DiscoverMLOps.community
MLOps.community
Claim Ownership

MLOps.community

Author: Demetrios Brinkmann

Subscribed: 235Played: 13,431
Share

Description

Weekly talks and fireside chats about everything that has to do with the new space emerging around DevOps for Machine Learning aka MLOps aka Machine Learning Operations.
391 Episodes
Reverse
Robert Caulk is responsible for directing software development, enabling research, coordinating company projects, quality control, proposing external collaborations, and securing funding. He believes firmly in open-source, having spent 12 years accruing over 1000 academic citations building open-source software in domains such as machine learning, image analysis, and coupled physical processes. He received his Ph.D. from Université Grenoble Alpes, France, in computational mechanics. Unleashing Unconstrained News Knowledge Graphs to Combat Misinformation // MLOps Podcast #279 with Robert Caulk, Founder of Emergent Methods. // Abstract Indexing hundreds of thousands of news articles per day into a knowledge graph (KG) was previously impossible due to the strict requirement that high-level reasoning, general world knowledge, and full-text context *must* be present for proper KG construction. The latest tools now enable such general world knowledge and reasoning to be applied cost effectively to high-volumes of news articles. Beyond the low cost of processing these news articles, these tools are also opening up a new, controversial, approach to KG building - unconstrained KGs. We discuss the construction and exploration of the largest news-knowledge-graph on the planet - hosted on an endpoint at AskNews.app. During talk we aim to highlight some of the sacrifices and benefits that go hand-in-hand with using the infamous unconstrained KG approach. We conclude the talk by explaining how knowledge graphs like these help to mitigate misinformation. We provide some examples of how our clients are using this graph, such as generating sports forecasts, generating better social media posts, generating regional security alerts, and combating human trafficking. // Bio Robert is the founder of Emergent Methods, where he directs research and software development for large-scale applications. He is currently overseeing the structuring of hundreds of thousands of news articles per day in order to build the best news retrieval API in the world: https://asknews.app. // MLOps Swag/Merch https://shop.mlops.community/ // Related Links Website: https://emergentmethods.ai News Retrieval API: https://asknews.app --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Rob on LinkedIn: https://www.linkedin.com/in/rcaulk/
Guanhua Wang is a Senior Researcher in DeepSpeed Team at Microsoft. Before Microsoft, Guanhua earned his Computer Science PhD from UC Berkeley. Domino: Communication-Free LLM Training Engine // MLOps Podcast #278 with Guanhua "Alex" Wang, Senior Researcher at Microsoft. // Abstract Given the popularity of generative AI, Large Language Models (LLMs) often consume hundreds or thousands of GPUs to parallelize and accelerate the training process. Communication overhead becomes more pronounced when training LLMs at scale. To eliminate communication overhead in distributed LLM training, we propose Domino, which provides a generic scheme to hide communication behind computation. By breaking the data dependency of a single batch training into smaller independent pieces, Domino pipelines these independent pieces of training and provides a generic strategy of fine-grained communication and computation overlapping. Extensive results show that compared with Megatron-LM, Domino achieves up to 1.3x speedup for LLM training on Nvidia DGX-H100 GPUs. // Bio Guanhua Wang is a Senior Researcher in the DeepSpeed team at Microsoft. His research focuses on large-scale LLM training and serving. Previously, he led the ZeRO++ project at Microsoft which helped reduce over half of model training time inside Microsoft and Linkedin. He also led and was a major contributor to Microsoft Phi-3 model training. He holds a CS PhD from UC Berkeley advised by Prof Ion Stoica. // MLOps Swag/Merch https://shop.mlops.community/ // Related Links Website: https://guanhuawang.github.io/ DeepSpeed hiring: https://www.microsoft.com/en-us/research/project/deepspeed/opportunities/ Large Model Training and Inference with DeepSpeed // Samyam Rajbhandari // LLMs in Prod Conference: https://youtu.be/cntxC3g22oU --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Guanhua on LinkedIn: https://www.linkedin.com/in/guanhua-wang/ Timestamps: [00:00] Guanhua's preferred coffee [00:17] Takeaways [01:36] Please like, share, leave a review, and subscribe to our MLOps channels! [01:47] Phi model explanation [06:29] Small Language Models optimization challenges [07:29] DeepSpeed overview and benefits [10:58] Crazy unimplemented crazy AI ideas [17:15] Post training vs QAT [19:44] Quantization over distillation [24:15] Using Lauras [27:04] LLM scaling sweet spot [28:28] Quantization techniques [32:38] Domino overview [38:02] Training performance benchmark [42:44] Data dependency-breaking strategies [49:14] Wrap up
Thanks to the High Signal Podcast by Delphina: https://go.mlops.community/HighSignalPodcast Aditya Naganath is an experienced investor currently working with Kleiner Perkins. He has a passion for connecting with people over coffee and discussing various topics related to tech, products, ideas, and markets. AI's Next Frontier // MLOps Podcast #277 with Aditya Naganath, Principal at Kleiner Perkins. // Abstract LLMs have ushered in an unmistakable supercycle in the world of technology. The low-hanging use cases have largely been picked off. The next frontier will be AI coworkers who sit alongside knowledge workers, doing work side by side. At the infrastructure level, one of the most important primitives invented by man - the data center, is being fundamentally rethought in this new wave. // Bio Aditya Naganath joined Kleiner Perkins’ investment team in 2022 with a focus on artificial intelligence, enterprise software applications, infrastructure and security. Prior to joining Kleiner Perkins, Aditya was a product manager at Google focusing on growth initiatives for the next billion users team. He previously was a technical lead at Palantir Technologies and formerly held software engineering roles at Twitter and Nextdoor, where he was a Kleiner Perkins fellow. Aditya earned a patent during his time at Twitter for a technical analytics product he co-created. Originally from Mumbai India, Aditya graduated magna cum laude from Columbia University with a bachelor’s degree in Computer Science, and an MBA from Stanford University. Outside of work, you can find him playing guitar with a hard rock band, competing in chess or on the squash courts, and fostering puppies. He is also an avid poker player. // MLOps Swag/Merch https://shop.mlops.community/ // Related Links Faith's Hymn by Beautiful Chorus: ⁠⁠https://open.spotify.com/track/1bDv6grQB5ohVFI8UDGvKK?si=4b00752eaa96413b⁠⁠ Substack: ⁠⁠https://adityanaganath.substack.com/?utm_source=substack&utm_medium=web&utm_campaign=substack_profile⁠⁠With thanks to the High Signal Podcast by Delphina: https://go.mlops.community/HighSignalPodcastBuilding the Future of AI in Software Development // Varun Mohan // MLOps Podcast #195 - ⁠⁠https://youtu.be/1DJKq8StuTo⁠⁠Do Re MI for Training Metrics: Start at the Beginning // Todd Underwood // AIQCON - ⁠⁠https://youtu.be/DxyOlRdCofo --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Aditya on LinkedIn: https://www.linkedin.com/in/aditya-naganath/
Dr Vincent Moens is an Applied Machine Learning Research Scientist at Meta and an author of TorchRL and TensorDict in Pytorch. PyTorch for Control Systems and Decision Making // MLOps Podcast #276 with Vincent Moens, Research Engineer at Meta. // Abstract PyTorch is widely adopted across the machine learning community for its flexibility and ease of use in applications such as computer vision and natural language processing. However, supporting reinforcement learning, decision-making, and control communities is equally crucial, as these fields drive innovation in areas like robotics, autonomous systems, and game-playing. This podcast explores the intersection of PyTorch and these fields, covering practical tips and tricks for working with PyTorch, an in-depth look at TorchRL, and discussions on debugging techniques, optimization strategies, and testing frameworks. By examining these topics, listeners will understand how to effectively use PyTorch for control systems and decision-making applications. // Bio Vincent Moens is a research engineer on the PyTorch core team at Meta, based in London. As the maintainer of TorchRL (https://github.com/pytorch/rl) and TensorDict (https://github.com/pytorch/tensordict), Vincent plays a key role in supporting the decision-making community within the PyTorch ecosystem. Alongside his technical role in the PyTorch community, Vincent also actively contributes to AI-related research projects. Before joining Meta, Vincent worked as an ML researcher at Huawei and AIG. Vincent holds a Medical Degree and a PhD in Computational Neuroscience. // MLOps Swag/Merch https://shop.mlops.community/ // Related Links Musical recommendation: https://open.spotify.com/artist/1Uff91EOsvd99rtAupatMP?si=jVkoFiq8Tmq0fqK_OIEglg Website: github.com/vmoens TorchRL: https://github.com/pytorch/rl TensorDict: https://github.com/pytorch/tensordict LinkedIn post: https://www.linkedin.com/posts/vincent-moens-9bb91972_join-the-tensordict-discord-server-activity-7189297643322253312-Wo9J?utm_source=share&utm_medium=member_desktop --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Vincent on LinkedIn: https://www.linkedin.com/in/mvi/
Matt Van Itallie is the founder and CEO of Sema. Prior to this, they were the Vice President of Customer Support and Customer Operations at Social Solutions. AI-Driven Code: Navigating Due Diligence & Transparency in MLOps // MLOps Podcast #275 with Matt van Itallie, Founder and CEO of Sema. // Abstract Matt Van Itallie, founder and CEO of Sema, discusses how comprehensive codebase evaluations play a crucial role in MLOps and technical due diligence. He highlights the impact of Generative AI on code transparency and explains the Generative AI Bill of Materials (GBOM), which helps identify and manage risks in AI-generated code. This talk offers practical insights for technical and non-technical audiences, showing how proper diligence can enhance value and mitigate risks in machine learning operations. // Bio Matt Van Itallie is the Founder and CEO of Sema. He and his team have developed Comprehensive Codebase Scans, the most thorough and easily understandable assessment of a codebase and engineering organization. These scans are crucial for private equity and venture capital firms looking to make informed investment decisions. Sema has evaluated code within organizations that have a collective value of over $1 trillion. In 2023, Sema served 7 of the 9 largest global investors, along with market-leading strategic investors, private equity, and venture capital firms, providing them with critical insights. In addition, Sema is at the forefront of Generative AI Code Transparency, which measures how much code created by GenAI is in a codebase. They are the inventors behind the Generative AI Bill of Materials (GBOM), an essential resource for investors to understand and mitigate risks associated with AI-generated code. Before founding Sema, Matt was a Private Equity operating executive and a management consultant at McKinsey. He graduated from Harvard Law School and has had some interesting adventures, like hiking a third of the Appalachian Trail and biking from Boston to Seattle. Full bio: https://alistar.fm/bio/matt-van-itallie // MLOps Swag/Merch https://shop.mlops.community/ // Related Links Website: https://en.m.wikipedia.org/wiki/Michael_Gschwind --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Matt on LinkedIn: https://www.linkedin.com/in/mvi/
Dr. Michael Gschwind is a Director / Principal Engineer for PyTorch at Meta Platforms. At Meta, he led the rollout of GPU Inference for production services. // MLOps Podcast #274 with Michael Gschwind, Software Engineer, Software Executive at Meta Platforms. // Abstract Explore the role in boosting model performance, on-device AI processing, and collaborations with tech giants like ARM and Apple. Michael shares his journey from gaming console accelerators to AI, emphasizing the power of community and innovation in driving advancements. // Bio Dr. Michael Gschwind is a Director / Principal Engineer for PyTorch at Meta Platforms. At Meta, he led the rollout of GPU Inference for production services. He led the development of MultiRay and Textray, the first deployment of LLMs at a scale exceeding a trillion queries per day shortly after its rollout. He created the strategy and led the implementation of PyTorch donation optimization with Better Transformers and Accelerated Transformers, bringing Flash Attention, PT2 compilation, and ExecuTorch into the mainstream for LLMs and GenAI models. Most recently, he led the enablement of large language models on-device AI with mobile and edge devices. // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://en.m.wikipedia.org/wiki/Michael_Gschwind --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Michael on LinkedIn: https://www.linkedin.com/in/michael-gschwind-3704222/?utm_source=share&utm_campaign=share_via&utm_content=profile&utm_medium=ios_app Timestamps: [00:00] Michael's preferred coffee [00:21] Takeaways [01:59] Please like, share, leave a review, and subscribe to our MLOps channels! [02:10] Gaming to AI Accelerators [11:34] Torch Chat goals [18:53] Pytorch benchmarking and competitiveness [21:28] Optimizing MLOps models [24:52] GPU optimization tips [29:36] Cloud vs On-device AI [38:22] Abstraction across devices [42:29] PyTorch developer experience [45:33] AI and MLOps-related antipatterns [48:33] When to optimize [53:26] Efficient edge AI models [56:57] Wrap up
//Abstract In this segment, the Panel will dive into the evolving landscape of AI, where large language models (LLMs) power the next wave of intelligent agents. In this engaging panel, leading investors Meera (Redpoint), George (Sequoia), and Sandeep (Prosus Ventures) discuss the promise and pitfalls of AI in production. From transformative industry applications to the challenges of scalability, costs, and shifting business models, this session unpacks the metrics and insights shaping GenAI's future. Whether you're excited about AI's potential or wary of its complexities, this is a must-watch for anyone exploring the cutting edge of tech investment. //Bio Host: Paul van der Boor Senior Director Data Science @ Prosus Group Sandeep Bakshi Head of Investments, Europe @ Prosus Meera Clark Principal @ Redpoint Ventures George Robson Partner @ Sequoia Capital A Prosus | MLOps Community Production
Luke Marsden, is a passionate technology leader. Experienced in consultant, CEO, CTO, tech lead, product, sales, and engineering roles. Proven ability to conceive and execute a product vision from strategy to implementation, while iterating on product-market fit. We Can All Be AI Engineers and We Can Do It with Open Source Models // MLOps Podcast #273 with Luke Marsden, CEO of HelixML. // Abstract In this podcast episode, Luke Marsden explores practical approaches to building Generative AI applications using open-source models and modern tools. Through real-world examples, Luke breaks down the key components of GenAI development, from model selection to knowledge and API integrations, while highlighting the data privacy advantages of open-source solutions. // Bio Hacker & entrepreneur. Founder at helix.ml. Career spanning DevOps, MLOps, and now LLMOps. Working on bringing business value to local, open-source LLMs. // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://helix.ml About open source AI: https://blog.helix.ml/p/the-open-source-ai-revolution Ratatat Cream on Chrome: https://open.spotify.com/track/3s25iX3minD5jORW4KpANZ?si=719b715154f64a5f --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Luke on LinkedIn: https://www.linkedin.com/in/luke-marsden-71b3789/
//Abstract This panel speaks about the diverse landscape of AI agents, focusing on how they integrate voice interfaces, GUIs, and small language models to enhance user experiences. They'll also examine the roles of these agents in various industries, highlighting their impact on productivity, creativity, and user experience and how these empower developers to build better solutions while addressing challenges like ensuring consistent performance and reliability across different modalities when deploying AI agents in production. //Bio Host: Diego Oppenheimer Co-founder @ Guardrails AI Jazmia Henry Founder and CEO @ Iso AI Rogerio Bonatti Researcher @ Microsoft Julia Kroll Applied Engineer @ Deepgram Joshua Alphonse Director of Developer Relations @ PremAI A Prosus | MLOps Community Production
Lauren Kaplan is a sociologist and writer. She earned her PhD in Sociology at Goethe University Frankfurt and worked as a researcher at the University of Oxford and UC Berkeley. The Impact of UX Research in the AI Space // MLOps Podcast #272 with Lauren Kaplan, Sr UX Researcher. // Abstract In this MLOps Community podcast episode, Demetrios and UX researcher Lauren Kaplan explore how UX research can transform AI and ML projects by aligning insights with business goals and enhancing user and developer experiences. Kaplan emphasizes the importance of stakeholder alignment, proactive communication, and interdisciplinary collaboration, especially in adapting company culture post-pandemic. They discuss UX’s growing relevance in AI, challenges like bias, and the use of AI in research, underscoring the strategic value of UX in driving innovation and user satisfaction in tech. // Bio Lauren is a sociologist and writer. She earned her PhD in Sociology at Goethe University Frankfurt and worked as a researcher at the University of Oxford and UC Berkeley. Passionate about homelessness and Al, Lauren joined UCSF and later Meta. Lauren recently led UX research at a global Al chip startup and is currently seeking new opportunities to further her work in UX research and AI. At Meta, Lauren led UX research for 1) Privacy-Preserving ML and 2) PyTorch. Lauren has worked on NLP projects such as Word2Vec analysis of historical HIV/AIDS documents presented at TextXD, UC Berkeley 2019. Lauren is passionate about understanding technology and advocating for the people who create and consume Al. Lauren has published over 30 peer-reviewed research articles in domains including psychology, medicine, sociology, and more.” // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Podcast on AI UX https://open.substack.com/pub/aistudios/p/how-to-do-user-research-for-ai-products?r=7hrv8&utm_medium=ios 2024 State of AI Infra at Scale Research Report https://ai-infrastructure.org/wp-content/uploads/2024/03/The-State-of-AI-Infrastructure-at-Scale-2024.pdf Privacy-Preserving ML UX Public Article https://www.ttclabs.net/research/how-to-help-people-understand-privacy-enhancing-technologies Homelessness research and more: https://scholar.google.com/citations?user=24zqlwkAAAAJ&hl=en Agents in Production: https://home.mlops.community/public/events/aiagentsinprod Mk.gee Si (Bonus Track): https://open.spotify.com/track/1rukW2Wxnb3GGlY0uDWIWB?si=4d5b0987ad55444a --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Lauren on LinkedIn: https://www.linkedin.com/in/laurenmichellekaplan?utm_source=share&utm_campaign=share_via&utm_content=profile&utm_medium=ios_app
Dr. Petar Tsankov is a researcher and entrepreneur in the field of Computer Science and Artificial Intelligence (AI). EU AI Act - Navigating New Legislation // MLOps Podcast #271 with Petar Tsankov, Co-Founder and CEO of LatticeFlow AI. Big thanks to LatticeFlow for sponsoring this episode! // Abstract Dive into AI risk and compliance. Petar Tsankov, a leader in AI safety, talks about turning complex regulations into clear technical requirements and the importance of benchmarks in AI compliance, especially with the EU AI Act. We explore his work with big AI players and the EU on safer, compliant models, covering topics from multimodal AI to managing AI risks. He also shares insights on "Comply," an open-source tool for checking AI models against EU standards, making compliance simpler for AI developers. A must-listen for those tackling AI regulation and safety. // Bio Co-founder & CEO at LatticeFlow AI, building the world's first product enabling organizations to build performant, safe, and trustworthy AI systems. Before starting LatticeFlow AI, Petar was a senior researcher at ETH Zurich working on the security and reliability of modern systems, including deep learning models, smart contracts, and programmable networks. Petar have co-created multiple publicly available security and reliability systems that are regularly used: = ERAN, the world's first scalable verifier for deep neural networks: https://github.com/eth-sri/eran = VerX, the world's first fully automated verifier for smart contracts: https://verx.ch = Securify, the first scalable security scanner for Ethereum smart contracts: https://securify.ch = DeGuard, de-obfuscates Android binaries: http://apk-deguard.com = SyNET, the first scalable network-wide configuration synthesis tool: https://synet.ethz.ch Petar also co-founded ChainSecurity, an ETH spin-off that within 2 years became a leader in formal smart contract audits and was acquired by PwC Switzerland in 2020. // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://latticeflow.ai/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Petar on LinkedIn: https://www.linkedin.com/in/petartsankov/
Bernie Wu is VP of Business Development for MemVerge. He has 25+ years of experience as a senior executive for data center hardware and software infrastructure companies including companies such as Conner/Seagate, Cheyenne Software, Trend Micro, FalconStor, Levyx, and MetalSoft. Boosting LLM/RAG Workflows & Scheduling w/ Composable Memory and Checkpointing // MLOps Podcast #270 with Bernie Wu, VP Strategic Partnerships/Business Development of MemVerge. // Abstract Limited memory capacity hinders the performance and potential of research and production environments utilizing Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) techniques. This discussion explores how leveraging industry-standard CXL memory can be configured as a secondary, composable memory tier to alleviate this constraint. We will highlight some recent work we’ve done in integrating of this novel class of memory into LLM/RAG/vector database frameworks and workflows. Disaggregated shared memory is envisioned to offer high performance, low latency caches for model/pipeline checkpoints of LLM models, KV caches during distributed inferencing, LORA adaptors, and in-process data for heterogeneous CPU/GPU workflows. We expect to showcase these types of use cases in the coming months. // Bio Bernie is VP of Strategic Partnerships/Business Development for MemVerge. His focus has been building partnerships in the AI/ML, Kubernetes, and CXL memory ecosystems. He has 25+ years of experience as a senior executive for data center hardware and software infrastructure companies including companies such as Conner/Seagate, Cheyenne Software, Trend Micro, FalconStor, Levyx, and MetalSoft. He is also on the Board of Directors for Cirrus Data Solutions. Bernie has a BS/MS in Engineering from UC Berkeley and an MBA from UCLA. // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: www.memverge.com Accelerating Data Retrieval in Retrieval Augmentation Generation (RAG) Pipelines using CXL: https://memverge.com/accelerating-data-retrieval-in-rag-pipelines-using-cxl/ Do Re MI for Training Metrics: Start at the Beginning // Todd Underwood // AIQCON: https://youtu.be/DxyOlRdCofo Handling Multi-Terabyte LLM Checkpoints // Simon Karasik // MLOps Podcast #228: https://youtu.be/6MY-IgqiTpg Compute Express Link (CXL) FPGA IP: https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.htmlUltra Ethernet Consortium: https://ultraethernet.org/ Unified Acceleration (UXL) Foundation: https://www.intel.com/content/www/us/en/developer/articles/news/unified-acceleration-uxl-foundation.html RoCE networks for distributed AI training at scale: https://engineering.fb.com/2024/08/05/data-center-engineering/roce-network-distributed-ai-training-at-scale/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Bernie on LinkedIn: https://www.linkedin.com/in/berniewu/ Timestamps: [00:00] Bernie's preferred coffee [00:11] Takeaways [01:37] First principles thinking focus [05:02] Memory Abundance Concept Discussion [06:45] Managing load spikes [09:38] GPU checkpointing challenges [16:29] Distributed memory problem solving [18:27] Composable and Virtual Memory [21:49] Interactive chat annotation [23:46] Memory elasticity in AI [27:33] GPU networking tests [29:12] GPU Scheduling workflow optimization [32:18] Kubernetes Extensions and Tools [37:14] GPU bottleneck analysis [42:04] Economical memory strategies [45:14] Elastic memory management strategies [47:57] Problem solving approach [50:15] AI infrastructure elasticity evolution [52:33] RDMA and RoCE explained [54:14] Wrap up
Gideon Mendels is the Chief Executive Officer at Comet, the leading solution for managing machine learning workflows. How to Systematically Test and Evaluate Your LLMs Apps // MLOps Podcast #269 with Gideon Mendels, CEO of Comet. // Abstract When building LLM Applications, Developers need to take a hybrid approach from both ML and SW Engineering best practices. They need to define eval metrics and track their entire experimentation to see what is and is not working. They also need to define comprehensive unit tests for their particular use-case so they can confidently check if their LLM App is ready to be deployed. // Bio Gideon Mendels is the CEO and co-founder of Comet, the leading solution for managing machine learning workflows from experimentation to production. He is a computer scientist, ML researcher and entrepreneur at his core. Before Comet, Gideon co-founded GroupWize, where they trained and deployed NLP models processing billions of chats. His journey with NLP and Speech Recognition models began at Columbia University and Google where he worked on hate speech and deception detection. // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://www.comet.com/site/ All the Hard Stuff with LLMs in Product Development // Phillip Carter // MLOps Podcast #170: https://youtu.be/DZgXln3v85s Opik by Comet: https://www.comet.com/site/products/opik/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Gideon on LinkedIn: https://www.linkedin.com/in/gideon-mendels/ Timestamps: [00:00] Gideon's preferred coffee [00:17] Takeaways [01:50] A huge shout-out to Comet ML for sponsoring this episode! [02:09] Please like, share, leave a review, and subscribe to our MLOps channels! [03:30] Evaluation metrics in AI [06:55] LLM Evaluation in Practice [10:57] LLM testing methodologies [16:56] LLM as a judge [18:53] OPIC track function overview [20:33] Tracking user response value [26:32] Exploring AI metrics integration [29:05] Experiment tracking and LLMs [34:27] Micro Macro collaboration in AI [38:20] RAG Pipeline Reproducibility Snapshot [40:15] Collaborative experiment tracking [45:29] Feature flags in CI/CD [48:55] Labeling challenges and solutions [54:31] LLM output quality alerts [56:32] Anomaly detection in model outputs [1:01:07] Wrap up
Raj Rikhy is a Senior Product Manager at Microsoft AI + R, enabling deep reinforcement learning use cases for autonomous systems. Previously, Raj was the Group Technical Product Manager in the CDO for Data Science and Deep Learning at IBM. Prior to joining IBM, Raj has been working in product management for several years - at Bitnami, Appdirect and Salesforce. // MLOps Podcast #268 with Raj Rikhy, Principal Product Manager at Microsoft. // Abstract In this MLOps Community podcast, Demetrios chats with Raj Rikhy, Principal Product Manager at Microsoft, about deploying AI agents in production. They discuss starting with simple tools, setting clear success criteria, and deploying agents in controlled environments for better scaling. Raj highlights real-time uses like fraud detection and optimizing inference costs with LLMs, while stressing human oversight during early deployment to manage LLM randomness. The episode offers practical advice on deploying AI agents thoughtfully and efficiently, avoiding over-engineering, and integrating AI into everyday applications. // Bio Raj is a Senior Product Manager at Microsoft AI + R, enabling deep reinforcement learning use cases for autonomous systems. Previously, Raj was the Group Technical Product Manager in the CDO for Data Science and Deep Learning at IBM. Prior to joining IBM, Raj has been working in product management for several years - at Bitnami, Appdirect and Salesforce. // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://www.microsoft.com/en-us/research/focus-area/ai-and-microsoft-research/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Raj on LinkedIn: https://www.linkedin.com/in/rajrikhy/
//Abstract If there is one thing that is true, it is data is constantly changing. How can we keep up with these changes? How can we make sure that every stakeholder has visibility? How can we create a culture of understanding around data change management? //Bio - Benjamin Rogojan: Data Science And Engineering Consultant @ Seattle Data Guy - Chad Sanderson: CEO & Co-Founder @ Gable - Christophe Blefari: CTO & Co-founder @ NAO - Maggie Hays: Founding Community Product Manager, DataHub @ Acryl Data A big thank you to our Premium Sponsors  @Databricks ,  @tecton8241 , &  @onehouseHQ for their generous support!
The AI Dream Team: Strategies for ML Recruitment and Growth // MLOps Podcast #267 with Jelmer Borst, Analytics & Machine Learning Domain Lead, and Daniela Solis, Machine Learning Product Owner, of Picnic. // Abstract Like many companies, Picnic started out with a small, central data science team. As this grows larger, focussing on more complex models, it questions the skillsets & organisational set up. Use an ML platform, or build ourselves? A central team vs. embedded? Hire data scientists vs. ML engineers vs. MLOps engineers How to foster a team culture of end-to-end ownership How to balance short-term & long-term impact // Bio Jelmer Borst Jelmer leads the analytics & machine learning teams at Picnic, an app-only online groceries company based in The Netherlands. Whilst his background is in aerospace engineering, he was looking for something faster-paced and found that at Picnic. He loves the intersection of solving business challenges using technology & data. In his free time loves to cook food and tinker with the latest AI developments. Daniela Solis Morales As a Machine Learning Lead at Picnic, I am responsible for ensuring the success of end-to-end Machine Learning systems. My work involves bringing models into production across various domains, including Personalization, Fraud Detection, and Natural Language Processing. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Jelmer on LinkedIn: https://www.linkedin.com/in/japborst Connect with Daniela on LinkedIn: https://www.linkedin.com/in/daniela-solis-morales/
Francisco Ingham, LLM consultant, NLP developer, and founder of Pampa Labs. Making Your Company LLM-native // MLOps Podcast #266 with Francisco Ingham, Founder of Pampa Labs. // Abstract Being an LLM-native is becoming one of the key differentiators among companies, in vastly different verticals. Everyone wants to use LLMs, and everyone wants to be on top of the current tech but - what does it really mean to be LLM-native? LLM-native involves two ends of a spectrum. On the one hand, we have the product or service that the company offers, which surely offers many automation opportunities. LLMs can be applied strategically to scale at a lower cost and offer a better experience for users. But being LLM-native not only involves the company's customers, it also involves each stakeholder involved in the company's operations. How can employees integrate LLMs into their daily workflows? How can we as developers leverage the advancements in the field not only as builders but as adopters? We will tackle these and other key questions for anyone looking to capitalize on the LLM wave, prioritizing real results over the hype. // Bio Currently working at Pampa Labs, where we help companies become AI-native and build AI-native products. Our expertise lies on the LLM-science side, or how to build a successful data flywheel to leverage user interactions to continuously improve the product. We also spearhead, pampa-friends - the first Spanish-speaking community of AI Engineers. Previously worked in management consulting, was a TA in fastai in SF, and led the cross-AI + dev tools team at Mercado Libre. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: pampa.ai --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Francisco on LinkedIn: https://www.linkedin.com/in/fpingham/ Timestamps: [00:00] Francisco's preferred coffee [00:13] Takeaways [00:37] Please like, share, leave a review, and subscribe to our MLOps channels! [00:51] A Literature Geek [02:41] LLM-native company [03:54] Integrating LLM in workflows [07:21] Unexpected LLM applications [10:38] LLM's in development process [14:00] Vibe check to evaluation [15:36] Experiment tracking optimizations [20:22] LLMs as judges discussion [24:43] Presentaciones automatizadas para podcast [27:48] AI operating system and agents [31:29] Importance of SEO expertise [35:33] Experimentation and evaluation [39:20] AI integration strategies [41:50] RAG approach spectrum analysis [44:40] Search vs Retrieval in AI [49:02] Recommender Systems vs RAG [52:08] LLMs in recommender systems [53:10] LLM interface design insights
Simba Khadder is the Founder & CEO of Featureform. He started his ML career in recommender systems where he architected a multi-modal personalization engine that powered 100s of millions of user’s experiences. Unpacking 3 Types of Feature Stores // MLOps Podcast #265 with Simba Khadder, Founder & CEO of Featureform. // Abstract Simba dives into how feature stores have evolved and how they now intersect with vector stores, especially in the world of machine learning and LLMs. He breaks down what embeddings are, how they power recommender systems, and why personalization is key to improving LLM prompts. Simba also sheds light on the difference between feature and vector stores, explaining how each plays its part in making ML workflows smoother. Plus, we get into the latest challenges and cool innovations happening in MLOps. // Bio Simba Khadder is the Founder & CEO of Featureform. After leaving Google, Simba founded his first company, TritonML. His startup grew quickly and Simba and his team built ML infrastructure that handled over 100M monthly active users. He instilled his learnings into Featureform’s virtual feature store. Featureform turns your existing infrastructure into a Feature Store. He’s also an avid surfer, a mixed martial artist, a published astrophysicist for his work on finding Planet 9, and he ran the SF marathon in basketball shoes. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: featureform.comBigQuery Feature Store // Nicolas Mauti // MLOps Podcast #255: https://www.youtube.com/watch?v=NtDKbGyRHXQ&ab_channel=MLOps.community --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Simba on LinkedIn: https://www.linkedin.com/in/simba-k/ Timestamps: [00:00] Simba's preferred coffee [00:08] Takeaways [02:01] Coining the term 'Embedding' [07:10] Dual Tower Recommender System [10:06] Complexity vs Reliability in AI [12:39] Vector Stores and Feature Stores [17:56] Value of Data Scientists [20:27] Scalability vs Quick Solutions [23:07] MLOps vs LLMOps Debate [24:12] Feature Stores' current landscape [32:02] ML lifecycle challenges and tools [36:16] Feature Stores bundling impact [42:13] Feature Stores and BigQuery [47:42] Virtual vs Literal Feature Store [50:13] Hadoop Community Challenges [52:46] LLM data lifecycle challenges [56:30] Personalization in prompting usage [59:09] Contextualizing company variables [1:03:10] DSPy framework adoption insights [1:05:25] Wrap up
Stefano Bosisio is an accomplished MLOps Engineer with a solid background in Biomedical Engineering, focusing on cellular biology, genetics, and molecular simulations. Reinvent Yourself and Be Curious // MLOps Podcast #264 with Stefano Bosisio, MLOps Engineer at Synthesia. // Abstract This talk goes through Stefano's experience, to be an inspirational source for whoever wants to jump on a career in the MLOps sector. Moreover, Stefano will also introduce his MLOps Course on the MLOps community platform. // Bio Sai Bharath Gottam Stefano Bosisio is an MLOps Engineer, with a versatile background that ranges from biomedical engineering to computational chemistry and data science. Stefano got an MSc in biomedical engineering from the Polytechnic of Milan, focusing on cellular biology, genetics, and molecular simulations. Then, he landed in Scotland, in Edinburgh, to earn a PhD in chemistry from the University of Edinburgh, where he developed robust physical theories and simulation methods, to understand and unlock the drug discovery problem. After completing his PhD, Stefano transitioned into Data Science, where he began his career as a data scientist. His interest in machine learning engineering grew, leading him to specialize in building ML platforms that drive business success. Stefano's expertise bridges the gap between complex scientific research and practical machine learning applications, making him a key figure in the MLOps field. Bonus points beyond data: Stefano, as a proper Italian, loves cooking and (mainly) baking, playing the piano, crocheting and running half-marathons. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://medium.com/@stefanobosisio1First MLOps Stack Course: https://learn.mlops.community/courses/languages/your-first-mlops-stack/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Stefano on LinkedIn: https://www.linkedin.com/in/stefano-bosisio1/ Timestamps: [00:00] Stephano's preferred coffee [00:12] Takeaways [01:06] Stephano's MLOps Course [01:47] From Academia to AI Industry [09:10] Data science and platforms [16:53] Persistent MLOps challenges [21:23] Internal evangelization for success [24:21] Adapt communication skills to diverse individual needs [29:43] Key components of ML pipelines are essentia l[33:47] Create a generalizable AI training pipeline with Kubeflow [35:44] Consider cost-effective algorithms and deployment methods [39:02] Agree with dream platform; LLMs require simple microservice [42:48] Auto scaling: crucial, tricky, prone to issues [46:28] Auto-scaling issues with Apache Beam data pipelines [49:49] Guiding students through MLOps with practical experience [53:16] Bulletproof Problem Solving: Decision trees for problem analysis [55:03] Evaluate tools critically; appreciate educational opportunities [57:01] Wrap up
Global Feature Store: Optimizing Locally and Scaling Globally at Delivery Hero // MLOps Podcast #263 with Delivery Hero's Gottam Sai Bharath, Senior Machine Learning Engineer & Cole Bailey, ML Platform Engineering Manager. // Abstract Delivery Hero innovates locally within each department to develop MLOps practices most effective in that particular context. We also discuss our efforts to reduce redundancy and inefficiency across the company. Hear about our experiences in creating multiple micro feature stores within our departments, and our goal to unify these into a Global Feature Store that is more powerful when combined. // Bio Sai Bharath Gottam With a passion for translating complex technical concepts into practical solutions, Sai excels at making intricate topics accessible and engaging. As a Senior Machine Learning Engineer at Delivery Hero, Sai works on cutting-edge machine learning platforms that guarantee seamless delivery experiences. Always eager to share insights and innovations, Sai is committed to making technology understandable and enjoyable for all. Cole Bailey Bridging data science and production-grade software engineering. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://www.deliveryhero.com/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Sai on LinkedIn: https://www.linkedin.com/in/sai-bharath-gottam/ Connect with Cole on LinkedIn: www.linkedin.com/in/cole-bailey Timestamps: [00:00] Sai and Cole's preferred coffee [00:42] Takeaways [01:51] Please like, share, leave a review, and subscribe to our MLOps channels! [02:08] Life changes in Delivery Hero [05:21] Global Feature Store and Pandora [12:21] Tech integration strategies [20:08] Defining Feature and Feature Store [22:46] Feature Store vs Data Platform [26:26] Features are discoverable [32:56] Onboarding and Feature Testing [36:00] Data consistency [41:07] Future Vision Feature Store [44:17] Multi-cloud strategies [46:33] Wrap up
loading