DiscoverLinear Digressions
Linear Digressions
Claim Ownership

Linear Digressions

Author: Ben Jaffe and Katie Malone

Subscribed: 5,675Played: 103,289


Linear Digressions is a podcast about machine learning and data science. Machine learning is being used to solve a ton of interesting problems, and to accomplish goals that were out of reach even a few short years ago.
256 Episodes
Facial recognition being used in everyday life seemed far-off not too long ago. Increasingly, it’s being used and advanced widely and with increasing speed, which means that our technical capabilities are starting to outpace (if they haven’t already) our consensus as a society about what is acceptable in facial recognition and what isn’t. The threats to privacy, fairness, and freedom are real, and Microsoft has become one of the first large companies using this technology to speak out in specific support of its regulation through legislation. Their arguments are interesting, provocative, and even if you don’t agree with every point they make or harbor some skepticism, there’s a lot to think about in what they’re saying.
If you’ve taken a machine learning class, or read up on A/B tests, you likely have a decent grounding in the theoretical pillars of data science. But if you’re in a position to have actually built lots of models or run lots of experiments, there’s almost certainly a bunch of extra “street smarts” insights you’ve had that go beyond the “books smarts” of more academic studies. The data scientists at, who run build models and experiments constantly, have written a paper that bridges the gap and talks about what non-obvious things they’ve learned from that practice. In this episode we read and digest that paper, talking through the gotchas that they don’t always teach in a classroom but that make data science tricky and interesting in the real world.Relevant links:
Varsity A/B Testing

Varsity A/B Testing


When you want to understand if doing something causes something else to happen, like if a change to a website causes and dip or rise in downstream conversions, the gold standard analysis method is to use randomized controlled trials. Once you’ve properly randomized the treatment and effect, the analysis methods are well-understood and there are great tools in R and python (and other languages) to find the effects. However, when you’re operating at scale, the logistics of running all those tests, and reaching correct conclusions reliably, becomes the main challenge—making sure the right metrics are being computed, you know when to stop an experiment, you minimize the chances of finding spurious results, and many other issues that are simple to track for one or two experiments but become real challenges for dozens or hundreds of experiments. Nonetheless, the reality is that there might be dozens or hundreds of experiments worth running. So in this episode, we’ll work through some of the most important issues for running experiments at scale, with strong support from a series of great blog posts from Airbnb about how they solve this very issue.For some blog post links relevant to this episode, visit
In the third and final installment of a conversation with Michelangelo D’Agostino, VP of Data Science and Engineering at Shoprunner, about growing and mentoring data scientists on your team. Some of our topics of conversation include how to institute hack time as a way to learn new things, what career growth looks like in data science, and how to institutionalize professional growth as part of a career ladder. As with the other episodes in this series, the topics we cover today are also covered in the O’Reilly report linked below.Relevant links:
This week’s episode is the second in a three-part interview series with Michelangelo D’Agostino, VP of Data Science at Shoprunner. This discussion centers on building a team, which means recruiting, interviewing and hiring data scientists. Since data science talent is in such high demand, and data scientists are understandably choosy about where they go to work, a good recruiting and hiring program can have a big impact on the size and quality of the team. Our chat covers much a couple of sections in our dual-authored O’Reilly report, “The Care and Feeding of Data Scientists,” which you can read at the link below.
Data science management isn’t easy, and many data scientists are finding themselves learning on the job how to manage data science teams as they get promoted into more formal leadership roles. O’Reilly recently release a report, written by yours truly (Katie) and another experienced data science manager, Michelangelo D’Agostino, where we lay out the most important tasks of a data science manager and some thoughts on how to unpack those tasks and approach them in a way that makes a new manager successful. This episode is an interview episode, the first of three, where we discuss some of the common paths to data science management and what distinguishes (and unifies) different types of data scientists and data science teams.Relevant links:
If you’re trying to manage a project that serves up analytics data for a few very distinct uses, you’d be wise to consider having custom solutions for each use case that are optimized for the needs and constraints of that use cases. You also wouldn’t be YouTube, which found themselves with this problem (gigantic data needs and several very different use cases of what they needed to do with that data) and went a different way: they built one analytics data system to serve them all. Procella, the system they built, is the topic of our episode today: by deconstructing the system, we dig into the four motivating uses of this system, the complexity they had to introduce to service all four uses simultaneously, and the impressive engineering that has to go into building something that “just works.”Relevant links:
Kalman Runners

Kalman Runners


The Kalman Filter is an algorithm for taking noisy measurements of dynamic systems and using them to get a better idea of the underlying dynamics than you could get from a simple extrapolation. If you've ever run a marathon, or been a nuclear missile, you probably know all about these challenges already. IMPORTANT NON-DATA SCIENCE CHICAGO MARATHON RACE RESULT FROM KATIE: My finish time was 3:20:17! It was the closest I may ever come to having the perfect run. That’s a 34-minute personal record and a qualifying time for the Boston Marathon, so… guess I gotta go do that now.
Feature engineering is ubiquitous but gets surprisingly difficult surprisingly fast. What could be so complicated about just keeping track of what data you have, and how you made it? A lot, as it turns out—most data science platforms at this point include explicit features (in the product sense, not the data sense) just for keeping track of and sharing features (in the data sense, not the product sense). Just like a good library needs a catalogue, a city needs a map, and a home chef needs a cookbook to stay organized, modern data scientists need feature libraries, data dictionaries, and a general discipline around generating and caring for their datasets.
If you’re a data scientist or data engineer thinking about how to store data for analytics uses, one of the early choices you’ll have to make (or live with, if someone else made it) is how to lay out the data in your data warehouse. There are a couple common organizational schemes that you’ll likely encounter, and that we cover in this episode: first is the famous star schema, followed by the also-famous snowflake schema.
Data scientists and software engineers both work with databases, but they use them for different purposes. So if you’re a data scientist thinking about the best way to store and access data for your analytics, you’ll likely come up with a very different set of requirements than a software engineer looking to power an application. Hence the split between analytics and transactional databases—certain technologies are designed for one or the other, but no single type of database is perfect for both use cases. In this episode we’ll talk about the differences between transactional and analytics databases, so no matter whether you’re an analytics person or more of a classical software engineer, you can understand the needs of your colleagues on the other side.
There are a few things that seem to be very popular in discussions of machine learning algorithms these days. First is the role that algorithms play now, or might play in the future, when it comes to manipulating public opinion, for example with fake news. Second is the impressive success of generative adversarial networks, and similar algorithms. Third is making state-of-the-art natural language processing algorithms and naming them after muppets. We get all three this week: GROVER is an algorithm for generating, and detecting, fake news. It’s quite successful at both tasks, which raises an interesting question: is it safer to embargo the model (like GPT-2, the algorithm that was “too dangerous to release”), or release it as the best detector and antidote for its own fake news?Relevant links:
When a big, established company is thinking about their data science strategy, chances are good that whatever they come up with, it’ll be somewhat at odds with the company’s current structure and processes. Which makes sense, right? If you’re a many-decades-old company trying to defend a successful and long-lived legacy and market share, you won’t have the advantage that many upstart competitors have of being able to bake data analytics and science into the core structure of the organization. Instead, you have to retrofit. If you’re the data scientist working in this environment, tasked with being on the front lines of a data transformation, you may be grappling with some real institutional challenges in this setup, and this episode is for you. We’ll unpack the reason data innovation is necessarily challenging, the different ways to innovate and some of their tradeoffs, and some of the hardest but most critical phases in the innovation process.Relevant links:
This is a re-release of an episode that originally aired on July 29, 2018.The stars aligned for me (Katie) this past weekend: I raced my first half-marathon in a long time and got to read a great article from the NY Times about a new running shoe that Nike claims can make its wearers run faster. Causal claims like this one are really tough to verify, because even if the data suggests that people wearing the shoe are faster that might be because of correlation, not causation, so I loved reading this article that went through an analysis of thousands of runners' data in 4 different ways. Each way has a great explanation with pros and cons (as well as results, of course), so be sure to read the article after you check out this episode!Relevant links:
When data science is hard, sometimes it’s because the algorithms aren’t converging or the data is messy, and sometimes it’s because of organizational or business issues: the data scientists aren’t positioned correctly to bring value to their organization. Maybe they don’t know what problems to work on, or they build solutions to those problems but nobody uses what they build. A lot of this can be traced back to the way the team is organized, and (relatedly) how it interacts with the rest of the organization, which is what we tackle in this issue. There are lots of options about how to organize your data science team, each of which has strengths and weaknesses, and Pardis Noorzad wrote a great blog post recently that got us talking.Relevant links:
Data Shapley

Data Shapley


We talk often about which features in a dataset are most important, but recently a new paper has started making the rounds that turns the idea of importance on its head: Data Shapley is an algorithm for thinking about which examples in a dataset are most important. It makes a lot of intuitive sense: data that’s just repeating examples that you’ve already seen, or that’s noisy or an extreme outlier, might not be that valuable for using to train a machine learning model. But some data is very valuable, it’s disproportionately useful for the algorithm figuring out what the most important trends are, and Data Shapley is explicitly designed to help machine learning researchers spend their time understanding which data points are most valuable and why.Relevant links:
This is a re-release of an episode that first ran on April 9, 2017.In our follow-up episode to last week's introduction to the first self-driving car, we will be doing a technical deep dive this week and talking about the most important systems for getting a car to drive itself 140 miles across the desert. Lidar? You betcha! Drive-by-wire? Of course! Probabilistic terrain reconstruction? Absolutely! All this and more this week on Linear Digressions.
In October 2005, 23 cars lined up in the desert for a 140 mile race. Not one of those cars had a driver. This was the DARPA grand challenge to see if anyone could build an autonomous vehicle capable of navigating a desert route (and if so, whose car could do it the fastest); the winning car, Stanley, now sits in the Smithsonian Museum in Washington DC as arguably the world's first real self-driving car. In this episode (part one of a two-parter), we'll revisit the DARPA grand challenge from 2005 and the rules and constraints of what it took for Stanley to win the competition. Next week, we'll do a deep dive into Stanley's control systems and overall operation and what the key systems were that allowed Stanley to win the race.Relevant links:
The modern scientific method is one of the greatest (perhaps the greatest?) system we have for discovering knowledge about the world. It’s no surprise then that many data scientists have found their skills in high demand in the business world, where knowing more about a market, or industry, or type of user becomes a competitive advantage. But the scientific method is built upon certain processes, and is disciplined about following them, in a way that can get swept aside in the rush to get something out the door—not the least of which is the fact that in science, sometimes a result simply doesn’t materialize, or sometimes a relationship simply isn’t there. This makes data science different than operations, or software engineering, or product design in an important way: a data scientist needs to be comfortable with finding nothing in the data for certain types of searches, and needs to be even more comfortable telling his or her boss, or boss’s boss, that an attempt to build a model or find a causal link has turned up nothing. It’s a result that often disappointing and tough to communicate, but it’s crucial to the overall credibility of the field.



If you’re Google or Netflix, and you have a recommendation or search system as part of your bread and butter, what’s the best way to test improvements to your algorithm? A/B testing is the canonical answer for testing how users respond to software changes, but it gets tricky really fast to think about what an A/B test means in the context of an algorithm that returns a ranked list. That’s why we’re talking about interleaving this week—it’s a simple modification to A/B testing that makes it much easier to race two algorithms against each other and find the winner, and it allows you to do it with much less data than a traditional A/B test.Relevant links:
Comments (4)

Li Lae

Thx so much, both. Please keep up the good work!

Mar 28th

Nisarg Shah

Katie and Ben, you both have transformed my journey to learn about machine learning, which seemed impossible before. thanks for taking the time to share your knowledge and providing a fun path to beginners (can only speak for myself :))! I hope you continue this endeavor! we truly appreciate it!

Jul 2nd

Vikram Kulkarni

Katie should do it by herself, the stupid co host is annoying.

Mar 27th
Reply (1)
Download from Google Play
Download from App Store