DiscoverMachine Learning Street Talk (MLST)
Machine Learning Street Talk (MLST)
Claim Ownership

Machine Learning Street Talk (MLST)

Author: Machine Learning Street Talk (MLST)

Subscribed: 762Played: 19,452


Welcome! We engage in fascinating discussions with pre-eminent figures in the AI field. Our flagship show covers current affairs in AI, cognitive science, neuroscience and philosophy of mind with in-depth analysis. Our approach is unrivalled in terms of scope and rigour – we believe in intellectual diversity in AI, and we touch on all of the main ideas in the field with the hype surgically removed. MLST is run by Tim Scarfe, Ph.D ( and features regular appearances from MIT Doctor of Philosophy Keith Duggar (
152 Episodes
The ARC Challenge, created by Francois Chollet, tests how well AI systems can generalize from a few examples in a grid-based intelligence test. We interview the current winners of the ARC Challenge—Jack Cole, Mohammed Osman and their collaborator Michael Hodel. They discuss how they tackled ARC (Abstraction and Reasoning Corpus) using language models. We also discuss the new "50%" public set approach announced today from Redwood Research (Ryan Greenblatt). Jack and Mohammed explain their winning approach, which involves fine-tuning a language model on a large, specifically-generated dataset and then doing additional fine-tuning at test-time, a technique known in this context as "active inference". They use various strategies to represent the data for the language model and believe that with further improvements, the accuracy could reach above 50%. Michael talks about his work on generating new ARC-like tasks to help train the models. They also debate whether their methods stay true to the "spirit" of Chollet's measure of intelligence. Despite some concerns, they agree that their solutions are promising and adaptable for other similar problems. Note: Jack's team is still the current official winner at 33% on the private set. Ryan's entry is not on the private leaderboard or eligible. Chollet invented ARC in 2019 (not 2017 as stated) "Ryan's entry is not a new state of the art. We don't know exactly how well it does since it was only evaluated on 100 tasks from the evaluation set and does 50% on those, reportedly. Meanwhile Jacks team i.e. MindsAI's solution does 54% on the entire eval set and it is seemingly possible to do 60-70% with an ensemble" Jack Cole: Mohamed Osman: Mohamed is looking to do a PhD in AI/ML, can you help him? Email: Michael Hodel: Getting 50% (SoTA) on ARC-AGI with GPT-4o - Ryan Greenblatt Neural networks for abstraction and reasoning: Towards broad generalization in machines [Mikel Bober-Irizar, Soumya Banerjee] Measure of intelligence: YT version:
Nick Frosst, co-founder of Cohere, on the future of LLMs, and AGI. Learn how Cohere is solving real problems for business with their new AI models. This is the first podcast from our new Cohere partnership! Nick talks about his journey at Google Brain, working with AI legends like Geoff Hinton, and the amazing things his company, Cohere, is doing. From creating the must useful language models for businesses to making tools for developers, Nick shares a lot of interesting insights. He even talks about his band, Good Kid! Nick said that RAG is one of the best features of Cohere's new Command R* models. We are about to release a deep-dive on RAG with Patrick Lewis from Cohere, keep an eye out for that - he explains why their models are specifically optimised for RAG use cases. Learn more about Cohere Command R* models here: Nick's band Good Kid: Nick on Twitter: Disclaimer: We are in a partnership with Cohere to release content for them. We were not told what to say in the interview, and didn't edit anything out from the interview. We are currently planning to release 2 shows per month under the partnership about their AI platform, research and strategy.
These two scientists have mapped out the insides or “reachable space” of a language model using control theory, what they discovered was extremely surprising. Please support us on Patreon to get access to the private Discord server, bi-weekly calls, early access and ad-free listening. YT version: Aman Bhargava from Caltech and Cameron Witkowski from the University of Toronto to discuss their groundbreaking paper, “What’s the Magic Word? A Control Theory of LLM Prompting.” (the main theorem on self-attention controllability was developed in collaboration with Dr. Shi-Zhuo Looi from Caltech). They frame LLM systems as discrete stochastic dynamical systems. This means they look at LLMs in a structured way, similar to how we analyze control systems in engineering. They explore the “reachable set” of outputs for an LLM. Essentially, this is the range of possible outputs the model can generate from a given starting point when influenced by different prompts. The research highlights that prompt engineering, or optimizing the input tokens, can significantly influence LLM outputs. They show that even short prompts can drastically alter the likelihood of specific outputs. Aman and Cameron’s work might be a boon for understanding and improving LLMs. They suggest that a deeper exploration of control theory concepts could lead to more reliable and capable language models. We dropped an additional, more technical video on the research on our Twitter account here: Additional 20 minutes of unreleased footage on our Patreon here: What's the Magic Word? A Control Theory of LLM Prompting (Aman Bhargava, Cameron Witkowski, Manav Shah, Matt Thomson) LLM Control Theory Seminar (April 2024) Society for the pursuit of AGI (Cameron founded it) Roger Federer demo Neural Cellular Automata, Active Inference, and the Mystery of Biological Computation (Aman) Aman and Cameron also want to thank Dr. Shi-Zhuo Looi and Prof. Matt Thomson from from Caltech for help and advice on their research. ( and
Maria Santacaterina, with her background in the humanities, brings a critical perspective on the current state and future implications of AI technology, its impact on society, and the nature of human intelligence and creativity. She emphasizes that despite technological advancements, AI lacks fundamental human traits such as consciousness, empathy, intuition, and the ability to engage in genuine creative processes. Maria argues that AI, at its core, processes data but does not have the capability to understand or generate new, intrinsic meaning or ideas as humans do. Throughout the conversation, Maria highlights her concern about the overreliance on AI in critical sectors such as healthcare, the justice system, and business. She stresses that while AI can serve as a tool, it should not replace human judgment and decision-making. Maria points out that AI systems often operate on past data, which may lead to outdated or incorrect decisions if not carefully managed. The discussion also touches upon the concept of "adaptive resilience", which Maria describes in her book. She explains adaptive resilience as the capacity for individuals and enterprises to evolve and thrive amidst challenges by leveraging technology responsibly, without undermining human values and capabilities. A significant portion of the conversation focussed on ethical considerations surrounding AI. Tim and Maria agree that there's a pressing need for strong governance and ethical frameworks to guide AI development and deployment. They discuss how AI, without proper ethical considerations, risks exacerbating issues like privacy invasion, misinformation, and unintended discrimination. Maria is skeptical about claims of achieving Artificial General Intelligence (AGI) or a technological singularity where machines surpass human intelligence in all aspects. She argues that such scenarios neglect the complex, dynamic nature of human intelligence and consciousness, which cannot be fully replicated or replaced by machines. Tim and Maria discuss the importance of keeping human agency and creativity at the forefront of technology development. Maria asserts that efforts to automate or standardize complex human actions and decisions are misguided and could lead to dehumanizing outcomes. They both advocate for using AI as an aid to enhance human capabilities rather than a substitute. In closing, Maria encourages a balanced approach to AI adoption, urging stakeholders to prioritize human well-being, ethical standards, and societal benefit above mere technological advancement. The conversation ends with Maria pointing people to her book for more in-depth analysis and thoughts on the future interaction between humans and technology. Buy Maria's book here: TOC 00:00:00 - Intro to Book 00:03:23 - What Life Is 00:10:10 - Agency 00:18:04 - Tech and Society 00:21:51 - System 1 and 2 00:22:59 - We Are Being Pigeonholed 00:30:22 - Agency vs Autonomy 00:36:37 - Explanations 00:40:24 - AI Reductionism 00:49:50 - How Are Humans Intelligent 01:00:22 - Semantics 01:01:53 - Emotive AI and Pavlovian Dogs 01:04:05 - Technology, Social Media and Organisation 01:18:34 - Systems Are Not That Automated 01:19:33 - Hiring 01:22:34 - Subjectivity in Orgs 01:32:28 - The AGI Delusion 01:45:37 - GPT-laziness Syndrome 01:54:58 - Diversity Preservation 01:58:24 - Ethics 02:11:43 - Moral Realism 02:16:17 - Utopia 02:18:02 - Reciprocity 02:20:52 - Tyranny of Categorisation
Thomas Parr and his collaborators wrote a book titled "Active Inference: The Free Energy Principle in Mind, Brain and Behavior" which introduces Active Inference from both a high-level conceptual perspective and a low-level mechanistic, mathematical perspective. Active inference, developed by the legendary neuroscientist Prof. Karl Friston - is a unifying mathematical framework which frames living systems as agents which minimize surprise and free energy in order to resist entropy and persist over time. It unifies various perspectives from physics, biology, statistics, and psychology - and allows us to explore deep questions about agency, biology, causality, modelling, and consciousness. Buy Active Inference: The Free Energy Principle in Mind, Brain, and Behavior YT version: Please support us on Patreon to get access to the private Discord server, bi-weekly calls, early access and ad-free listening. Chapters should be embedded in the mp3, let me me know if issues
Connor is the CEO of Conjecture and one of the most famous names in the AI alignment movement. This is the "behind the scenes footage" and bonus Patreon interviews from the day of the Beff Jezos debate, including an interview with Daniel Clothiaux. It's a great insight into Connor's philosophy. At the end there is an unreleased additional interview with Beff. Support MLST: Please support us on Patreon. We are entirely funded from Patreon donations right now. Patreon supports get private discord access, biweekly calls, very early-access + exclusive content and lots more. Donate: If you would like to sponsor us, so we can tell your story - reach out on mlstreettalk at gmail Topics: Externalized cognition and the role of society and culture in human intelligence The potential for AI systems to develop agency and autonomy The future of AGI as a complex mixture of various components The concept of agency and its relationship to power The importance of coherence in AI systems The balance between coherence and variance in exploring potential upsides The role of dynamic, competent, and incorruptible institutions in handling risks and developing technology Concerns about AI widening the gap between the haves and have-nots The concept of equal access to opportunity and maintaining dynamism in the system Leahy's perspective on life as a process that "rides entropy" The importance of distinguishing between epistemological, decision-theoretic, and aesthetic aspects of morality (inc ref to Hume's Guillotine) The concept of continuous agency and the idea that the first AGI will be a messy admixture of various components The potential for AI systems to become more physically embedded in the future The challenges of aligning AI systems and the societal impacts of AI technologies like ChatGPT and Bing The importance of humility in the face of complexity when considering the future of AI and its societal implications Disclaimer: this video is not an endorsement of e/acc or AGI agential existential risk from us - the hosts of MLST consider both of these views to be quite extreme. We seek diverse views on the channel. 00:00:00 Intro 00:00:56 Connor's Philosophy 00:03:53 Office Skit 00:05:08 Connor on e/acc and Beff 00:07:28 Intro to Daniel's Philosophy 00:08:35 Connor on Entropy, Life, and Morality 00:19:10 Connor on London 00:20:21 Connor Office Interview 00:20:46 Friston Patreon Preview 00:21:48 Why Are We So Dumb? 00:23:52 The Voice of the People, the Voice of God / Populism 00:26:35 Mimetics 00:30:03 Governance 00:33:19 Agency 00:40:25 Daniel Interview - Externalised Cognition, Bing GPT, AGI 00:56:29 Beff + Connor Bonus Patreons Interview
Professor Chris Bishop is a Technical Fellow and Director at Microsoft Research AI4Science, in Cambridge. He is also Honorary Professor of Computer Science at the University of Edinburgh, and a Fellow of Darwin College, Cambridge. In 2004, he was elected Fellow of the Royal Academy of Engineering, in 2007 he was elected Fellow of the Royal Society of Edinburgh, and in 2017 he was elected Fellow of the Royal Society. Chris was a founding member of the UK AI Council, and in 2019 he was appointed to the Prime Minister’s Council for Science and Technology. At Microsoft Research, Chris oversees a global portfolio of industrial research and development, with a strong focus on machine learning and the natural sciences. Chris obtained a BA in Physics from Oxford, and a PhD in Theoretical Physics from the University of Edinburgh, with a thesis on quantum field theory. Chris's contributions to the field of machine learning have been truly remarkable. He has authored (what is arguably) the original textbook in the field - 'Pattern Recognition and Machine Learning' (PRML) which has served as an essential reference for countless students and researchers around the world, and that was his second textbook after his highly acclaimed first textbook Neural Networks for Pattern Recognition. Recently, Chris has co-authored a new book with his son, Hugh, titled 'Deep Learning: Foundations and Concepts.' This book aims to provide a comprehensive understanding of the key ideas and techniques underpinning the rapidly evolving field of deep learning. It covers both the foundational concepts and the latest advances, making it an invaluable resource for newcomers and experienced practitioners alike. Buy Chris' textbook here: More about Prof. Chris Bishop: Support MLST: Please support us on Patreon. We are entirely funded from Patreon donations right now. Patreon supports get private discord access, biweekly calls, early-access + exclusive content and lots more. Donate: If you would like to sponsor us, so we can tell your story - reach out on mlstreettalk at gmail TOC: 00:00:00 - Intro to Chris 00:06:54 - Changing Landscape of AI 00:08:16 - Symbolism 00:09:32 - PRML 00:11:02 - Bayesian Approach 00:14:49 - Are NNs One Model or Many, Special vs General 00:20:04 - Can Language Models Be Creative 00:22:35 - Sparks of AGI 00:25:52 - Creativity Gap in LLMs 00:35:40 - New Deep Learning Book 00:39:01 - Favourite Chapters 00:44:11 - Probability Theory 00:45:42 - AI4Science 00:48:31 - Inductive Priors 00:58:52 - Drug Discovery 01:05:19 - Foundational Bias Models 01:07:46 - How Fundamental Is Our Physics Knowledge? 01:12:05 - Transformers 01:12:59 - Why Does Deep Learning Work? 01:16:59 - Inscrutability of NNs 01:18:01 - Example of Simulator 01:21:09 - Control
Dr. Philip Ball is a freelance science writer. He just wrote a book called "How Life Works", discussing the how the science of Biology has advanced in the last 20 years. We focus on the concept of Agency in particular. He trained as a chemist at the University of Oxford, and as a physicist at the University of Bristol. He worked previously at Nature for over 20 years, first as an editor for physical sciences and then as a consultant editor. His writings on science for the popular press have covered topical issues ranging from cosmology to the future of molecular biology. YT: Transcript link on YT description Philip is the author of many popular books on science, including H2O: A Biography of Water, Bright Earth: The Invention of Colour, The Music Instinct and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books, while Serving the Reich was shortlisted for the Royal Society Winton Science Book Prize in 2014. This is one of Tim's personal favourite MLST shows, so we have designated it a special edition. Enjoy! Buy Philip's book "How Life Works" here: Support MLST: Please support us on Patreon. We are entirely funded from Patreon donations right now. Patreon supports get private discord access, biweekly calls, early-access + exclusive content and lots more. Donate: If you would like to sponsor us, so we can tell your story - reach out on mlstreettalk at gmail
Dr. Paul Lessard and his collaborators have written a paper on "Categorical Deep Learning and Algebraic Theory of Architectures". They aim to make neural networks more interpretable, composable and amenable to formal reasoning. The key is mathematical abstraction, as exemplified by category theory - using monads to develop a more principled, algebraic approach to structuring neural networks. We also discussed the limitations of current neural network architectures in terms of their ability to generalise and reason in a human-like way. In particular, the inability of neural networks to do unbounded computation equivalent to a Turing machine. Paul expressed optimism that this is not a fundamental limitation, but an artefact of current architectures and training procedures. The power of abstraction - allowing us to focus on the essential structure while ignoring extraneous details. This can make certain problems more tractable to reason about. Paul sees category theory as providing a powerful "Lego set" for productively thinking about many practical problems. Towards the end, Paul gave an accessible introduction to some core concepts in category theory like categories, morphisms, functors, monads etc. We explained how these abstract constructs can capture essential patterns that arise across different domains of mathematics. Paul is optimistic about the potential of category theory and related mathematical abstractions to put AI and neural networks on a more robust conceptual foundation to enable interpretability and reasoning. However, significant theoretical and engineering challenges remain in realising this vision. Please support us on Patreon. We are entirely funded from Patreon donations right now. If you would like to sponsor us, so we can tell your story - reach out on mlstreettalk at gmail Links: Categorical Deep Learning: An Algebraic Theory of Architectures Bruno Gavranović, Paul Lessard, Andrew Dudzik, Tamara von Glehn, João G. M. Araújo, Petar Veličković Paper: Symbolica: Dr. Paul Lessard (Principal Scientist - Symbolica) Interviewer: Dr. Tim Scarfe TOC: 00:00:00 - Intro 00:05:07 - What is the category paper all about 00:07:19 - Composition 00:10:42 - Abstract Algebra 00:23:01 - DSLs for machine learning 00:24:10 - Inscrutibility 00:29:04 - Limitations with current NNs 00:30:41 - Generative code / NNs don't recurse 00:34:34 - NNs are not Turing machines (special edition) 00:53:09 - Abstraction 00:55:11 - Category theory objects 00:58:06 - Cat theory vs number theory 00:59:43 - Data and Code are one in the same 01:08:05 - Syntax and semantics 01:14:32 - Category DL elevator pitch 01:17:05 - Abstraction again 01:20:25 - Lego set for the universe 01:23:04 - Reasoning 01:28:05 - Category theory 101 01:37:42 - Monads 01:45:59 - Where to learn more cat theory
Dr. Minqi Jiang and Dr. Marc Rigter explain an innovative new method to make the intelligence of agents more general-purpose by training them to learn many worlds before their usual goal-directed training, which we call "reinforcement learning". Their new paper is called "Reward-free curricula for training robust world models" Interviewer: Dr. Tim Scarfe Please support us on Patreon, Tim is now doing MLST full-time and taking a massive financial hit. If you love MLST and want this to continue, please show your support! In return you get access to shows very early and private discord and networking. We are also looking for show sponsors, please get in touch if interested mlstreettalk at gmail. MLST Discord:
Nick Chater is Professor of Behavioural Science at Warwick Business School, who works on rationality and language using a range of theoretical and experimental approaches. We discuss his books The Mind is Flat, and the Language Game. Please support me on Patreon (this is now my main job!) - - Access the private Discord, networking, and early access to content. MLST Discord: Buy The Language Game: Buy The Mind is Flat: YT version:
See what Sam Altman advised Kenneth when he left OpenAI! Professor Kenneth Stanley has just launched a brand new type of social network, which he calls a "Serendipity network". The idea is that you follow interests, NOT people. It's a social network without the popularity contest. We discuss the phgilosophy and technology behind the venture in great detail. The main ideas of which came from Kenneth's famous book "Why greatness cannot be planned". See what Sam Altman advised Kenneth when he left OpenAI! Professor Kenneth Stanley has just launched a brand new type of social network, which he calls a "Serendipity network".The idea is that you follow interests, NOT people. It's a social network without the popularity contest. YT version: Chapters should be baked into the MP3 file now MLST public Discord: Please support our work on Patreon - get access to interviews months early, private Patreon, networking, exclusive content and regular calls with Tim and Keith. Get Maven here: Kenneth: Host - Tim Scarfe: Original MLST show with Kenneth: Tim explains the book more here:
Brandon Rohrer who obtained his Ph.D from MIT is driven by understanding algorithms ALL the way down to their nuts and bolts, so he can make them accessible to everyone by first explaining them in the way HE himself would have wanted to learn! Please support us on Patreon for loads of exclusive content and private Discord: (public discord) Brandon Rohrer is a seasoned data science leader and educator with a rich background in creating robust, efficient machine learning algorithms and tools. With a Ph.D. in Mechanical Engineering from MIT, his expertise encompasses a broad spectrum of AI applications — from computer vision and natural language processing to reinforcement learning and robotics. Brandon's career has seen him in Principle-level roles at Microsoft and Facebook. An educator at heart, he also shares his knowledge through detailed tutorials, courses, and his forthcoming book, "How to Train Your Robot." YT version: Brandon's links: How transformers work: Brandon's End-to-End Machine Learning school courses, posts, and tutorials Free course: Blog: Ziptie: Learning Useful Features [Brandon Rohrer] TOC should be baked into the MP3 file now 00:00:00 - Intro to Brandon 00:00:36 - RLHF 00:01:09 - Limitations of transformers 00:07:23 - Agency - we are all GPTs 00:09:07 - BPE / representation bias 00:12:00 - LLM true believers 00:16:42 - Brandon's style of teaching 00:19:50 - ML vs real world = Robotics 00:29:59 - Reward shaping 00:37:08 - No true Scotsman - when do we accept capabilities as real 00:38:50 - Externalism 00:43:03 - Building flexible robots 00:45:37 - Is reward enough 00:54:30 - Optimization curse 00:58:15 - Collective intelligence 01:01:51 - Intelligence + creativity 01:13:35 - ChatGPT + Creativity 01:25:19 - Transformers Tutorial
The world's second-most famous AI doomer Connor Leahy sits down with Beff Jezos, the founder of the e/acc movement debating technology, AI policy, and human values. As the two discuss technology, AI safety, civilization advancement, and the future of institutions, they clash on their opposing perspectives on how we steer humanity towards a more optimal path. Watch behind the scenes, get early access and join the private Discord by supporting us on Patreon. We have some amazing content going up there with Max Bennett and Kenneth Stanley this week! (public discord) Post-interview with Beff and Connor: Pre-interview with Connor and his colleague Dan Clothiaux: Leahy, known for his critical perspectives on AI and technology, challenges Jezos on a variety of assertions related to the accelerationist movement, market dynamics, and the need for regulation in the face of rapid technological advancements. Jezos, on the other hand, provides insights into the e/acc movement's core philosophies, emphasizing growth, adaptability, and the dangers of over-legislation and centralized control in current institutions. Throughout the discussion, both speakers explore the concept of entropy, the role of competition in fostering innovation, and the balance needed to mediate order and chaos to ensure the prosperity and survival of civilization. They weigh up the risks and rewards of AI, the importance of maintaining a power equilibrium in society, and the significance of cultural and institutional dynamism. Beff Jezos (Guillaume Verdon): Connor Leahy: YT: TOC: 00:00:00 - Intro 00:03:05 - Society library reference 00:03:35 - Debate starts 00:05:08 - Should any tech be banned? 00:20:39 - Leaded Gasoline 00:28:57 - False vacuum collapse method? 00:34:56 - What if there are dangerous aliens? 00:36:56 - Risk tolerances 00:39:26 - Optimizing for growth vs value 00:52:38 - Is vs ought 01:02:29 - AI discussion 01:07:38 - War / global competition 01:11:02 - Open source F16 designs 01:20:37 - Offense vs defense 01:28:49 - Morality / value 01:43:34 - What would Conor do 01:50:36 - Institutions/regulation 02:26:41 - Competition vs. Regulation Dilemma 02:32:50 - Existential Risks and Future Planning 02:41:46 - Conclusion and Reflection Note from Tim: I baked the chapter metadata into the mp3 file this time, does that help the chapters show up in your app? Let me know. Also I accidentally exported a few minutes of dead audio at the end of the file - sorry about that just skip on when the episode finishes.
Watch behind the scenes, get early access and join the private Discord by supporting us on Patreon: (public discord) YT version: In this interview on MLST, Dr. Tim Scarfe interviews Mahault Albarracin, who is the director of product for R&D at VERSES and also a PhD student in cognitive computing at the University of Quebec in Montreal. They discuss a range of topics related to consciousness, cognition, and machine learning. Throughout the conversation, they touch upon various philosophical and computational concepts such as panpsychism, computationalism, and materiality. They consider the "hard problem" of consciousness, which is the question of how and why we have subjective experiences. Albarracin shares her views on the controversial Integrated Information Theory and the open letter of opposition it received from the scientific community. She reflects on the nature of scientific critique and rivalry, advising caution in declaring entire fields of study as pseudoscientific. A substantial part of the discussion is dedicated to the topic of science itself, where Albarracin talks about thresholds between legitimate science and pseudoscience, the role of evidence, and the importance of validating scientific methods and claims. They touch upon language models, discussing whether they can be considered as having a "theory of mind" and the implications of assigning such properties to AI systems. Albarracin challenges the idea that there is a pure form of intelligence independent of material constraints and emphasizes the role of sociality in the development of our cognitive abilities. Albarracin offers her thoughts on scientific endeavors, the predictability of systems, the nature of intelligence, and the processes of learning and adaptation. She gives insights into the concept of using degeneracy as a way to increase resilience within systems and the role of maintaining a degree of redundancy or extra capacity as a buffer against unforeseen events. The conversation concludes with her discussing the potential benefits of collective intelligence, likening the adaptability and resilience of interconnected agent systems to those found in natural ecosystems. 00:00:00 - Intro / IIT scandal 00:05:54 - Gaydar paper / What makes good science 00:10:51 - Language 00:18:16 - Intelligence 00:29:06 - X-risk 00:40:49 - Self modelling 00:43:56 - Anthropomorphisation 00:46:41 - Mediation and subjectivity 00:51:03 - Understanding 00:56:33 - Resiliency Technical topics: 1. Integrated Information Theory (IIT) - Giulio Tononi 2. The "hard problem" of consciousness - David Chalmers 3. Panpsychism and Computationalism in philosophy of mind 4. Active Inference Framework - Karl Friston 5. Theory of Mind and its computation in AI systems 6. Noam Chomsky's views on language models and linguistics 7. Daniel Dennett's Intentional Stance theory 8. Collective intelligence and system resilience 9. Redundancy and degeneracy in complex systems 10. Michael Levin's research on bioelectricity and pattern formation 11. The role of phenomenology in cognitive science
Chai AI is the leading platform for conversational chat artificial intelligence. Note: this is a sponsored episode of MLST. William Beauchamp is the founder of two $100M+ companies - Chai Research, an AI startup, and Seamless Capital, a hedge fund based in Cambridge, UK. Chaiverse is the Chai AI developer platform, where developers can train, submit and evaluate on millions of real users to win their share of $1,000,000. Download the app on iOS and Android ( ) #chai #chai_ai #chai_research #chaiverse #generative_ai #LLMs
Watch behind the scenes, get early access and join the private Discord by supporting us on Patreon: (public discord) DOES AI HAVE AGENCY? With Professor. Karl Friston and Riddhi J. Pitliya Agency in the context of cognitive science, particularly when considering the free energy principle, extends beyond just human decision-making and autonomy. It encompasses a broader understanding of how all living systems, including non-human entities, interact with their environment to maintain their existence by minimising sensory surprise. According to the free energy principle, living organisms strive to minimize the difference between their predicted states and the actual sensory inputs they receive. This principle suggests that agency arises as a natural consequence of this process, particularly when organisms appear to plan ahead many steps in the future. Riddhi J. Pitliya is based in the computational psychopathology lab doing her Ph.D at the University of Oxford and works with Professor Karl Friston at VERSES. References: THE FREE ENERGY PRINCIPLE—A PRECIS [Ramstead] Active Inference: The Free Energy Principle in Mind, Brain, and Behavior [Thomas Parr, Giovanni Pezzulo, Karl J. Friston] The beauty of collective intelligence, explained by a developmental biologist | Michael Levin Growing Neural Cellular Automata Carcinisation Prof. KENNETH STANLEY - Why Greatness Cannot Be Planned On Defining Artificial Intelligence [Pei Wang] Why? The Purpose of the Universe [Goff] Umwelt An Immense World: How Animal Senses Reveal the Hidden Realms [Yong] What's it like to be a bat [Nagal] COUNTERFEIT PEOPLE. DANIEL DENNETT. (SPECIAL EDITION) We live in the infosphere [FLORIDI] Mark Zuckerberg: First Interview in the Metaverse | Lex Fridman Podcast #398 Black Mirror: Rachel, Jack and Ashley Too | Official Trailer | Netflix
Watch behind the scenes, get early access and join private Discord by supporting us on Patreon: In this comprehensive exploration of the field of deep learning with Professor Simon Prince who has just authored an entire text book on Deep Learning, we investigate the technical underpinnings that contribute to the field's unexpected success and confront the enduring conundrums that still perplex AI researchers. Key points discussed include the surprising efficiency of deep learning models, where high-dimensional loss functions are optimized in ways which defy traditional statistical expectations. Professor Prince provides an exposition on the choice of activation functions, architecture design considerations, and overparameterization. We scrutinize the generalization capabilities of neural networks, addressing the seeming paradox of well-performing overparameterized models. Professor Prince challenges popular misconceptions, shedding light on the manifold hypothesis and the role of data geometry in informing the training process. Professor Prince speaks about how layers within neural networks collaborate, recursively reconfiguring instance representations that contribute to both the stability of learning and the emergence of hierarchical feature representations. In addition to the primary discussion on technical elements and learning dynamics, the conversation briefly diverts to audit the implications of AI advancements with ethical concerns. Follow Prof. Prince: Get the book now! Panel: Dr. Tim Scarfe - TOC: [00:00:00] Introduction [00:11:03] General Book Discussion [00:15:30] The Neural Metaphor [00:17:56] Back to Book Discussion [00:18:33] Emergence and the Mind [00:29:10] Computation in Transformers [00:31:12] Studio Interview with Prof. Simon Prince [00:31:46] Why Deep Neural Networks Work: Spline Theory [00:40:29] Overparameterization in Deep Learning [00:43:42] Inductive Priors and the Manifold Hypothesis [00:49:31] Universal Function Approximation and Deep Networks [00:59:25] Training vs Inference: Model Bias [01:03:43] Model Generalization Challenges [01:11:47] Purple Segment: Unknown Topic [01:12:45] Visualizations in Deep Learning [01:18:03] Deep Learning Theories Overview [01:24:29] Tricks in Neural Networks [01:30:37] Critiques of ChatGPT [01:42:45] Ethical Considerations in AI References on YT version VD:
Watch behind the scenes with Bert on Patreon: Note, there is some mild background music on chapter 1 (Least Action), 3 (Friston) and 5 (Variational Methods) - please skip ahead if annoying. It's a tiny fraction of the overall podcast. YT version: Bert de Vries is Professor in the Signal Processing Systems group at Eindhoven University. His research focuses on the development of intelligent autonomous agents that learn from in-situ interactions with their environment. His research draws inspiration from diverse fields including computational neuroscience, Bayesian machine learning, Active Inference and signal processing. Bert believes that development of signal processing systems will in the future be largely automated by autonomously operating agents that learn purposeful from situated environmental interactions. Bert received nis M.Sc. (1986) and Ph.D. (1991) degrees in Electrical Engineering from Eindhoven University of Technology (TU/e) and the University of Florida, respectively. From 1992 to 1999, he worked as a research scientist at Sarnoff Research Center in Princeton (NJ, USA). Since 1999, he has been employed in the hearing aids industry, both in engineering and managerial positions. De Vries was appointed part-time professor in the Signal Processing Systems Group at TU/e in 2012. Contact: Panel: Dr. Tim Scarfe / Dr. Keith Duggar TOC: [00:00:00] Principle of Least Action [00:05:10] Patreon Teaser [00:05:46] On Friston [00:07:34] Capm Peterson (VERSES) [00:08:20] Variational Methods [00:16:13] Dan Mapes (VERSES) [00:17:12] Engineering with Active Inference [00:20:23] Jason Fox (VERSES) [00:20:51] Riddhi Jain Pitliya [00:21:49] Hearing Aids as Adaptive Agents [00:33:38] Steven Swanson (VERSES) [00:35:46] Main Interview Kick Off, Engineering and Active Inference [00:43:35] Actor / Streaming / Message Passing [00:56:21] Do Agents Lose Flexibility with Maturity? [01:00:50] Language Compression [01:04:37] Marginalisation to Abstraction [01:12:45] Online Structural Learning [01:18:40] Efficiency in Active Inference [01:26:25] SEs become Neuroscientists [01:35:11] Building an Automated Engineer [01:38:58] Robustness and Design vs Grow [01:42:38] RXInfer [01:51:12] Resistance to Active Inference? [01:57:39] Diffusion of Responsibility in a System [02:10:33] Chauvinism in "Understanding" [02:20:08] On Becoming a Bayesian Refs: RXInfer Prof. Ariel Caticha Pattern recognition and machine learning (Bishop) Data Analysis: A Bayesian Tutorial (Sivia) Probability Theory: The Logic of Science (E. T. Jaynes) #activeinference #artificialintelligence
Please support us Lance Da Costa aims to advance our understanding of intelligent systems by modelling cognitive systems and improving artificial systems. He's a PhD candidate with Greg Pavliotis and Karl Friston jointly at Imperial College London and UCL, and a student in the Mathematics of Random Systems CDT run by Imperial College London and the University of Oxford. He completed an MRes in Brain Sciences at UCL with Karl Friston and Biswa Sengupta, an MASt in Pure Mathematics at the University of Cambridge with Oscar Randal-Williams, and a BSc in Mathematics at EPFL and the University of Toronto. Summary: Lance did pure math originally but became interested in the brain and AI. He started working with Karl Friston on the free energy principle, which claims all intelligent agents minimize free energy for perception, action, and decision-making. Lance has worked to provide mathematical foundations and proofs for why the free energy principle is true, starting from basic assumptions about agents interacting with their environment. This aims to justify the principle from first physics principles. Dr. Scarfe and Da Costa discuss different approaches to AI - the free energy/active inference approach focused on mimicking human intelligence vs approaches focused on maximizing capability like deep reinforcement learning. Lance argues active inference provides advantages for explainability and safety compared to black box AI systems. It provides a simple, sparse description of intelligence based on a generative model and free energy minimization. They discuss the need for structured learning and acquiring core knowledge to achieve more human-like intelligence. Lance highlights work from Josh Tenenbaum's lab that shows similar learning trajectories to humans in a simple Atari-like environment. Incorporating core knowledge constraints the space of possible generative models the agent can use to represent the world, making learning more sample efficient. Lance argues active inference agents with core knowledge can match human learning capabilities. They discuss how to make generative models interpretable, such as through factor graphs. The goal is to be able to understand the representations and message passing in the model that leads to decisions. In summary, Lance argues active inference provides a principled approach to AI with advantages for explainability, safety, and human-like learning. Combining it with core knowledge and structural learning aims to achieve more human-like artificial intelligence. Interviewer: Dr. Tim Scarfe TOC 00:00:00 - Start 00:09:27 - Intelligence 00:12:37 - Priors / structure learning 00:17:21 - Core knowledge 00:29:05 - Intelligence is specialised 00:33:21 - The magic of agents 00:39:30 - Intelligibility of structure learning #artificialintelligence #activeinference