day 1. The idea behind it was simple: “Everyone is trying to make easy to use interfaces. Let me try to make a powerful interface that's not easy to use.”Unlike its predecessors, ComfyUI does not have an input text box. Everything is based around the idea of a node: there’s a text input node, a CLIP node, a checkpoint loader node, a KSampler node, a VAE node, etc. While daunting for simple image generation, the tool is amazing for more complex workflows since you can break down every step of the process, and then chain many of them together rather than manually switching between tools. You can also re-start execution halfway instead of from the beginning, which can save a lot of time when using larger models.To give you an idea of some of the new use cases that this type of UI enables:* Sketch something → Generate an image with SD from sketch → feed it into SD Video to animate* Generate an image of an object → Turn into a 3D asset → Feed into interactive experiences* Input audio → Generate audio-reactive videosTheir Examples page also includes some of the more common use cases like AnimateDiff, etc. They recently launched the Comfy Registry, an online library of different nodes that users can pull from rather than having to build everything from scratch. The project has >60,000 Github stars, and as the community grows, some of the projects that people build have gotten quite complex:The most interesting thing about Comfy is that it’s not a UI, it’s a runtime. You can build full applications on top of image models simply by using Comfy. You can expose Comfy workflows as an endpoint and chain them together just like you chain a single node. We’re seeing the rise of AI Engineering applied to art.Major Tom’s ComfyUI Resources from the Latent Space DiscordMajor shoutouts to Major Tom on the LS Discord who is a image generation expert, who offered these pointers:* “best thing about comfy is the fact it supports almost immediately every new thing that comes out - unlike A1111 or forge, which still don't support flux cnet for instance. It will be perfect tool when conflicting nodes will be resolved”* AP Workflows from Alessandro Perili are a nice example of an all-in-one train-evaluate-generate system built atop Comfy* ComfyUI YouTubers to learn from:* @sebastiankamph* @NerdyRodent* @OlivioSarikas* @sedetweiler* @pixaroma* ComfyUI Nodes to check out:* https://github.com/kijai/ComfyUI-IC-Light* https://github.com/MrForExample/ComfyUI-3D-Pack* https://github.com/PowerHouseMan/ComfyUI-AdvancedLivePortrait* https://github.com/pydn/ComfyUI-to-Python-Extension* https://github.com/THtianhao/ComfyUI-Portrait-Maker* https://github.com/ssitu/ComfyUI_NestedNodeBuilder* https://github.com/longgui0318/comfyui-magic-clothing* https://github.com/atmaranto/ComfyUI-SaveAsScript* https://github.com/ZHO-ZHO-ZHO/ComfyUI-InstantID* https://github.com/AIFSH/ComfyUI-FishSpeech* https://github.com/coolzilj/ComfyUI-Photopea* https://github.com/lks-ai/anynode* Sarav: https://www.youtube.com/@mickmumpitz/videos ( applied stuff )* Sarav: https://www.youtube.com/@latentvision (technical, but infrequent)* look for comfyui node for https://github.com/magic-quill/MagicQuill* “Comfy for Video” resources* Kijai (https://github.com/kijai) pushing out support for Mochi, CogVideoX, AnimateDif, LivePortrait etc* Comfyui node support like LTX https://github.com/Lightricks/ComfyUI-LTXVideo , and HunyuanVideo* FloraFauna AI and Krea.ai* Communities: https://www.reddit.com/r/StableDiffusion/, https://www.reddit.com/r/comfyui/Full YouTube EpisodeAs usual, you can find the full video episode on our YouTube (and don’t forget to like and subscribe!)Timestamps* 00:00:04 Introduction of hosts and anonymous guest* 00:00:35 Origins of Comfy UI and early Stable Diffusion landscape* 00:02:58 Comfy's background and development of high-res fix* 00:05:37 Area conditioning and compositing in image generation* 00:07:20 Discussion on different AI image models (SD, Flux, etc.)* 00:11:10 Closed source model APIs and community discussions on SD versions* 00:14:41 LoRAs and textual inversion in image generation* 00:18:43 Evaluation methods in the Comfy community* 00:20:05 CLIP models and text encoders in image generation* 00:23:05 Prompt weighting and negative prompting* 00:26:22 Comfy UI's unique features and design choices* 00:31:00 Memory management in Comfy UI* 00:33:50 GPU market share and compatibility issues* 00:35:40 Node design and parameter settings in Comfy UI* 00:38:44 Custom nodes and community contributions* 00:41:40 Video generation models and capabilities* 00:44:47 Comfy UI's development timeline and rise to popularity* 00:48:13 Current state of Comfy UI team and future plans* 00:50:11 Discussion on other Comfy startups and potential text generation supportTranscriptAlessio [00:00:04]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of Small AI.swyx [00:00:12]: Hey everyone, we are in the Chroma Studio again, but with our first ever anonymous guest, Comfy Anonymous, welcome.Comfy [00:00:19]: Hello.swyx [00:00:21]: I feel like that's your full name, you just go by Comfy, right?Comfy [00:00:24]: Yeah, well, a lot of people just call me Comfy, even when they know my real name. Hey, Comfy.Alessio [00:00:32]: Swyx is the same. You know, not a lot of people call you Shawn.swyx [00:00:35]: Yeah, you have a professional name, right, that people know you by, and then you have a legal name. Yeah, it's fine. How do I phrase this? I think people who are in the know, know that Comfy is like the tool for image generation and now other multimodality stuff. I would say that when I first got started with Stable Diffusion, the star of the show was Automatic 111, right? And I actually looked back at my notes from 2022-ish, like Comfy was already getting started back then, but it was kind of like the up and comer, and your main feature was the flowchart. Can you just kind of rewind to that moment, that year and like, you know, how you looked at the landscape there and decided to start Comfy?Comfy [00:01:10]: Yeah, I discovered Stable Diffusion in 2022, in October 2022. And, well, I kind of started playing around with it. Yes, I, and back then I was using Automatic, which was what everyone was using back then. And so I started with that because I had, it was when I started, I had no idea like how Diffusion works. I didn't know how Diffusion models work, how any of this works, so.swyx [00:01:36]: Oh, yeah. What was your prior background as an engineer?Comfy [00:01:39]: Just a software engineer. Yeah. Boring software engineer.swyx [00:01:44]: But like any, any image stuff, any orchestration, distributed systems, GPUs?Comfy [00:01:49]: No, I was doing basically nothing interesting. Crud, web development? Yeah, a lot of web development, just, yeah, some basic, maybe some basic like automation stuff. Okay. Just. Yeah, no, like, no big companies or anything.swyx [00:02:08]: Yeah, but like already some interest in automations, probably a lot of Python.Comfy [00:02:12]: Yeah, yeah, of course, Python. But I wasn't actually used to like the Node graph interface before I started Comfy UI. It was just, I just thought it was like, oh, like, what's the best way to represent the Diffusion process in the user interface? And then like, oh, well. Well, like, naturally, oh, this is the best way I've found. And this was like with the Node interface. So how I got started was, yeah, so basic October 2022, just like I hadn't written a line of PyTorch before that. So it's completely new. What happened was I kind of got addicted to generating images.Alessio [00:02:58]: As we all did. Yeah.Comfy [00:03:00]: And then I started. I started experimenting with like the high-res fixed in auto, which was for those that don't know, the high-res fix is just since the Diffusion models back then could only generate that low-resolution. So what you would do, you would generate low-resolution image, then upscale, then refine it again. And that was kind of the hack to generate high-resolution images. I really liked generating. Like higher resolution images. So I was experimenting with that. And so I modified the code a bit. Okay. What happens if I, if I use different samplers on the second pass, I was edited the code of auto. So what happens if I use a different sampler? What happens if I use a different, like a different settings, different number of steps? And because back then the. The high-res fix was very basic, just, so. Yeah.swyx [00:04:05]: Now there's a whole library of just, uh, the upsamplers.Comfy [00:04:08]: I think, I think they added a bunch of, uh, of options to the high-res fix since, uh, since, since then. But before that was just so basic. So I wanted to go further. I wanted to try it. What happens
Applications for the 2025 AI Engineer Summit are up, and you can save the date for AIE Singapore in April and AIE World’s Fair 2025 in June.Happy new year, and thanks for 100 great episodes! Please let us know what you want to see/hear for the next 100!Full YouTube Episode with Slides/ChartsLike and subscribe and hit that bell to get notifs!Timestamps* 00:00 Welcome to the 100th Episode!* 00:19 Reflecting on the Journey* 00:47 AI Engineering: The Rise and Impact* 03:15 Latent Space Live and AI Conferences* 09:44 The Competitive AI Landscape* 21:45 Synthetic Data and Future Trends* 35:53 Creative Writing with AI* 36:12 Legal and Ethical Issues in AI* 38:18 The Data War: GPU Poor vs. GPU Rich* 39:12 The Rise of GPU Ultra Rich* 40:47 Emerging Trends in AI Models* 45:31 The Multi-Modality War* 01:05:31 The Future of AI Benchmarks* 01:13:17 Pionote and Frontier Models* 01:13:47 Niche Models and Base Models* 01:14:30 State Space Models and RWKB* 01:15:48 Inference Race and Price Wars* 01:22:16 Major AI Themes of the Year* 01:22:48 AI Rewind: January to March* 01:26:42 AI Rewind: April to June* 01:33:12 AI Rewind: July to September* 01:34:59 AI Rewind: October to December* 01:39:53 Year-End Reflections and PredictionsTranscript[00:00:00] Welcome to the 100th Episode![00:00:00] Alessio: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co host Swyx for the 100th time today.[00:00:12] swyx: Yay, um, and we're so glad that, yeah, you know, everyone has, uh, followed us in this journey. How do you feel about it? 100 episodes.[00:00:19] Alessio: Yeah, I know.[00:00:19] Reflecting on the Journey[00:00:19] Alessio: Almost two years that we've been doing this. We've had four different studios. Uh, we've had a lot of changes. You know, we used to do this lightning round. When we first started that we didn't like, and we tried to change the question. The answer[00:00:32] swyx: was cursor and perplexity.[00:00:34] Alessio: Yeah, I love mid journey. It's like, do you really not like anything else?[00:00:38] Alessio: Like what's, what's the unique thing? And I think, yeah, we, we've also had a lot more research driven content. You know, we had like 3DAO, we had, you know. Jeremy Howard, we had more folks like that.[00:00:47] AI Engineering: The Rise and Impact[00:00:47] Alessio: I think we want to do more of that too in the new year, like having, uh, some of the Gemini folks, both on the research and the applied side.[00:00:54] Alessio: Yeah, but it's been a ton of fun. I think we both started, I wouldn't say as a joke, we were kind of like, Oh, we [00:01:00] should do a podcast. And I think we kind of caught the right wave, obviously. And I think your rise of the AI engineer posts just kind of get people. Sombra to congregate, and then the AI engineer summit.[00:01:11] Alessio: And that's why when I look at our growth chart, it's kind of like a proxy for like the AI engineering industry as a whole, which is almost like, like, even if we don't do that much, we keep growing just because there's so many more AI engineers. So did you expect that growth or did you expect that would take longer for like the AI engineer thing to kind of like become, you know, everybody talks about it today.[00:01:32] swyx: So, the sign of that, that we have won is that Gartner puts it at the top of the hype curve right now. So Gartner has called the peak in AI engineering. I did not expect, um, to what level. I knew that I was correct when I called it because I did like two months of work going into that. But I didn't know, You know, how quickly it could happen, and obviously there's a chance that I could be wrong.[00:01:52] swyx: But I think, like, most people have come around to that concept. Hacker News hates it, which is a good sign. But there's enough people that have defined it, you know, GitHub, when [00:02:00] they launched GitHub Models, which is the Hugging Face clone, they put AI engineers in the banner, like, above the fold, like, in big So I think it's like kind of arrived as a meaningful and useful definition.[00:02:12] swyx: I think people are trying to figure out where the boundaries are. I think that was a lot of the quote unquote drama that happens behind the scenes at the World's Fair in June. Because I think there's a lot of doubt or questions about where ML engineering stops and AI engineering starts. That's a useful debate to be had.[00:02:29] swyx: In some sense, I actually anticipated that as well. So I intentionally did not. Put a firm definition there because most of the successful definitions are necessarily underspecified and it's actually useful to have different perspectives and you don't have to specify everything from the outset.[00:02:45] Alessio: Yeah, I was at um, AWS reInvent and the line to get into like the AI engineering talk, so to speak, which is, you know, applied AI and whatnot was like, there are like hundreds of people just in line to go in.[00:02:56] Alessio: I think that's kind of what enabled me. People, right? Which is what [00:03:00] you kind of talked about. It's like, Hey, look, you don't actually need a PhD, just, yeah, just use the model. And then maybe we'll talk about some of the blind spots that you get as an engineer with the earlier posts that we also had on on the sub stack.[00:03:11] Alessio: But yeah, it's been a heck of a heck of a two years.[00:03:14] swyx: Yeah.[00:03:15] Latent Space Live and AI Conferences[00:03:15] swyx: You know, I was, I was trying to view the conference as like, so NeurIPS is I think like 16, 17, 000 people. And the Latent Space Live event that we held there was 950 signups. I think. The AI world, the ML world is still very much research heavy. And that's as it should be because ML is very much in a research phase.[00:03:34] swyx: But as we move this entire field into production, I think that ratio inverts into becoming more engineering heavy. So at least I think engineering should be on the same level, even if it's never as prestigious, like it'll always be low status because at the end of the day, you're manipulating APIs or whatever.[00:03:51] swyx: But Yeah, wrapping GPTs, but there's going to be an increasing stack and an art to doing these, these things well. And I, you know, I [00:04:00] think that's what we're focusing on for the podcast, the conference and basically everything I do seems to make sense. And I think we'll, we'll talk about the trends here that apply.[00:04:09] swyx: It's, it's just very strange. So, like, there's a mix of, like, keeping on top of research while not being a researcher and then putting that research into production. So, like, people always ask me, like, why are you covering Neuralibs? Like, this is a ML research conference and I'm like, well, yeah, I mean, we're not going to, to like, understand everything Or reproduce every single paper, but the stuff that is being found here is going to make it through into production at some point, you hope.[00:04:32] swyx: And then actually like when I talk to the researchers, they actually get very excited because they're like, oh, you guys are actually caring about how this goes into production and that's what they really really want. The measure of success is previously just peer review, right? Getting 7s and 8s on their um, Academic review conferences and stuff like citations is one metric, but money is a better metric.[00:04:51] Alessio: Money is a better metric. Yeah, and there were about 2200 people on the live stream or something like that. Yeah, yeah. Hundred on the live stream. So [00:05:00] I try my best to moderate, but it was a lot spicier in person with Jonathan and, and Dylan. Yeah, that it was in the chat on YouTube.[00:05:06] swyx: I would say that I actually also created.[00:05:09] swyx: Layen Space Live in order to address flaws that are perceived in academic conferences. This is not NeurIPS specific, it's ICML, NeurIPS. Basically, it's very sort of oriented towards the PhD student, uh, market, job market, right? Like literally all, basically everyone's there to advertise their research and skills and get jobs.[00:05:28] swyx: And then obviously all the, the companies go there to hire them. And I think that's great for the individual researchers, but for people going there to get info is not great because you have to read between the lines, bring a ton of context in order to understand every single paper. So what is missing is effectively what I ended up doing, which is domain by domain, go through and recap the best of the year.[00:05:48] swyx: Survey the field. And there are, like NeurIPS had a, uh, I think ICML had a like a position paper track, NeurIPS added a benchmarks, uh, datasets track. These are ways in which to address that [00:06:00] issue. Uh, there's always workshops as well. Every, every conference has, you know, a last day of workshops and stuff that provide more of an overview.[00:06:06] swyx: But they're not specifically prompted to do so. And I think really, uh, Organizing a conference is just about getting good speakers and giving them the correct prompts. And then they will just go and do that thing and they do a very good job of it. So I think Sarah did a fantastic job with the startups prompt.[00:06:21] swyx: I can't list everybody, but we did best of 2024 in startups, vision, open models. Post transformers, synthetic data, small models, and agents. And then the last one was the, uh, and then we also did a quick one on reasoning with Nathan Lambert. And then the last one, obviously, was the debate that people were very hyped about.[00:06:39] swyx: It was very awkward. And I'm really, really thankful for John Franco, basically, who stepped up to challenge Dylan. Because Dylan was like, yeah, I'll do it. But He was pro scaling. And I think everyone who is like in AI is pro scaling, right? So you need somebody who's ready to publicly say, no, we've hit a wall.[00:06:57] swyx:
Happy holidays! We’ll be sharing snippets from Latent Space LIVE! through the break bringing you the best of 2024! We want to express our deepest appreciation to event sponsors AWS, Daylight Computer, Thoth.ai, StrongCompute, Notable Capital, and most of all all our LS supporters who helped fund the gorgeous venue and A/V production!For NeurIPS last year we did our standard conference podcast coverage interviewing selected papers (that we have now also done for ICLR and ICML), however we felt that we could be doing more to help AI Engineers 1) get more industry-relevant content, and 2) recap 2024 year in review from experts. As a result, we organized the first Latent Space LIVE!, our first in person miniconference, at NeurIPS 2024 in Vancouver.Our next keynote covers The State of LLM Agents, with the triumphant return of Professor Graham Neubig’s return to the pod (his ICLR episode here!). OpenDevin is now a startup known as AllHands! The renamed OpenHands has done extremely well this year, as they end the year sitting comfortably at number 1 on the hardest SWE-Bench Full leaderboard at 29%, though on the smaller SWE-Bench Verified, they are at 53%, behind Amazon Q, devlo, and OpenAI's self reported o3 results at 71.7%.Many are saying that 2025 is going to be the year of agents, with OpenAI, DeepMind and Anthropic setting their sights on consumer and coding agents, vision based computer-using agents and multi agent systems. There has been so much progress on the practical reliability and applications of agents in all domains, from the huge launch of Cognition AI's Devin this year, to the sleeper hit of Cursor Composer and Codeium's Windsurf Cascade in the IDE arena, to the explosive revenue growth of Stackblitz's Bolt, Lovable, and Vercel's v0, and the unicorn rounds and high profile movements of customer support agents like Sierra (now worth $4 billion) and search agents like Perplexity (now worth $9 billion). We wanted to take a little step back to understand the most notable papers of the year in Agents, and Graham indulged with his list of 8 perennial problems in building agents in 2024.Must-Read Papers for the 8 Problems of Agents* The agent-computer interface: CodeAct: Executable Code Actions Elicit Better LLM Agents. Minimial viable tools: Execution Sandbox, File Editor, Web Browsing* The human-agent interface: Chat UI, GitHub Plugin, Remote runtime, …?* Choosing an LLM: See Evaluation of LLMs as Coding Agents on SWE-Bench at 30x - must understand instructions, tools, code, environment, error recovery* Planning: Single Agent Systems vs Multi Agent (CoAct: A Global-Local Hierarchy for Autonomous Agent Collaboration) - Explicit vs Implicit, Curated vs Generated* Reusable common workflows: SteP: Stacked LLM Policies for Web Actions and Agent Workflow Memory - Manual prompting vs Learning from Experience* Exploration: Agentless: Demystifying LLM-based Software Engineering Agents and BAGEL: Bootstrapping Agents by Guiding Exploration with Language* Search: Tree Search for Language Model Agents - explore paths and rewind* Evaluation: Fast Sanity Checks (miniWoB and Aider) and Highly Realistic (WebArena, SWE-Bench) and SWE-Gym: An Open Environment for Training Software Engineering Agents & VerifiersFull Talk on YouTubePlease like and subscribe!Timestamps* 00:00 Welcome to Latent Space Live at NeurIPS 2024* 00:29 State of LLM Agents in 2024* 02:20 Professor Graham Newbig's Insights on Agents* 03:57 Live Demo: Coding Agents in Action* 08:20 Designing Effective Agents* 14:13 Choosing the Right Language Model for Agents* 16:24 Planning and Workflow for Agents* 22:21 Evaluation and Future Predictions for Agents* 25:31 Future of Agent Development* 25:56 Human-Agent Interaction Challenges* 26:48 Expanding Agent Use Beyond Programming* 27:25 Redesigning Systems for Agent Efficiency* 28:03 Accelerating Progress with Agent Technology* 28:28 Call to Action for Open Source Contributions* 30:36 Q&A: Agent Performance and Benchmarks* 33:23 Q&A: Web Agents and Interaction Methods* 37:16 Q&A: Agent Architectures and Improvements* 43:09 Q&A: Self-Improving Agents and Authentication* 47:31 Live Demonstration and Closing RemarksTranscript[00:00:29] State of LLM Agents in 2024[00:00:29] Speaker 9: Our next keynote covers the state of LLM agents. With the triumphant return of Professor Graham Newbig of CMU and OpenDevon, now a startup known as AllHands. The renamed OpenHands has done extremely well this year, as they end the year sitting comfortably at number one on the hardest SWE Benchful leaderboard at 29%.[00:00:53] Speaker 9: Though, on the smaller SWE bench verified, they are at 53 percent behind Amazon Q [00:01:00] Devlo and OpenAI's self reported O3 results at 71. 7%. Many are saying that 2025 is going to be the year of agents, with OpenAI, DeepMind, and Anthropic setting their sights on consumer and coding agents. Vision based computer using agents and multi agent systems.[00:01:22] Speaker 9: There has been so much progress on the practical reliability and applications of agents in all domains, from the huge launch of Cognition AI's Devon this year, to the sleeper hit of Cursor Composer and recent guest Codium's Windsurf Cascade in the IDE arena. To the explosive revenue growth of recent guests StackBlitz's Bolt, Lovable, and Vercel's vZero.[00:01:44] Speaker 9: And the unicorn rounds and high profile movements of customer support agents like Sierra, now worth 4 billion, and search agents like Perplexity, now worth 9 billion. We wanted to take a little step back to understand the most notable papers of the year in [00:02:00] agents, and Graham indulged with his list of eight perennial problems in building agents.[00:02:06] Speaker 9: As always, don't forget to check our show notes for all the selected best papers of 2024, and for the YouTube link to their talk. Graham's slides were especially popular online, and we are honoured to have him. Watch out and take care![00:02:20] Professor Graham Newbig's Insights on Agents[00:02:20] Speaker: Okay hi everyone. So I was given the task of talking about agents in 2024, and this is An impossible task because there are so many agents, so many agents in 2024. So this is going to be strongly covered by like my personal experience and what I think is interesting and important, but I think it's an important topic.[00:02:41] Speaker: So let's go ahead. So the first thing I'd like to think about is let's say I gave you you know, a highly competent human, some tools. Let's say I gave you a web browser and a terminal or a file system. And the ability to [00:03:00] edit text or code. What could you do with that? Everything. Yeah.[00:03:07] Speaker: Probably a lot of things. This is like 99 percent of my, you know, daily daily life, I guess. When I'm, when I'm working. So, I think this is a pretty powerful tool set, and I am trying to do, and what I think some other people are trying to do, is come up with agents that are able to, you know, manipulate these things.[00:03:26] Speaker: Web browsing, coding, running code in successful ways. So there was a little bit about my profile. I'm a professor at CMU, chief scientist at All Hands AI, building open source coding agents. I'm maintainer of OpenHands, which is an open source coding agent framework. And I'm also a software developer and I, I like doing lots of coding and, and, you know, shipping new features and stuff like this.[00:03:51] Speaker: So building agents that help me to do this, you know, is kind of an interesting thing, very close to me.[00:03:57] Live Demo: Coding Agents in Action[00:03:57] Speaker: So the first thing I'd like to do is I'd like to try [00:04:00] some things that I haven't actually tried before. If anybody has, you know, tried to give a live demo, you know, this is, you know very, very scary whenever you do it and it might not work.[00:04:09] Speaker: So it might not work this time either. But I want to show you like three things that I typically do with coding agents in my everyday work. I use coding agents maybe five to 10 times a day to help me solve my own problems. And so this is a first one. This is a data science task. Which says I want to create scatter plots that show the increase of the SWE bench score over time.[00:04:34] Speaker: And so I, I wrote a kind of concrete prompt about this. Agents work better with like somewhat concrete prompts. And I'm gonna throw this into open hands and let it work. And I'll, I'll go back to that in a second. Another thing that I do is I create new software. And I, I've been using a [00:05:00] service a particular service.[00:05:01] Speaker: I won't name it for sending emails and I'm not very happy with it. So I want to switch over to this new service called resend. com, which makes it easier to send emails. And so I'm going to ask it to read the docs for the resend. com API and come up with a script that allows me to send emails. The input to the script should be a CSV file and the subject and body should be provided in Jinja2 templates.[00:05:24] Speaker: So I'll start another agent and and try to get it to do that for me.[00:05:35] Speaker: And let's go with the last one. The last one I do is. This is improving existing software and in order, you know, once you write software, you usually don't throw it away. You go in and, like, actually improve it iteratively. This software that I have is something I created without writing any code.[00:05:52] Speaker: It's basically software to monitor how much our our agents are contributing to the OpenHance repository. [00:06:00] And on the, let me make that a little bit bigger, on the left side, I have the number of issues where it like sent a pull request. I have the number of issues where it like sent a pull request, whether it was merged in purple, closed in red, or is still open in green. And so these are like, you know, it's helping us monitor, but one thing it doesn't tell me is the total number. And I kind of want that
Happy holidays! We’ll be sharing snippets from Latent Space LIVE! through the break bringing you the best of 2024! We want to express our deepest appreciation to event sponsors AWS, Daylight Computer, Thoth.ai, StrongCompute, Notable Capital, and most of all all our LS supporters who helped fund the gorgeous venue and A/V production!For NeurIPS last year we did our standard conference podcast coverage interviewing selected papers (that we have now also done for ICLR and ICML), however we felt that we could be doing more to help AI Engineers 1) get more industry-relevant content, and 2) recap 2024 year in review from experts. As a result, we organized the first Latent Space LIVE!, our first in person miniconference, at NeurIPS 2024 in Vancouver. Today, we’re proud to share Loubna’s highly anticipated talk (slides here)!Synthetic DataWe called out the Synthetic Data debate at last year’s NeurIPS, and no surprise that 2024 was dominated by the rise of synthetic data everywhere:* Apple’s Rephrasing the Web, Microsoft’s Phi 2-4 and Orca/AgentInstruct, Tencent’s Billion Persona dataset, DCLM, and HuggingFace’s FineWeb-Edu, and Loubna’s own Cosmopedia extended the ideas of synthetic textbook and agent generation to improve raw web scrape dataset quality* This year we also talked to the IDEFICS/OBELICS team at HuggingFace who released WebSight this year, the first work on code-vs-images synthetic data.* We called Llama 3.1 the Synthetic Data Model for its extensive use (and documentation!) of synthetic data in its pipeline, as well as its permissive license. * Nemotron CC and Nemotron-4-340B also made a big splash this year for how they used 20k items of human data to synthesize over 98% of the data used for SFT/PFT.* Cohere introduced Multilingual Arbitrage: Optimizing Data Pools to Accelerate Multilingual Progress observing gains of up to 56.5% improvement in win rates comparing multiple teachers vs the single best teacher model* In post training, AI2’s Tülu3 (discussed by Luca in our Open Models talk) and Loubna’s Smol Talk were also notable open releases this year.This comes in the face of a lot of scrutiny and criticism, with Scale AI as one of the leading voices publishing AI models collapse when trained on recursively generated data in Nature magazine bringing mainstream concerns to the potential downsides of poor quality syndata:Part of the concerns we highlighted last year on low-background tokens are coming to bear: ChatGPT contaminated data is spiking in every possible metric:But perhaps, if Sakana’s AI Scientist pans out this year, we will have mostly-AI AI researchers publishing AI research anyway so do we really care as long as the ideas can be verified to be correct?Smol ModelsMeta surprised many folks this year by not just aggressively updating Llama 3 and adding multimodality, but also adding a new series of “small” 1B and 3B “on device” models this year, even working on quantized numerics collaborations with Qualcomm, Mediatek, and Arm. It is near unbelievable that a 1B model today can qualitatively match a 13B model of last year:and the minimum size to hit a given MMLU bar has come down roughly 10x in the last year. We have been tracking this proxied by Lmsys Elo and inference price:The key reads this year are:* MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases* Apple Intelligence Foundation Language Models* Hymba: A Hybrid-head Architecture for Small Language Models* Loubna’s SmolLM and SmolLM2: a family of state-of-the-art small models with 135M, 360M, and 1.7B parameters on the pareto efficiency frontier.* and Moondream, which we already covered in the 2024 in Vision talkFull Talk on YouTubeplease like and subscribe!Timestamps* [00:00:05] Loubna Intro* [00:00:33] The Rise of Synthetic Data Everywhere* [00:02:57] Model Collapse* [00:05:14] Phi, FineWeb, Cosmopedia - Synthetic Textbooks* [00:12:36] DCLM, Nemotron-CC* [00:13:28] Post Training - AI2 Tulu, Smol Talk, Cohere Multilingual Arbitrage* [00:16:17] Smol Models* [00:18:24] On Device Models* [00:22:45] Smol Vision Models* [00:25:14] What's NextTranscript2024 in Synthetic Data and Smol Models[00:00:00] ​[00:00:05] Loubna Intro[00:00:05] Speaker: ​I'm very happy to be here. Thank you for the invitation. So I'm going to be talking about synthetic data in 2024. And then I'm going to be talking about small on device models. So I think the most interesting thing about synthetic data this year is that like now we have it everywhere in the large language models pipeline.[00:00:33] The Rise of Synthetic Data Everywhere[00:00:33] Speaker: I think initially, synthetic data was mainly used just for post training, because naturally that's the part where we needed human annotators. And then after that, we realized that we don't really have good benchmarks to [00:01:00] measure if models follow instructions well, if they are creative enough, or if they are chatty enough, so we also started using LLMs as judges.[00:01:08] Speaker: Thank you. And I think this year and towards the end of last year, we also went to the pre training parts and we started generating synthetic data for pre training to kind of replace some parts of the web. And the motivation behind that is that you have a lot of control over synthetic data. You can control your prompt and basically also the kind of data that you generate.[00:01:28] Speaker: So instead of just trying to filter the web, you could try to get the LLM to generate what you think the best web pages could look like and then train your models on that. So this is how we went from not having synthetic data at all in the LLM pipeline to having it everywhere. And so the cool thing is like today you can train an LLM with like an entirely synthetic pipeline.[00:01:49] Speaker: For example, you can use our Cosmopedia datasets and you can train a 1B model on like 150 billion tokens that are 100 percent synthetic. And those are also of good quality. And then you can [00:02:00] instruction tune the model on a synthetic SFT dataset. You can also do DPO on a synthetic dataset. And then to evaluate if the model is good, you can use.[00:02:07] Speaker: A benchmark that uses LLMs as a judge, for example, MTBench or AlpacaEvil. So I think this is like a really mind blowing because like just a few years ago, we wouldn't think this is possible. And I think there's a lot of concerns about model collapse, and I'm going to talk about that later. But we'll see that like, if we use synthetic data properly and we curate it carefully, that shouldn't happen.[00:02:29] Speaker: And the reason synthetic data is very popular right now is that we have really strong models, both open and closed. It is really cheap and fast to use compared to human annotations, which cost a lot and take a lot of time. And also for open models right now, we have some really good inference frameworks.[00:02:47] Speaker: So if you have enough GPUs, it's really easy to spawn these GPUs and generate like a lot of synthetic data. Some examples are VLM, TGI, and TensorRT.[00:02:57] Model Collapse[00:02:57] Speaker: Now let's talk about the elephant in the room, model [00:03:00] collapse. Is this the end? If you look at the media and all of like, for example, some papers in nature, it's really scary because there's a lot of synthetic data out there in the web.[00:03:09] Speaker: And naturally we train on the web. So we're going to be training a lot of synthetic data. And if model collapse is going to happen, we should really try to take that seriously. And the other issue is that, as I said, we think, a lot of people think the web is polluted because there's a lot of synthetic data.[00:03:24] Speaker: And for example, when we're building fine web datasets here at Guillerm and Hinek, we're interested in like, how much synthetic data is there in the web? So there isn't really a method to properly measure the amount of synthetic data or to save a webpage synthetic or not. But one thing we can do is to try to look for like proxy words, for example, expressions like as a large language model or words like delve that we know are actually generated by chat GPT.[00:03:49] Speaker: We could try to measure the amount of these words in our data system and compare them to the previous years. For example, here, we measured like a, these words ratio in different dumps of common crawl. [00:04:00] And we can see that like the ratio really increased after chat GPT's release. So if we were to say that synthetic data amount didn't change, you would expect this ratio to stay constant, which is not the case.[00:04:11] Speaker: So there's a lot of synthetic data probably on the web, but does this really make models worse? So what we did is we trained different models on these different dumps. And we then computed their performance on popular, like, NLP benchmarks, and then we computed the aggregated score. And surprisingly, you can see that the latest DOMs are actually even better than the DOMs that are before.[00:04:31] Speaker: So if there's some synthetic data there, at least it did not make the model's worse. Yeah, which is really encouraging. So personally, I wouldn't say the web is positive with Synthetic Data. Maybe it's even making it more rich. And the issue with like model collapse is that, for example, those studies, they were done at like a small scale, and you would ask the model to complete, for example, a Wikipedia paragraph, and then you would train it on these new generations, and you would do that every day.[00:04:56] Speaker: iteratively. I think if you do that approach, it's normal to [00:05:00] observe this kind of behavior because the quality is going to be worse because the model is already small. And then if you train it just on its generations, you shouldn't expect it to become better. But what we're really doing here is that we take a model that is very large and we try to distill its knowledge into a model that is smaller.[00:05:14] Phi, Fin
Happy holidays! We’ll be sharing snippets from Latent Space LIVE! through the break bringing you the best of 2024! We want to express our deepest appreciation to event sponsors AWS, Daylight Computer, Thoth.ai, StrongCompute, Notable Capital, and most of all all our LS supporters who helped fund the gorgeous venue and A/V production!Update: see followup discussion on HN and also the YouTube discussion.For NeurIPS last year we did our standard conference podcast coverage interviewing selected papers (that we have now also done for ICLR and ICML), however we felt that we could be doing more to help AI Engineers 1) get more industry-relevant content, and 2) recap 2024 year in review from experts. As a result, we organized the first Latent Space LIVE!, our first in person miniconference, at NeurIPS 2024 in Vancouver.Of perennial interest, particularly at academic conferences, is scaled-up architecture research as people hunt for the next Attention Is All You Need. We have many names for them: “efficient models”, “retentive networks”, “subquadratic attention” or “linear attention” but some of them don’t even have any lineage with attention - one of the best papers of this NeurIPS was Sepp Hochreiter’s xLSTM, which has a particularly poetic significance as one of the creators of the LSTM returning to update and challenge the OG language model architecture:So, for lack of a better term, we decided to call this segment “the State of Post-Transformers” and fortunately everyone rolled with it.We are fortunate to have two powerful friends of the pod to give us an update here:* Together AI: with CEO Vipul Ved Prakash and CTO Ce Zhang joining us to talk about how they are building Together together as a quote unquote full stack AI startup, from the lowest level kernel and systems programming to the highest level mathematical abstractions driving new model architectures and inference algorithms, with notable industry contributions from RedPajama v2, Flash Attention 3, Mamba 2, Mixture of Agents, BASED, Sequoia, Evo, Dragonfly, Dan Fu's ThunderKittens and many more research projects this year* Recursal AI: with CEO Eugene Cheah who has helped lead the independent RWKV project while also running Featherless AI. This year, the team has shipped RWKV v5, codenamed Eagle, to 1.5 billion Windows 10 and Windows 11 machines worldwide, to support Microsoft's on-device, energy-usage-sensitive Windows Copilot usecases, and has launched the first updates on RWKV v6, codenamed Finch and GoldFinch. On the morning of Latent Space Live, they also announced QRWKV6, a Qwen 32B model modified with RWKV linear attention layers. We were looking to host a debate between our speakers, but given that both of them were working on post-transformers alternativesFull Talk on YoutubePlease like and subscribe!LinksAll the models and papers they picked:* Earlier Cited Work* Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention* Hungry hungry hippos: Towards language modeling with state space models* Hyena hierarchy: Towards larger convolutional language models* Mamba: Linear-Time Sequence Modeling with Selective State Spaces* S4: Efficiently Modeling Long Sequences with Structured State Spaces* Just Read Twice (Arora et al)* Recurrent large language models that compete with Transformers in language modeling perplexity are emerging at a rapid rate (e.g., Mamba, RWKV). Excitingly, these architectures use a constant amount of memory during inference. However, due to the limited memory, recurrent LMs cannot recall and use all the information in long contexts leading to brittle in-context learning (ICL) quality. A key challenge for efficient LMs is selecting what information to store versus discard. In this work, we observe the order in which information is shown to the LM impacts the selection difficulty. * To formalize this, we show that the hardness of information recall reduces to the hardness of a problem called set disjointness (SD), a quintessential problem in communication complexity that requires a streaming algorithm (e.g., recurrent model) to decide whether inputted sets are disjoint. We empirically and theoretically show that the recurrent memory required to solve SD changes with set order, i.e., whether the smaller set appears first in-context. * Our analysis suggests, to mitigate the reliance on data order, we can put information in the right order in-context or process prompts non-causally. Towards that end, we propose: (1) JRT-Prompt, where context gets repeated multiple times in the prompt, effectively showing the model all data orders. This gives 11.0±1.3 points of improvement, averaged across 16 recurrent LMs and the 6 ICL tasks, with 11.9× higher throughput than FlashAttention-2 for generation prefill (length 32k, batch size 16, NVidia H100). We then propose (2) JRT-RNN, which uses non-causal prefix-linear-attention to process prompts and provides 99% of Transformer quality at 360M params., 30B tokens and 96% at 1.3B params., 50B tokens on average across the tasks, with 19.2× higher throughput for prefill than FA2.* Jamba: A 52B Hybrid Transformer-Mamba Language Model* We present Jamba, a new base large language model based on a novel hybrid Transformer-Mamba mixture-of-experts (MoE) architecture. * Specifically, Jamba interleaves blocks of Transformer and Mamba layers, enjoying the benefits of both model families. MoE is added in some of these layers to increase model capacity while keeping active parameter usage manageable. * This flexible architecture allows resource- and objective-specific configurations. In the particular configuration we have implemented, we end up with a powerful model that fits in a single 80GB GPU.* Built at large scale, Jamba provides high throughput and small memory footprint compared to vanilla Transformers, and at the same time state-of-the-art performance on standard language model benchmarks and long-context evaluations. Remarkably, the model presents strong results for up to 256K tokens context length. * We study various architectural decisions, such as how to combine Transformer and Mamba layers, and how to mix experts, and show that some of them are crucial in large scale modeling. We also describe several interesting properties of these architectures which the training and evaluation of Jamba have revealed, and plan to release checkpoints from various ablation runs, to encourage further exploration of this novel architecture. We make the weights of our implementation of Jamba publicly available under a permissive license.* SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformers* We introduce Sana, a text-to-image framework that can efficiently generate images up to 4096×4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU. Core designs include: * (1) Deep compression autoencoder: unlike traditional AEs, which compress images only 8×, we trained an AE that can compress images 32×, effectively reducing the number of latent tokens. * (2) Linear DiT: we replace all vanilla attention in DiT with linear attention, which is more efficient at high resolutions without sacrificing quality. * (3) Decoder-only text encoder: we replaced T5 with modern decoder-only small LLM as the text encoder and designed complex human instruction with in-context learning to enhance the image-text alignment. * (4) Efficient training and sampling: we propose Flow-DPM-Solver to reduce sampling steps, with efficient caption labeling and selection to accelerate convergence. * As a result, Sana-0.6B is very competitive with modern giant diffusion model (e.g. Flux-12B), being 20 times smaller and 100+ times faster in measured throughput. Moreover, Sana-0.6B can be deployed on a 16GB laptop GPU, taking less than 1 second to generate a 1024×1024 resolution image. Sana enables content creation at low cost. * RWKV: Reinventing RNNs for the Transformer Era* Transformers have revolutionized almost all natural language processing (NLP) tasks but suffer from memory and computational complexity that scales quadratically with sequence length. In contrast, recurrent neural networks (RNNs) exhibit linear scaling in memory and computational requirements but struggle to match the same performance as Transformers due to limitations in parallelization and scalability. * We propose a novel model architecture, Receptance Weighted Key Value (RWKV), that combines the efficient parallelizable training of transformers with the efficient inference of RNNs.* Our approach leverages a linear attention mechanism and allows us to formulate the model as either a Transformer or an RNN, thus parallelizing computations during training and maintains constant computational and memory complexity during inference. * We scale our models as large as 14 billion parameters, by far the largest dense RNN ever trained, and find RWKV performs on par with similarly sized Transformers, suggesting future work can leverage this architecture to create more efficient models. This work presents a significant step towards reconciling trade-offs between computational efficiency and model performance in sequence processing tasks.* LoLCATs: On Low-Rank Linearizing of Large Language Models* Recent works show we can linearize large language models (LLMs) -- swapping the quadratic attentions of popular Transformer-based LLMs with subquadratic analogs, such as linear attention -- avoiding the expensive pretraining costs. However, linearizing LLMs often significantly degrades model quality, still requires training over billions of tokens, and remains limited to smaller 1.3B to 7B LLMs. * We thus propose Low-rank Linear Conversion via Attention Transfer (LoLCATs), a simple two-step method that improves LLM linearizing quality with orders of magnitudes less memory and compute. * We base these steps on two findings. * First, we can replace an L
Happy holidays! We’ll be sharing snippets from Latent Space LIVE! through the break bringing you the best of 2024! We want to express our deepest appreciation to event sponsors AWS, Daylight Computer, Thoth.ai, StrongCompute, Notable Capital, and most of all our LS supporters who helped fund the venue and A/V production!For NeurIPS last year we did our standard conference podcast coverage interviewing selected papers (that we have now also done for ICLR and ICML), however we felt that we could be doing more to help AI Engineers 1) get more industry-relevant content, and 2) recap 2024 year in review from experts. As a result, we organized the first Latent Space LIVE!, our first in person miniconference, at NeurIPS 2024 in Vancouver.Since Nathan Lambert ( Interconnects ) joined us for the hit RLHF 201 episode at the start of this year, it is hard to overstate how much Open Models have exploded this past year. In 2023 only five names were playing in the top LLM ranks, Mistral, Mosaic's MPT, TII UAE's Falcon, Yi from Kai-Fu Lee's 01.ai, and of course Meta's Llama 1 and 2. This year a whole cast of new open models have burst on the scene, from Google's Gemma and Cohere's Command R, to Alibaba's Qwen and Deepseek models, to LLM 360 and DCLM and of course to the Allen Institute's OLMo, OL MOE, Pixmo, Molmo, and Olmo 2 models. We were honored to host Luca Soldaini, one of the research leads on the Olmo series of models at AI2.Pursuing Open Model research comes with a lot of challenges beyond just funding and access to GPUs and datasets, particularly the regulatory debates this year across Europe, California and the White House. We also were honored to hear from and Sophia Yang, head of devrel at Mistral, who also presented a great session at the AI Engineer World's Fair Open Models track!Full Talk on YouTubePlease like and subscribe!Timestamps* 00:00 Welcome to Latent Space Live * 00:12 Recap of 2024: Best Moments and Keynotes * 01:22 Explosive Growth of Open Models in 2024 * 02:04 Challenges in Open Model Research * 02:38 Keynote by Luca Soldani: State of Open Models * 07:23 Significance of Open Source AI Licenses * 11:31 Research Constraints and Compute Challenges * 13:46 Fully Open Models: A New Trend * 27:46 Mistral's Journey and Innovations * 32:57 Interactive Demo: Lachat Capabilities * 36:50 Closing Remarks and NetworkingTranscriptSession3Audio[00:00:00] AI Charlie: Welcome to Latent Space Live, our first mini conference held at NeurIPS 2024 in Vancouver. This is Charlie, your AI co host. As a special treat this week, we're recapping the best of 2024 going domain by domain. We sent out a survey to the over 900 of you who told us what you wanted, and then invited the best speakers in the latent space network to cover each field.[00:00:28] AI Charlie: 200 of you joined us in person throughout the day, with over 2, 200 watching live online. Our next keynote covers the state of open models in 2024, with Luca Soldani and Nathan Lambert of the Allen Institute for AI, with a special appearance from Dr. Sophia Yang of Mistral. Our first hit episode of 2024 was with Nathan Lambert on RLHF 201 back in January.[00:00:57] AI Charlie: Where he discussed both reinforcement learning for language [00:01:00] models and the growing post training and mid training stack with hot takes on everything from constitutional AI to DPO to rejection sampling and also previewed the sea change coming to the Allen Institute. And to Interconnects, his incredible substack on the technical aspects of state of the art AI training.[00:01:18] AI Charlie: We highly recommend subscribing to get access to his Discord as well. It is hard to overstate how much open models have exploded this past year. In 2023, only five names were playing in the top LLM ranks. Mistral, Mosaics MPT, and Gatsby. TII UAE's Falcon, Yi, from Kaifu Lee's 01. ai, And of course, Meta's Lama 1 and 2.[00:01:43] AI Charlie: This year, a whole cast of new open models have burst on the scene. From Google's Jemma and Cohere's Command R, To Alibaba's Quen and DeepSeq models, to LLM360 and DCLM, and of course, to the Allen Institute's OLMO, [00:02:00] OLMOE, PIXMO, MOLMO, and OLMO2 models. Pursuing open model research comes with a lot of challenges beyond just funding and access to GPUs and datasets, particularly the regulatory debates this year across Europe.[00:02:14] AI Charlie: California and the White House. We also were honored to hear from Mistral, who also presented a great session at the AI Engineer World's Fair Open Models track. As always, don't forget to check the show notes for the YouTube link to their talk, as well as their slides. Watch out and take care.[00:02:35] Luca Intro[00:02:35] Luca Soldaini: Cool. Yeah, thanks for having me over. I'm Luca. I'm a research scientist at the Allen Institute for AI. I threw together a few slides on sort of like a recap of like interesting themes in open models for, for 2024. Have about maybe 20, 25 minutes of slides, and then we can chat if there are any questions.[00:02:57] Luca Soldaini: If I can advance to the next slide. [00:03:00] Okay, cool. So I did the quick check of like, to sort of get a sense of like, how much 2024 was different from 2023. So I went on Hugging Face and sort of get, tried to get a picture of what kind of models were released in 2023 and like, what do we get in 2024?[00:03:16] Luca Soldaini: 2023 we get, we got things like both LLAMA 1 and 2, we got Mistral, we got MPT, Falcon models, I think the YI model came in at the end. Tail end of the year. It was a pretty good year. But then I did the same for 2024. And it's actually quite stark difference. You have models that are, you know, reveling frontier level.[00:03:38] Luca Soldaini: Performance of what you can get from closed models from like Quen, from DeepSeq. We got Llama3. We got all sorts of different models. I added our own Olmo at the bottom. There's this growing group of like, Fully open models that I'm going to touch on a little bit later. But you know, just looking at the slides, it feels like 2024 [00:04:00] was just smooth sailing, happy knees, much better than previous year.[00:04:04] Luca Soldaini: And you know, you can plot you can pick your favorite benchmark Or least favorite, I don't know, depending on what point you're trying to make. And plot, you know, your closed model, your open model and sort of spin it in ways that show that, oh, you know open models are much closer to where closed models are today versus to Versus last year where the gap was fairly significant.[00:04:29] Luca Soldaini: So one thing that I think I don't know if I have to convince people in this room, but usually when I give this talks about like open models, there is always like this background question in, in, in people's mind of like, why should we use open models? APIs argument, you know, it's, it's. Just an HTTP request to get output from a, from one of the best model out there.[00:04:53] Luca Soldaini: Why do I have to set up infra and use local models? And there are really like two answer. There is the more [00:05:00] researchy answer for this, which is where it might be. Background lays, which is just research. If you want to do research on language models, research thrives on, on open models, there is like large swath of research on modeling, on how these models behave on evaluation and inference on mechanistic interpretability that could not happen at all if you didn't have open models they're also for AI builders, they're also like.[00:05:30] Luca Soldaini: Good use cases for using local models. You know, you have some, this is like a very not comprehensive slides, but you have things like there are some application where local models just blow closed models out of the water. So like retrieval, it's a very clear example. We might have like constraints like Edge AI applications where it makes sense.[00:05:51] Luca Soldaini: But even just like in terms of like stability, being able to say this model is not changing under the hood. It's, there's plenty of good cases for, [00:06:00] for open models. And the community is just not models. Is I stole this slide from one of the Quent2 announcement blog posts. But it's super cool to see like how much tech exists around open models and serving them on making them efficient and hosting them.[00:06:18] Luca Soldaini: It's pretty cool. And so. It's if you think about like where the term opens come from, comes from like the open source really open models meet the core tenants of, of open, of open source specifically when it comes around collaboration, there is truly a spirit, like through these open models, you can build on top of other people.[00:06:41] Luca Soldaini: innovation. We see a lot of these even in our own work of like, you know, as we iterate in the various versions of Alma it's not just like every time we collect from scratch all the data. No, the first step is like, okay, what are the cool data sources and datasets people have put [00:07:00] together for language model for training?[00:07:01] Luca Soldaini: Or when it comes to like our post training pipeline We one of the steps is you want to do some DPO and you use a lot of outputs of other models to improve your, your preference model. So it's really having like an open sort of ecosystem benefits and accelerates the development of open models.[00:07:23] The Definition of Open Models[00:07:23] Luca Soldaini: One thing that we got in 2024, which is not a specific model, but I thought it was really significant, is we first got we got our first open source AI definition. So this is from the open source initiative they've been generally the steward of a lot of the open source licenses when it comes to software and so they embarked on this journey in trying to figure out, okay, How does a license, an open source license for a model look like?[00:07:52] Luca Soldaini: Majority of the work is very dry because licenses are dry. So I'm not going to walk through t
Happy holidays! We’ll be sharing snippets from Latent Space LIVE! through the break bringing you the best of 2024! We want to express our deepest appreciation to event sponsors AWS, Daylight Computer, Thoth.ai, StrongCompute, Notable Capital, and most of all all our LS supporters who helped fund the gorgeous venue and A/V production!For NeurIPS last year we did our standard conference podcast coverage interviewing selected papers (that we have now also done for ICLR and ICML), however we felt that we could be doing more to help AI Engineers 1) get more industry-relevant content, and 2) recap 2024 year in review from experts. As a result, we organized the first Latent Space LIVE!, our first in person miniconference, at NeurIPS 2024 in Vancouver.The single most requested domain was computer vision, and we could think of no one better to help us recap 2024 than our friends at Roboflow, who was one of our earliest guests in 2023 and had one of this year’s top episodes in 2024 again. Roboflow has since raised a $40m Series B!LinksTheir slides are here:All the trends and papers they picked:* Isaac Robinson* Sora (see our Video Diffusion pod) - extending diffusion from images to video* SAM 2: Segment Anything in Images and Videos (see our SAM2 pod) - extending prompted masks to full video object segmentation* DETR Dominancy: DETRs show Pareto improvement over YOLOs* RT-DETR: DETRs Beat YOLOs on Real-time Object Detection* LW-DETR: A Transformer Replacement to YOLO for Real-Time Detection* D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement* Peter Robicheaux* MMVP (Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs)* * Florence 2 (Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks) * PalíGemma / PaliGemma 2* PaliGemma: A versatile 3B VLM for transfer* PaliGemma 2: A Family of Versatile VLMs for Transfer* AlMv2 (Multimodal Autoregressive Pre-training of Large Vision Encoders) * Vik Korrapati - MoondreamFull Talk on YouTubeWant more content like this? Like and subscribe to stay updated on our latest talks, interviews, and podcasts.Transcript/Timestamps[00:00:00] Intro[00:00:05] AI Charlie: welcome to Latent Space Live, our first mini conference held at NeurIPS 2024 in Vancouver. This is Charlie, your AI co host. When we were thinking of ways to add value to our academic conference coverage, we realized that there was a lack of good talks, just recapping the best of 2024, going domain by domain.[00:00:36] AI Charlie: We sent out a survey to the over 900 of you. who told us what you wanted, and then invited the best speakers in the Latent Space Network to cover each field. 200 of you joined us in person throughout the day, with over 2, 200 watching live online. Our second featured keynote is The Best of Vision 2024, with Peter Robichaud and Isaac [00:01:00] Robinson of Roboflow, with a special appearance from Vic Corrapati of Moondream.[00:01:05] AI Charlie: When we did a poll of our attendees, the highest interest domain of the year was vision. And so our first port of call was our friends at Roboflow. Joseph Nelson helped us kickstart our vision coverage in episode 7 last year, and this year came back as a guest host with Nikki Ravey of Meta to cover segment Anything 2.[00:01:25] AI Charlie: Roboflow have consistently been the leaders in open source vision models and tooling. With their SuperVision library recently eclipsing PyTorch's Vision library. And Roboflow Universe hosting hundreds of thousands of open source vision datasets and models. They have since announced a 40 million Series B led by Google Ventures.[00:01:46] AI Charlie: Woohoo.[00:01:48] Isaac's picks[00:01:48] Isaac Robinson: Hi, we're Isaac and Peter from Roboflow, and we're going to talk about the best papers of 2024 in computer vision. So, for us, we defined best as what made [00:02:00] the biggest shifts in the space. And to determine that, we looked at what are some major trends that happened and what papers most contributed to those trends.[00:02:09] Isaac Robinson: So I'm going to talk about a couple trends, Peter's going to talk about a trend, And then we're going to hand it off to Moondream. So, the trends that I'm interested in talking about are These are a major transition from models that run on per image basis to models that run using the same basic ideas on video.[00:02:28] Isaac Robinson: And then also how debtors are starting to take over the real time object detection scene from the YOLOs, which have been dominant for years.[00:02:37] Sora, OpenSora and Video Vision vs Generation[00:02:37] Isaac Robinson: So as a highlight we're going to talk about Sora, which from my perspective is the biggest paper of 2024, even though it came out in February. Is the what?[00:02:48] Isaac Robinson: Yeah. Yeah. So just it's a, SORA is just a a post. So I'm going to fill it in with details from replication efforts, including open SORA and related work, such as a stable [00:03:00] diffusion video. And then we're also going to talk about SAM2, which applies the SAM strategy to video. And then how debtors, These are the improvements in 2024 to debtors that are making them a Pareto improvement to YOLO based models.[00:03:15] Isaac Robinson: So to start this off, we're going to talk about the state of the art of video generation at the end of 2023, MagVIT MagVIT is a discrete token, video tokenizer akin to VQ, GAN, but applied to video sequences. And it actually outperforms state of the art handcrafted video compression frameworks.[00:03:38] Isaac Robinson: In terms of the bit rate versus human preference for quality and videos generated by autoregressing on these discrete tokens generate some pretty nice stuff, but up to like five seconds length and, you know, not super detailed. And then suddenly a few months later we have this, which when I saw it, it was totally mind blowing to me.[00:03:59] Isaac Robinson: 1080p, [00:04:00] a whole minute long. We've got light reflecting in puddles. That's reflective. Reminds me of those RTX demonstrations for next generation video games, such as Cyberpunk, but with better graphics. You can see some issues in the background if you look closely, but they're kind of, as with a lot of these models, the issues tend to be things that people aren't going to pay attention to unless they're looking for.[00:04:24] Isaac Robinson: In the same way that like six fingers on a hand. You're not going to notice is a giveaway unless you're looking for it. So yeah, as we said, SORA does not have a paper. So we're going to be filling it in with context from the rest of the computer vision scene attempting to replicate these efforts. So the first step, you have an LLM caption, a huge amount of videos.[00:04:48] Isaac Robinson: This, this is a trick that they introduced in Dolly 3, where they train a image captioning model to just generate very high quality captions for a huge corpus and then train a diffusion model [00:05:00] on that. Their Sora and their application efforts also show a bunch of other steps that are necessary for good video generation.[00:05:09] Isaac Robinson: Including filtering by aesthetic score and filtering by making sure the videos have enough motion. So they're not just like kind of the generators not learning to just generate static frames. So. Then we encode our video into a series of space time latents. Once again, SORA, very sparse in details.[00:05:29] Isaac Robinson: So the replication related works, OpenSORA actually uses a MAG VIT V2 itself to do this, but swapping out the discretization step with a classic VAE autoencoder framework. They show that there's a lot of benefit from getting the temporal compression, which makes a lot of sense as the Each sequential frames and videos have mostly redundant information.[00:05:53] Isaac Robinson: So by compressing against, compressing in the temporal space, you allow the latent to hold [00:06:00] a lot more semantic information while avoiding that duplicate. So, we've got our spacetime latents. Possibly via, there's some 3D VAE, presumably a MAG VATV2 and then you throw it into a diffusion transformer.[00:06:19] Isaac Robinson: So I think it's personally interesting to note that OpenSORA is using a MAG VATV2, which originally used an autoregressive transformer decoder to model the latent space, but is now using a diffusion diffusion transformer. So it's still a transformer happening. Just the question is like, is it?[00:06:37] Isaac Robinson: Parameterizing the stochastic differential equation is, or parameterizing a conditional distribution via autoregression. It's also it's also worth noting that most diffusion models today, the, the very high performance ones are switching away from the classic, like DDPM denoising diffusion probability modeling framework to rectified flows.[00:06:57] Isaac Robinson: Rectified flows have a very interesting property that as [00:07:00] they converge, they actually get closer to being able to be sampled with a single step. Which means that in practice, you can actually generate high quality samples much faster. Major problem of DDPM and related models for the past four years is just that they require many, many steps to generate high quality samples.[00:07:22] Isaac Robinson: So, and naturally, the third step is throwing lots of compute at the problem. So I didn't, I never figured out how to manage to get this video to loop, but we see very little compute, medium compute, lots of compute. This is so interesting because the the original diffusion transformer paper from Facebook actually showed that, in fact, the specific hyperparameters of the transformer didn't really matter that much.[00:07:48] Isaac Robinson: What mattered was that you were just increasing the amount of compute that the model had. So, I love how in the, once again, little blog posts, they don't even talk about [00:08:00] like the specific hyperparameters. They say, we're using a diffusion t
Happy holidays! We’ll be sharing snippets from Latent Space LIVE! through the break bringing you the best of 2024 from friends of the pod!For NeurIPS last year we did our standard conference podcast coverage interviewing selected papers (that we have now also done for ICLR and ICML), however we felt that we could be doing more to help AI Engineers 1) get more industry-relevant content, and 2) recap 2024 year in review from experts. As a result, we organized the first Latent Space LIVE!, our first in person miniconference, at NeurIPS 2024 in Vancouver. For our opening keynote, we could think of no one better to cover 'The State of AI Startups' than our friend Sarah Guo (AI superinvestor, founder of Conviction, host of No Priors!) and Pranav Reddy (Conviction partner) to share their takes on how the AI landscape evolved in 2024 examine the evolving AI landscape and what it means for startups, enterprises, and the industry as a whole! They completely understood the assignment.Recorded live with 200+ in-person and 2200+ online attendees at NeurIPS 2024, this keynote kicks off our mini-conference series exploring different domains of AI development in 2024. Enjoy!LinksSlides: https://x.com/saranormous/status/1866933642401886707Sarh Guo: https://x.com/saranormousPranav Reddy: https://x.com/prnvrdyFull Video on YouTubeWant more content like this? Like and subscribe to stay updated on our latest talks, interviews, and podcasts. Get full access to Latent Space at www.latent.space/subscribe
Our second podcast guest ever in March 2023 was Varun Mohan, CEO of Codeium; at the time, they had around 10,000 users and how they vowed to keep their autocomplete free forever: Today, over a million developers use their products, they still have their free tier, and they recently launched Windsurf, an AI IDE. Chapters* 00:00:00: Introductions & Catchup* 00:03:52: Why they created Windsurf* 00:05:52: Limitations of VS Code* 00:10:12: Evaluation methods for Cascade and Windsurf* 00:16:15: Listener questions about Windsurf launch* 00:20:30: Remote execution and security concerns* 00:25:18: Evolution of Codeium's strategy* 00:28:29: Cascade and its capabilities* 00:33:12: Multi-agent systems* 00:37:02: Areas of improvement for Windsurf* 00:39:12: Building an enterprise-first company* 00:42:01: Copilot for X, AI UX, and Enterprise AI blog posts Get full access to Latent Space at www.latent.space/subscribe
Regular tickets are now sold out for Latent Space LIVE! at NeurIPS! We have just announced our last speaker and newest track, friend of the pod Nathan Lambert who will be recapping 2024 in Reasoning Models like o1! We opened up a handful of late bird tickets for those who are deciding now — use code DISCORDGANG if you need it. See you in Vancouver!We’ve been sitting on our ICML recordings for a while (from today’s first-ever SOLO guest cohost, Brittany Walker), and in light of Sora Turbo’s launch (blogpost, tutorials) today, we figured it would be a good time to drop part one which had been gearing up to be a deep dive into the state of generative video worldsim, with a seamless transition to vision (the opposite modality), and finally robots (their ultimate application).Sora, Genie, and the field of Generative Video World SimulatorsBill Peebles, author of Diffusion Transformers, gave his most recent Sora talk at ICML, which begins our episode:* William (Bill) Peebles - SORA (slides)Something that is often asked about Sora is how much inductive biases were introduced to achieve these results. Bill references the same principles brought by Hyung Won Chung from the o1 team - “sooner or later those biases come back to bite you”.We also recommend these reads from throughout 2024 on Sora.* Lilian Weng’s literature review of Video Diffusion Models* Sora API leak* Estimates of 100k-700k H100s needed to serve Sora (not Turbo)* Artist guides on using Sora for professional storytellingGoogle DeepMind had a remarkably strong presence at ICML on Video Generation Models, winning TWO Best Paper awards for:* Genie: Generative Interactive Environments (covered in oral, poster, and workshop)* VideoPoet: A Large Language Model for Zero-Shot Video Generation (see website)We end this part by taking in Tali Dekel’s talk on The Future of Video Generation: Beyond Data and Scale.Part 2: Generative Modeling and DiffusionSince 2023, Sander Dieleman’s perspectives (blogpost, tweet) on diffusion as “spectral autoregression in the frequency domain” while working on Imagen and Veo have caught the public imagination, so we highlight his talk:* Wading through the noise: an intuitive look at diffusion modelsThen we go to Ben Poole for his talk on Inferring 3D Structure with 2D Priors, including his work on NeRFs and DreamFusion:Then we investigate two flow matching papers - one from the Flow Matching co-authors - Ricky T. Q. Chen (FAIR, Meta)And how it is implemented in Stable Diffusion 3 with Scaling Rectified Flow Transformers for High-Resolution Image Synthesis Our last hit on Diffusion is a couple of oral presentations on speech, which we leave you to explore via our audio podcast* NaturalSpeech 3: Zero-Shot Speech Synthesis with Factorized Codec and Diffusion Models* Speech Self-Supervised Learning Using Diffusion Model Synthetic DataPart 3: VisionThe ICML Test of Time winner was DeCAF, which Trevor Darrell notably called “the OG vision foundation model”.Lucas Beyer’s talk on “Vision in the age of LLMs — a data-centric perspective” was also well received online, and he talked about his journey from Vision Transformers to PaliGemma.We give special honorable mention to MLLM-as-a-Judge: Assessing Multimodal LLM-as-a-Judge with Vision-Language Benchmark.Part 4: Reinforcement Learning and RoboticsWe segue vision into robotics with the help of Ashley Edwards, whose work on both the Gato and the Genie teams at Deepmind is summarized in Learning actions, policies, rewards, and environments from videos alone.Brittany highlighted two poster session papers:* Behavior Generation with Latent Actions* We also recommend Lerrel Pinto’s On Building General-Purpose Robots* PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMsHowever we must give the lion’s share of space to Chelsea Finn, now founder of Physical Intelligence, who gave FOUR talks on* "What robots have taught me about machine learning"* developing robot generalists* robots that adapt autonomously* how to give feedback to your language model* special mention to PI colleague Sergey Levine on Robotic Foundation ModelsWe end the podcast with a position paper that links generative environments and RL/robotics: Automatic Environment Shaping is the Next Frontier in RL.Timestamps* [00:00:00] Intros* [00:02:43] Sora - Bill Peebles* [00:44:52] Genie: Generative Interactive Environments* [01:00:17] Genie interview* [01:12:33] VideoPoet: A Large Language Model for Zero-Shot Video Generation* [01:30:51] VideoPoet interview - Dan Kondratyuk* [01:42:00] Tali Dekel - The Future of Video Generation: Beyond Data and Scale.* [02:27:07] Sander Dieleman - Wading through the noise: an intuitive look at diffusion models* [03:06:20] Ben Poole - Inferring 3D Structure with 2D Priors* [03:30:30] Ricky Chen - Flow Matching* [04:00:03] Patrick Esser - Stable Diffusion 3* [04:14:30] NaturalSpeech 3: Zero-Shot Speech Synthesis with Factorized Codec and Diffusion Models* [04:27:00] Speech Self-Supervised Learning Using Diffusion Model Synthetic Data* [04:39:00] ICML Test of Time winner: DeCAF* [05:03:40] Lucas Beyer: “Vision in the age of LLMs — a data-centric perspective”* [05:42:00] Ashley Edwards: Learning actions, policies, rewards, and environments from videos alone.* [06:03:30] Behavior Generation with Latent Actions interview* [06:09:52] Chelsea Finn: "What robots have taught me about machine learning"* [06:56:00] Position: Automatic Environment Shaping is the Next Frontier in RL Get full access to Latent Space at www.latent.space/subscribe
The full schedule for Latent Space LIVE! at NeurIPS has been announced, featuring Best of 2024 overview talks for the AI Startup Landscape, Computer Vision, Open Models, Transformers Killers, Synthetic Data, Agents, and Scaling, and speakers from Sarah Guo of Conviction, Roboflow, AI2/Meta, Recursal/Together, HuggingFace, OpenHands and SemiAnalysis. Join us for the IRL event/Livestream! Alessio will also be holding a meetup at AWS Re:Invent in Las Vegas this Wednesday. See our new Events page for dates of AI Engineer Summit, Singapore, and World’s Fair in 2025. LAST CALL for questions for our big 2024 recap episode! Submit questions and messages on Speakpipe here for a chance to appear on the show!When we first observed that GPT Wrappers are Good, Actually, we did not even have Bolt on our radar. Since we recorded our Anthropic episode discussing building Agents with the new Claude 3.5 Sonnet, Bolt.new (by Stackblitz) has easily cleared the $8m ARR bar, repeating and accelerating its initial $4m feat.There are very many AI code generators and VS Code forks out there, but Bolt probably broke through initially because of its incredible zero shot low effort app generation:But as we explain in the pod, Bolt also emphasized deploy (Netlify)/ backend (Supabase)/ fullstack capabilities on top of Stackblitz’s existing WebContainer full-WASM-powered-developer-environment-in-the-browser tech. Since then, the team has been shipping like mad (with weekly office hours), with bugfixing, full screen, multi-device, long context, diff based edits (using speculative decoding like we covered in Inference, Fast and Slow).All of this has captured the imagination of low/no code builders like Greg Isenberg and many others on YouTube/TikTok/Reddit/X/Linkedin etc:Just as with Fireworks, our relationship with Bolt/Stackblitz goes a bit deeper than normal - swyx advised the launch and got a front row seat to this epic journey, as well as demoed it with Realtime Voice at the recent OpenAI Dev Day. So we are very proud to be the first/closest to tell the full open story of Bolt/Stackblitz!Flow Engineering + Qodo/AlphaCodium UpdateIn year 2 of the pod we have been on a roll getting former guests to return as guest cohosts (Harrison Chase, Aman Sanger, Jon Frankle), and it was a pleasure to catch Itamar Friedman back on the pod, giving us an update on all things Qodo and Testing Agents from our last catchup a year and a half ago:Qodo (they renamed in September) went viral in early January this year with AlphaCodium (paper here, code here) beating DeepMind’s AlphaCode with high efficiency:With a simple problem solving code agent:* The first step is to have the model reason about the problem. They describe it using bullet points and focus on the goal, inputs, outputs, rules, constraints, and any other relevant details.* Then, they make the model reason about the public tests and come up with an explanation of why the input leads to that particular output. * The model generates two to three potential solutions in text and ranks them in terms of correctness, simplicity, and robustness. * Then, it generates more diverse tests for the problem, covering cases not part of the original public tests. * Iteratively, pick a solution, generate the code, and run it on a few test cases. * If the tests fail, improve the code and repeat the process until the code passes every test.swyx has previously written similar thoughts on types vs tests for putting bounds on program behavior, but AlphaCodium extends this to AI generated tests and code.More recently, Itamar has also shown that AlphaCodium’s techniques also extend well to the o1 models:Making Flow Engineering a useful technique to improve code model performance on every model. This is something we see AI Engineers uniquely well positioned to do compared to ML Engineers/Researchers.Full Video PodcastLike and subscribe!Show Notes* Itamar* Qodo* First episode* Eric* Bolt* StackBlitz* Thinkster* AlphaCodium* WebContainersChapters* 00:00:00 Introductions & Updates* 00:06:01 Generic vs. Specific AI Agents* 00:07:40 Maintaining vs Creating with AI* 00:17:46 Human vs Agent Computer Interfaces* 00:20:15 Why Docker doesn't work for Bolt* 00:24:23 Creating Testing and Code Review Loops* 00:28:07 Bolt's Task Breakdown Flow* 00:31:04 AI in Complex Enterprise Environments* 00:41:43 AlphaCodium* 00:44:39 Strategies for Breaking Down Complex Tasks* 00:45:22 Building in Open Source* 00:50:35 Choosing a product as a founder* 00:59:03 Reflections on Bolt Success* 01:06:07 Building a B2C GTM* 01:18:11 AI Capabilities and Pricing Tiers* 01:20:28 What makes Bolt unique* 01:23:07 Future Growth and Product Development* 01:29:06 Competitive Landscape in AI Engineering* 01:30:01 Advice to Founders and Embracing AI* 01:32:20 Having a baby and completing an Iron ManTranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol.ai.Swyx [00:00:12]: Hey, and today we're still in our sort of makeshift in-between studio, but we're very delighted to have a former returning guest host, Itamar. Welcome back.Itamar [00:00:21]: Great to be here after a year or more. Yeah, a year and a half.Swyx [00:00:24]: You're one of our earliest guests on Agents. Now you're CEO co-founder of Kodo. Right. Which has just been renamed. You also raised a $40 million Series A, and we can get caught up on everything, but we're also delighted to have our new guest, Eric. Welcome.Eric [00:00:42]: Thank you. Excited to be here. Should I say Bolt or StackBlitz?Swyx [00:00:45]: Like, is it like its own company now or?Eric [00:00:47]: Yeah. Bolt's definitely bolt.new. That's the thing that we're probably the most known for, I imagine, at this point.Swyx [00:00:54]: Which is ridiculous to say because you were working at StackBlitz for so long.Eric [00:00:57]: Yeah. I mean, within a week, we were doing like double the amount of traffic. And StackBlitz had been online for seven years, and we were like, what? But anyways, yeah. So we're StackBlitz, the company behind bolt.new. If you've heard of bolt.new, that's our stuff. Yeah.Swyx [00:01:12]: Yeah.Itamar [00:01:13]: Excellent. I see, by the way, that the founder mode, you need to know to capture opportunities. So kudos on doing that, right? You're working on some technology, and then suddenly you can exploit that to a new world. Yeah.Eric [00:01:24]: Totally. And I think, well, not to jump, but 100%, I mean, a couple of months ago, we had the idea for Bolt earlier this year, but we haven't really shared this too much publicly. But we actually had tried to build it with some of those state-of-the-art models back in January, February, you can kind of imagine which, and they just weren't good enough to actually do the code generation where the code was accurate and it was fast and whatever have you without a ton of like rag, but then there was like issues with that. So we put it on the shelf and then we got kind of a sneak peek of some of the new models that have come out in the past couple of months now. And so once we saw that, once we actually saw the code gen from it, we were like, oh my God, like, okay, we can build a product around this. And so that was really the impetus of us building the thing. But with that, it was StackBlitz, the core StackBlitz product the past seven years has been an IDE for developers. So the entire user experience flow we've built up just didn't make sense. And so when we kind of went out to build Bolt, we just thought, you know, if we were inventing our product today, what would the interface look like given what is now possible with the AI code gen? And so there's definitely a lot of conversations we had internally, but you know, just kind of when we logically laid it out, we were like, yeah, I think it makes sense to just greenfield a new thing and let's see what happens. If it works great, then we'll figure it out. If it doesn't work great, then it'll get deleted at some point. So that's kind of how it actually came to be.Swyx [00:02:49]: I'll mention your background a little bit. You were also founder of Thinkster before you started StackBlitz. So both of you are second time founders. Both of you have sort of re-founded your company recently. Yours was more of a rename. I think a slightly different direction as well. And then we can talk about both. Maybe just chronologically, should we get caught up on where Kodo is first and then you know, just like what people should know since the last pod? Sure.Itamar [00:03:12]: The last pod was two months after we launched and we basically had the vision that we talked about. The idea that software development is about specification, test and code, etc. We are more on the testing part as in essence, we think that if you solve testing, you solve software development. The beautiful chart that we'll put up on screen. And testing is a really big field, like there are many dimensions, unit testing, the level of the component, how big it is, how large it is. And then there is like different type of testing, is it regression or smoke or whatever. So back then we only had like one ID extension with unit tests as in focus. One and a half year later, first ID extension supports more type of testing as context aware. We index local, local repos, but also 10,000s of repos for Fortune 500 companies. We have another agent, another tool that is called, the pure agent is the open source and the commercial one is CodoMerge. And then we have another open source called CoverAgent, which is not yet a commercial product coming very soon. It's very impressive. It could be that already people are approving automated pull requests that they don't even aware in really big open sources. So once we have enough of these, we will also launch another agent. So for the first one and a half year, what we did is grew in our offering and mostly on the sid
loading