DiscoverStrange Animals Podcast
Strange Animals Podcast
Claim Ownership

Strange Animals Podcast

Author: Katherine Shaw

Subscribed: 1,055Played: 28,286
Share

Description

A podcast about living, extinct, and imaginary animals!
471 Episodes
Reverse
Thanks to Emily, Jo, and Alexandra for their suggestions this week! Further reading: Highland Cattle Society Mongolian Sheep The Donkey Sanctuary The Highland cow is so cute (picture taken from the first site linked above): Some fat-tailed sheep (picture taken from the sheep article linked above): Donkeys: A happy donkey and a happy person (photo taken from the Donkey Sanctuary’s site, linked above): Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. After last week’s giant fish episode, this week we’re going to have a shorter episode of animals you’ve probably seen, especially if you live in the countryside. But first, I forgot to credit two people from last week’s episode, Dylan and Emily, who both wanted to hear about mudskippers along with Arthur! I had so many names I missed some. This week we’ll talk about some domestic mammals, suggested by Alexandra, Jo, and Emily. Let’s start with Emily’s suggestion, the Highland cow. Cows are classified in the family Bovidae, which includes not just the domestic cow and its relations but goats, sheep, antelopes, and many other animals with cloven hooves who chew the cud as part of the digestive process–but not deer or giraffes, and not the pronghorn even though people call it an antelope. It is confusing. Many bovids have horns, usually only two but sometimes four or even six, and those horns are never branched. Sometimes only the male has horns, sometimes both the male and female. Bovids don’t have incisors in the front of the upper jaw, only in the lower jaw. Instead, a bovid has a tough dental pad that helps it grab plants. The Highland cow is a breed of domestic cow that originated in Scotland, although it’s now popular in many other places too. It’s a tough animal with a long outer coat of fur and a short, fuzzy undercoat that helps it survive harsh winters. Most are reddish-brown, but some are black, silvery-white, dun, or other shades. It has long, wide horns and its long fur usually falls over its face, which protects its eyes and also looks incredibly cute. Not only can the Highland cow thrive on pasture that’s considered poor, meaning the plants aren’t as nutritious, it’s also disease resistant, even-tempered, and intelligent. It’s a compact, relatively small cow, but it’s not a miniature cow. Like, you can’t pick it up like a dog, although you could probably hug one if the farmer says it’s okay. A bull can stand about 5 feet tall at the shoulder, or 1.5 meters, while cows are smaller overall. The Highland cow is raised for its meat, which is naturally lean and delicious. But because they also happen to be small for cows, and so even-tempered, and so cute, many small farms and petting zoos keep a few just as pets. Since the Highland cow likes eating plants that other cow breeds won’t touch, it’s also helpful for clearing overgrown land. Next, Alexandra wanted to learn more about the fat-tailed sheep, another bovid. The sheep is one of the oldest domesticated animals in the world, with some experts estimating that it was first domesticated at least 11,000 years ago and possibly over 13,000 years ago, around Asia and the Middle East. Sheep are especially useful to humans because not only can you eat them, they produce wool. Wool has incredible insulating properties, as you’ll know if you’ve ever worn a wool sweater in the snow. Even if it gets wet, you stay nice and warm. Even better, you don’t have to kill the sheep to get the wool. The sheep just gets a haircut every year to cut its wool short. Wild sheep don’t grow a lot of wool, though. They mostly have hair like goats. Humans didn’t start selecting for domestic sheep that produced wool until around 8,000 years ago. The fat-tailed sheep isn’t a single breed but a type of sheep, most common in central Asia, northern Africa, and the Middle East. It’s adapted for life in arid conditions, where there isn’t a lot of water. The fat deposits on both sides of the tail act like a camel’s hump, allowing the animal to absorb the stored fat if it can’t find enough food and water. The fat-tailed sheep can have a really huge tail, so big it can make up almost a third of its body weight. Because the fat mostly collects on either side of the tail bones, the tail’s shape has two lobes, which makes the sheep look like it has an extra butt on its butt. In some breeds, the tail gets wider as the fat deposits grow, while in other breeds, the tail just gets longer, sometimes so long it actually brushes the ground. The tail fat helps the sheep, but it’s also considered a delicacy to people. Wherever the fat-tailed sheep is raised, there are special recipes to cook the tail. Many breeds of fat-tailed sheep also produce long, coarse wool that’s used to make carpets and felt. We’ll finish with Jo’s suggestion, the domestic donkey. Donkeys are equids, and instead of cloven hooves like bovids, they have solid hooves. They’re closely related to horses and zebras, and more distantly related to rhinoceroses and tapirs. The domestic donkey is descended from the African wild ass. Researchers estimate it was domesticated around five to seven thousand years ago by the ancient nomadic peoples of Nubia in Africa, and quickly spread throughout the Middle East and into southern Asia and Europe. The domestic donkey is a strong, sturdy animal that’s usually fairly small. One of the biggest breeds is the American Mammoth Jackstock, and another is the French Baudet du Poitou, which has long fur. Both breeds can be as big as a horse. Big donkey breeds like these were mostly developed to cross with horses, to produce even larger, stronger mules. Mules are hybrid animals and are infertile, but they’re very strong. The donkey is usually gray or brown and has long ears. Most have a darker stripe down the spine, called an eel stripe, and another stripe across the shoulders. Many have a lighter-colored nose, belly, and legs. The donkey’s mane is short and stands upright. The donkey’s small size and big strength has made it a popular working animal throughout the world. It can carry loads, can be ridden, and can pull carts and plows. It’s famously tough and can be stubborn if it doesn’t feel like it’s being treated well, and it can even be dangerous when it kicks and bites. Sometimes farmers keep donkeys with their sheep or other animals, because the donkey will look out for danger and warn the herd by braying if it sees a predator. If the predator gets too close, the donkey will attack it instead of running away. In many places in the world, the donkey is an important work animal even today. Not everyone is lucky enough to afford a tractor or truck, so donkeys do the same work for people that they’ve done for thousands of years. The problem is that when a donkey gets old or is injured, and can’t work anymore, sometimes they’re killed for meat or just abandoned. Luckily there are donkey rescues who do their best to help as many donkeys as they can, especially the Donkey Sanctuary. The Donkey Sanctuary started in England in 1969, but it now has sanctuaries throughout Europe, and it runs programs that offer free veterinary care and education about donkeys for people in many parts of the world. One important thing the Donkey Sanctuary does, and other donkey rescues do too, is give a home to elderly donkeys who can’t work anymore. It’s only fair that a hard-working donkey gets to retire and have a peaceful old age. You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, corrections, or suggestions, email us at strangeanimalspodcast@gmail.com. Thanks for listening!
It’s an episode just absolutely full of fish! Thanks to Arthur, Yuzu, Jayson, Kabir, Nora, Siya, Joel, Elizabeth, Mac, Ryder, Alyx, Dean, and Riley for their suggestions this week! Further reading: Study uncovers mechanics of machete-like ‘tail-whipping’ in thresher sharks Business end of a sawfish: Giant freshwater stingray! The frilled shark looks like an eel: The frilled shark’s teeth: The thresher shark and its whip-like tail [photo by Thomas Alexander – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=50280277]: The Halmahera epaulette shark, looking a little bit like a long skinny koi fish [photo by Mark Erdmann, California Academy of Sciences, Attribution, https://commons.wikimedia.org/w/index.php?curid=30260864]: A mudskipper, which is a fish even though it kind of looks like a weird frog [photo by Heinonlein – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44502355]: The red-lipped batfish wants a big kiss: The male blue groper is very blue [photo by Andrew Harvey, some rights reserved (CC BY) – https://www.inaturalist.org/photos/62196538, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=157789928]: The giant oarfish is very long: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we have a big fish episode! I mean, it’s a big episode about a lot of different fish, not necessarily fish that are big—although some of them sure are! Thanks to Arthur, Yuzu, Jayson, Kabir, Nora, Siya, Joel, Elizabeth, Mac, Ryder, Alyx, Dean, and Riley. I told you this is a big fish episode. Let’s jump right in with a fish suggested by Jayson, the sawfish. There are five species of sawfish alive today. The smallest can still grow over 10 feet long, or 3 meters, while the biggest species can grow over 20 feet long, or 6 meters. The largest sawfish ever reliably measured was 24 feet long, or 7.3 meters. The sawfish lives mostly in warm, shallow ocean waters, usually where the bottom is muddy or sandy. It can also tolerate brackish and even freshwater, and will sometimes swim into rivers and live there just fine. The sawfish is a type of ray, and rays are most closely related to sharks. Like sharks, rays have an internal skeleton made of cartilage instead of bone, but they also have bony teeth. You can definitely see the similarity between sharks and sawfish in the body shape, although the sawfish is flattened underneath, which allows it to lie on the ocean floor. There’s also another detail that helps you tell a sawfish from most sharks: the rostrum, or snout. It’s surprisingly long and studded with teeth on both sides, which makes it look like a saw. The teeth on the sawfish’s saw are actual teeth. They’re called rostral teeth and the rostrum itself is part of the skull, not a beak or a mouth. It’s covered in skin just like the rest of the body. The sawfish’s mouth is located underneath the body quite a bit back from the rostrum’s base, and the mouth contains a lot of ordinary teeth that aren’t very sharp. Since the sawfish has plenty of teeth in its mouth, you may be wondering how and why it also has extra teeth on both sides of its saw. It’s because the rostral teeth evolved from dermal denticles. Dermal denticles look like scales but they’re literally teeth, they’re just not used for eating. Sharks have them too, along with some other fish. In the case of the sawfish, the rostral teeth grow much larger than an ordinary dermal denticle, and stick out sideways. Both the rostrum and the head are packed with electroreceptors that allow the sawfish to sense tiny electrical charges that animals emit as they move. This might mean a school of fish swimming through muddy water, or it might mean a crustacean hiding in the sand. The sawfish sometimes uses its rostrum to dig prey out of the sand, but it also uses it to slash at fish or other animals. Then the sawfish can either grab the injured or dead animal with its mouth or pin it to the sea floor with its rostrum to maneuver it into its mouth. Its mouth is relatively small and it prefers to swallow its food whole, head-first, so it can only eat fish that are smaller than its mouth. That’s also why it doesn’t want to eat people. Its mouth is too small. Yuzu wanted to learn about another shark relation, the giant freshwater stingray, which lives in rivers in southeast Asia. It’s dark gray-brown on its back and white underneath, and it has a little pointy nose at the front of its disc. It also has dermal denticles on its back. The giant freshwater stingray has a rounded, flattened body, and it’s really big. A big female can grow over 7 feet across, or 2.2 meters. Its tail is long and thin with the largest spine of any stingray known, up to 15 inches long, or 38 cm. Its tail is so long that if you measure the giant freshwater stingray by length including its tail, instead of by width of its disc, it can be as much as 16 feet long, or about 5 meters. Some researchers think there might be individuals out there much larger than any ever measured, possibly up to 16 feet wide. The length and thinness of the tail gives the ray its other common name, the giant freshwater whipray, because its tail looks like a whip. While we’re talking about shark relations, let’s go ahead and talk about a few actual sharks. Kabir wanted to learn about the frilled shark, which looks and acts more like an eel than a shark. A big female can grow up to 6 and a half feet long, or 2 meters. Males are a little shorter on average. The frilled shark has the same anatomy found in ancient sharks from the fossil record, dating back at least 95 million years. It’s found a body type that works for it. The frilled shark lives on the continental shelf in many parts of the world, and while it technically lives near the sea floor, at night it migrates closer to the ocean surface to find fish, squid and other cephalopods, and other food. There are two species known, with the southern African frilled shark only discovered in 2009. The frilled shark is dark brown or gray, and its jaws are long and contain clusters of teeth in little rows. Each tooth has three sharp points, and there are 300 teeth, so a frilled shark has 900 points in its mouth. The points are so sharp that scientists examining dead sharks have gotten cut on the teeth, which would be really embarrassing if you’re a shark expert that was bitten by a dead shark. The frilled shark can open its jaws extremely wide to swallow fish and other animals that are up to about half the size of the shark itself. It even eats other sharks. Next, Joel wanted to learn about the thresher shark. It’s a truly big fish that can grow up to 20 feet long, or over 6 meters. It’s a fast, slender shark with a tail fin that can be as long as its body. It eats a lot of other animals, including birds and crustaceans, but it specializes in hunting fish that travel in schools, like tuna, sardines, and mackerel. It uses its incredibly long tail as a whip, slapping a fish to stun it so the shark can eat it. When it whips its tail, its body flexes so that its head points downward in the water with the tail snapping forward over it. A 2024 study determined that the thresher shark’s vertebral column is fortified to allow it to work like a catapult. The thresher shark can also use its long tail to help it leap out of the water completely, although scientists don’t know why it wants to do that. There are three species of thresher shark known to science, but in 1995 a genetic analysis revealed the possible presence of a fourth species. Scientists think it lives in the eastern Pacific and may look similar to the bigeye thresher, enough that it gets misidentified as that species when it’s seen. The three known species of thresher shark are hard to tell apart at a distance as it is. And for our last shark, Siya asked about the Halmahera epaulette shark. It’s light brown with darker and lighter spots, and is a slender shark that can grow a little over 2 feet long, or 68 cm. It lives around Indonesia, and it might live in other places too. We don’t know yet, because it was only discovered in 2013 and only two specimens have ever been found. Epaulette sharks are also called walking sharks, because they use their fins to walk along the sea floor and explore crevices in rocks. Some species can even walk short distances on land to enter tidal pools and other places where they can find food. They live in warm, shallow water, usually near reefs or islands, and they eat whatever small animals they can find. There are nine species known, but there are undoubtedly more than haven’t yet been discovered by science. You might think this is strange for a shark that can walk on land, but walking sharks are nocturnal and not very big, so it’s easy to miss them when they’re out and about. That brings us to Arthur’s suggestion, the mudskipper. The mudskipper also uses its fins to walk. Its pectoral fins are muscular and allow it to climb out of the water and onto land, climb into low branches, and even jump. Its pectoral fins look like little arms, complete with an elbow. The elbow is actually a joint between the actual fins and the radial bones, which in most fish are hidden within the body but which stick out of the mudskipper’s sides a short distance. This helps it move around on land more easily. Its pelvic fins are also shaped in such a way that they act as little suction cups on land. The mudskipper is so good at living on land that it’s actually considered semi-aquatic. It lives in mudflats, mangrove swamps, the mouths of rivers where they empty into the ocean, and along the coast, although it prefers water that’s less salty than the ocean but more salty than ordinary freshwater. It only lives in tropical and subtropical areas because it needs high humidity to absorb oxygen through its skin and the lining of its mouth and throat. The mudskipper is a fish, but it looks an awful lot like a frog in some ways, due
Thanks to Måns, Sam, Owen and Askel for this week’s suggestions! Further reading: Shingleback Lizard What controls the colour of the common mānuka stick insect? The mossy leaf-tailed gecko has skin flaps that hide its shadow. There’s a lizard in this photo, I swear! [photo by Charles J. Sharp – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=92125100]: A shingleback lizard, pretending it has two heads: The beautiful wood nymph is a beautiful moth but also it looks like a bird poop: The Indian stick insect (photo by Ryan K Perry, found on this page): The buff tip moth mimics a broken-off stick. This person has a whole handful of them: A cuttlefish can change colors quickly [photo by Σ64 – Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=77733806]: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’re going to talk about a few types of camouflage, a suggestion by Måns, and we’ll also talk about some camouflaged animals suggested by Sam, Owen and Aksel, Dylan, and Nina. There are lots of types of camouflage, not all of it visual in nature. Back in episode 191 we talked about some toxic moths that generate high-pitched clicks that bats hear, recognize, and avoid. Naturally, some non-toxic moths also generate the same sounds to mimic the toxic moths. Måns specifically suggested cryptic coloration, also called crypsis. It’s a type of camouflage that allows an animal to blend into their surroundings, which can involve multiple methods. Some animals have cryptic coloration mainly along the edges of the body, to defeat a skill many predators use called edge detection. A lot of amphibians and reptiles have patches surrounded by an outline, with dark patches having a darker outline and light patches having a lighter outline. This acts as disruptive camouflage, hiding the outline of an animal’s body as it moves around. Some animals take this camouflage even further, with a way to hide their own shadow. This is the case with the mossy leaf-tailed gecko, which is native to the forests of eastern Madagascar. It can grow up to 8 inches long, or 20 cm, not counting its tail, and it’s nocturnal. Its tail is flat and broad, sort of shaped like a leaf, but it doesn’t disguise itself as a leaf. The mossy leaf-tailed gecko has a complicated gray and brown pattern that looks like tree bark, and it can change its coloration a little bit to help it blend in even more. At night it’s well hidden in tree branches as it climbs around looking for insects, but in the day it needs to hide really well to avoid becoming some other animal’s snack while it’s sleeping. It does this by finding a comfortable branch and flattening its body and tail against it so that it just looks like another part of the branch. But to make it even more hidden, it has a flap of skin along its sides that wraps even farther around the branch. Not only do these skin flaps hide its edges, it hides its shadow, since the flaps are really flat and there’s no curved edge of a lizard belly pressed against a branch that a predator might notice. The most common kind of cryptic coloration is called countershading, and it’s so common that you might not even have noticed it although you see it almost every time you see a fish, amphibian, reptile, and many birds and mammals. Countershading is an animal that’s darker on top and lighter underneath, like a brown mouse with a white belly. It’s even found in some insects and other invertebrates. Countershading is another way to hide a shadow. If a dolphin, for instance, was gray all over, its underside would look darker because of shadows, since sunlight shines down from the sky and makes shadows underneath the body. That would make its body shape look rounder, meaning it stands out more and a predator would notice it more easily. But most dolphins are pale gray or even white underneath. There’s still a shadow, but it’s no longer darker than the rest of the body. The lighter colored underside makes the shadow paler, and as a result, from a distance the dolphin looks almost the same shade all over, which makes it appear flat and the edges of its body harder to see. We even know that some dinosaurs were countershaded, with lighter colored bellies. Countershading is so common in animals that it’s almost impossible to pick one example. Dylan suggested we learn about the shingleback lizard, an amazing animal found in many parts of Australia. It’s also called the stumpy-tailed lizard, the bobtail lizard, or the two-headed lizard. All three of those names refer to the animal’s tail, which is short and fat and actually looks like a second head. This is an example of automimicry, similar to animals that have markings that look like eyes. The lizard is brown with darker and lighter speckles and it sometimes has yellow spots too. Its belly is pale with dark spots. Its scales are large and overlap each other, and its eyes are tiny, like little black beads. It grows about a foot long, or 30 cm. The shingleback lives in arid and desert areas, and its tough skin and overlapping scales help reduce water loss. It eats snails, insects, flowers, and other small animals and plants. When threatened, it will open its mouth wide and stick out its large, dark blue tongue. It is an impressively blue, impressively big tongue, and the inside of the shingleback’s mouth is bright pink, so the lizard has a chance to escape while its predator is startled and wondering if the lizard is dangerous. The shingleback can give a painful bite, although it’s not venomous. The shingleback mates for life, and the female gives birth to two or three live young every year instead of laying eggs. In many reptiles that give birth to live young, the eggs basically remain in the mother’s body until they hatch, and then she gives birth. But in the shingleback’s case, her babies develop in placentas in a process very similar in many ways to placental mammals. The babies eat the placenta after they’re born, giving them a quick first meal, and they’re born ready to take care of themselves. Sam suggested we talk about animals that can be confused with inanimate objects, which is a type of camouflage referred to as mimicry. Mimicry of all kinds is a really common type of camouflage, like all those harmless insects that have yellow and black stripes to mimic bees and wasps that can sting. My favorite inanimate object mimic is a moth we talked about in episode 191, the beautiful wood nymph of eastern North America. It has a wingspan of 1.8 inches, or 4.6 cm, and it is indeed a beautiful little moth. Its front wings are mostly white with brown along the edges and a few brown and yellow spots, while the rear wings are a soft yellow-brown with a narrow brown edge. It has furry legs that are white with black tips. But when the moth folds its wings to rest, suddenly those pretty markings make it look exactly like a bird dropping. It even stretches out its front legs so they resemble a little splatter on the edge of the poop. If you think about it, it makes sense that a tiny animal like an insect would want to resemble something common in its environment that’s also not eaten by very many other animals. For instance, a stick. Owen and Aksel wanted to learn more about the walking stick, since it’s been a long time since we talked about it, episode 93. Walking stick insects are also called stick insects or phasmids. When I was a kid I was terrified of the whole idea of a stick insect, although I don’t know why. I think I thought one day I’d climb a tree and discover that some of those sticks were not actually part of the tree. I guess I spent a lot of time climbing trees, but I never actually saw a walking stick insect. Maybe that’s because they were so well camouflaged that I thought they were sticks! Walking sticks live in trees and bushes, naturally, especially in warm areas, but they’re found on every continent except Antarctica. They’re long, thin insects with long, thin legs and they really do look like sticks. Some are green, some are brown or gray, and many have little patterns, projections, and ridges that make them look even more like real sticks. They’re closely related to another type of phasmid called a leaf insect, which as you may have already guessed, mimics a leaf. All phasmids eat leaves and other plant material and most are nocturnal. Some phasmids can even change colors to help blend in with their background. The Indian stick insect, which is indeed found in southern India although it’s been introduced in many other parts of the world and is considered invasive in some places, grows up to about 4 inches long, or 10 cm. It’s usually brown, but it can change its color in response to light levels by moving pigment granules in its cuticle that absorb and scatter light. The Indian stick insect has many other ways to hide in plain sight. If it feels threatened, it will stretch out with its rear legs folded flat against its body and its front pair of legs stretched forward to make it look even longer. It will stay perfectly stiff even if someone picks it up, but if it thinks it’s in danger, it will spread its front legs to show a patch of red at the base of the legs. This can startle or frighten a potential predator long enough to let the stick insect get away. One interesting thing about the Indian stick insect is that almost all individuals are females. Females don’t need to mate with a male to reproduce. The female’s babies are little clones of herself, and she drops an egg every so often onto the ground. It looks like a tiny seed, and ants think it’s a seed and will collect it and take it back to the nest to be stored for later. The egg is then protected until it hatches, when the larval insect leaves the ant nest and finds a tree or bush to hide in. The buff tip moth also looks like a twig or branch when its wings are folded, but not in the same way the walking stick insect does. It looks
Further reading: Study: Giant Therizinosaurs Used Their Meter-Long, Sickle-Like Claws for Display Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. I am delighted to report that Therizinosaurus lived in what is now Mongolia in Central Asia, in the Gobi Desert. 70 million years ago, the land wasn’t a desert at all but a forest with multiple rivers and streams flowing through it. Lots of other dinosaurs and birds lived in the area, including a tyrannosaurid called Tarbosaurus that was probably the only predator big enough to kill Therizinosaurus. When the first Therizinosaurus fossils were discovered in the 1950s, they were initially thought to belong to a type of giant turtle. Later it was reclassified as a sauropod relation, not a turtle. These days, we know for sure it’s not a turtle and we’re pretty sure it’s not anything like a sauropod. The Therizinosaurus fossils found so far are incomplete. All we have are some ribs, one hind foot, and mostly complete arms and hands. We don’t have any parts of the skull or any vertebrae, so paleontologists still have a lot of questions about what Therizinosaurus looked like and how it lived, although we have more complete specimens of some of its close relations to help scientists make good guesses. Luckily we have its hands, because its claws are enormous. Therizinosaurus had claws bigger than any other dinosaur known. Therizinosaurus was a big dinosaur overall, with an estimated length of 33 feet, or 10 meters, although until a more complete specimen is discovered we can’t know for sure how big it really was. It may have stood up to 16 feet tall, or 5 meters, and walked on its hind legs. It’s classified as a theropod these days, a group that includes famous dinosaurs like T. rex and Spinosaurus, but it wasn’t closely related to those big fast meat-eaters. Most paleontologists think Therizinosaurus ate plants, but again, we don’t know for sure since we don’t have any of its teeth to examine. Its closest relatives were herbivorous but its immediate ancestors were carnivorous. If Therizinosaurus was a plant-eater, why did it have such enormous claws? Its claws were seriously terrifying! Its arms were big and strong in general, measuring about 8 feet long, or 2.5 meters, including long, slender fingers, and the claws measured over three feet long! That’s more than a meter long. If the claws were covered with a keratin sheath, which is probable, they would have been even longer when Therizinosaurus was alive. They were relatively thin and straight with a curve at the end. There are many reasons why an animal develops big claws. Predators need claws to help grab prey or tear meat into pieces, or an animal may need big claws to help it dig or climb trees. Claws are also great for defense. Some animals use claws to grab tree branches and bend them closer to the animal’s mouth, which is something that giant ground sloths probably did, at least sometimes. The new study published in February 2023 examined the claws of Therizinosaurus and lots of other dinosaurs to learn how strong they were. The claws were 3D scanned, and then the scans were used in various models that measured the stress placed on each claw in various different activities. The study discovered that the claws of different dinosaurs were strong in different ways depending on what they were used for, which wasn’t a surprise. What was a surprise was that Therizinosaurus’s claws were weak no matter which model the scientists used. In other words, Therizinosaurus probably didn’t use its claws to fight other dinosaurs unless it just had to, because they would break too easily. It wouldn’t have dug with its claws or even used them to hook branches down closer to its mouth. As far as we can tell, its claws were basically useless. But obviously, Therizinosaurus used its claws for something or it wouldn’t have evolved to have such gigantic claws. The study concluded that the giant claws must have been for display, to attract a mate or maybe just scare off potential predators. Lots of animals have special features used to attract a mate, like a peacock’s tail. Sometimes these features serve a double purpose, like a male deer’s antlers. The size of the antlers show how healthy he is, and he also uses them to fight other males. I’m not a claw expert, but as far as I know there aren’t any other animals known that use their claws for display only. It’s possible that Therizinosaurus did use its claws for something else, we just don’t know what. It’s also possible that the study had flaws that a follow-up study will discover, and Therizinosaurus’s claws weren’t actually so weak. But for now, as far as we know, during mating season Therizinosaurus would strut around waving its super-long claws to show how amazing it was. And, let’s face it, Therizinosaurus really was amazing. Thanks for your support, and thanks for listening!
Further reading: Mysterious ‘blue goo’ at the bottom of the sea stumps scientists Three new species of ground snakes discovered under graveyards and churches in Ecuador Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. I’ve come down a cold this week, and while I’m feeling better, it is settling into my chest as usual and I’m starting to cough. Since I’m still recovering and need to be in bed instead of sitting up researching animals, and since my voice is already sounding a little rough, here’s a Patreon episode this week instead of a regular episode. I had been planning to run old Patreon episodes for a few weeks in December so I could have some time off for the holidays, and those were already scheduled, so I just moved one of those episodes up to use this week instead. This is a Patreon episode from October of 2022, where we talked about two very slightly spooky animal discoveries. We’ll start with a suggestion from my brother Richard, about a strange newly discovered creature at the bottom of the ocean. On August 30, 2022, the NOAA Ocean Exploration research team was off the coast of Puerto Rico. That’s in the Caribbean, part of the Atlantic Ocean. The expedition was mostly collecting data about the sea floor, including acoustic information and signs of climate change and habitat destruction. Since the Caribbean is an area of the ocean with high biodiversity but also high rates of fishing and trawling, the more we can learn about the animals and plants that live on the sea floor, the more we can do to help protect them. When a remotely operated vehicle dives, it sends video to a team of scientists who can watch in real time and control where the rover goes. On this particular day, the rover descended to a little over 1,300 feet deep, or around 407 meters, when the sea floor came in view. Since this area is the site of an underwater ridge, the sea floor varies by a lot, and the rover swam along filming things and taking samples of the water and so forth, sometimes as deep as about 2,000 feet, or 611 meters. The rover saw lots of interesting animals, including fish and corals of various types, even a fossilized coral reef. Then it filmed something the scientists had never seen before. It was a little blue blob sitting on the sea floor. It wasn’t moving and it wasn’t very big. It was shaped roughly like a ball but with little points or pimples all over it and a wider base like a skirt where it met the ground. And it was definitely pale blue in color. Then the rover saw more of the little blue blobs, quite a few of them in various places. The scientists think it may be a species of soft coral or possibly a type of sponge, possibly even a tunicate, which is also called a sea squirt. All these animals are invertebrates that don’t move, which matches what little we know about the blue blob. The rover wasn’t able to take a sample from one of the blue blobs, so for now we don’t have anything to study except the video. But we know where the little blue blobs are, so researchers hope to visit them again soon and learn more about them. Next, let’s return to dry land and learn about some newly discovered snakes. In fact, we’re not just on dry land, we’re way up high in the Andes Mountains in South America, specifically in some remote villages in Ecuador. A teacher named Diego Piñán moved to the town of El Chaco in 2013, and he started noticing dead snakes on the road that he didn’t recognize. He also realized that people were killing the snakes on purpose. A lot of people are afraid of snakes, so Piñán made sure to teach his students about them so they would learn that most snakes aren’t dangerous. He also kept the dead snakes he found and preserved them in alcohol so he could figure out later what species they were. But he never could figure it out. Then a scientist named Alejandro Arteaga assembled a team to study the animals found in remote areas of the Andes Mountains. When they came to Piñán’s town, they were excited to see the snakes he’d preserved, because even the snake experts on the team didn’t recognize the snakes either, although they were pretty certain they belonged to a genus of snakes called Atractus. The snakes were quite pretty, gray-brown above with a bright yellow pattern underneath. They were small and slender, completely harmless to humans and pets, and they lived underground most of the time. The team searched and discovered more of the snakes living in the area. Most Atractus snakes are shy and stay away from people, but because the town of El Chaco had grown a lot recently, the snakes had moved from their home in the forest into the local cemetery. That’s right, they were burrowing around among the crypts. Of course, the snakes don’t know they’re in a graveyard. They just know they’re in a quiet place where people don’t visit very often to disturb them. The team eventually found three new species of snake in different towns, all three described in September 2022. One species was living in the cemetery, another was in a schoolyard, and another was living near a church. Still. Graveyard snakes. Thanks for your support, and thanks for listening!
Thanks to Alexandra, Jayson, and Eilee for their suggestions this week! Further reading: Scientists have discovered an ancient whale species. It may have looked like a mash-up of ‘a seal and a Pokémon’ The nomenclatural status of the Alula whale Field Guide of Whales and Dolphins [1971] The little Benguela dolphin [photo taken from this site]: The spinner dolphin almost looks like it has racing stripes [photo by Alexander Vasenin – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25108509]: The Alula whale, which may or may not exist: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week let’s learn about some whales and dolphins, including an ancient whale and a mystery whale, all of them really small. Thanks to Alexandra, Eilee, and Jayson for their suggestions! Let’s start with an ancient whale, suggested by Jayson. The genus Janjucetus has been known since its first species was described in 2006, after a teenage surfer in Australia discovered the fossils in the late 1990s. It grew to about 11 feet long, or 3.5 meters, and lived about 25 million years ago. So far it’s only been found around Australia. But much more recently, just a few months ago as this episode goes live, a new species was described. That’s Janjucetus dullardi, also found in Australia along the same beach where the first Janjucetus species was found, and dating to around the same time period. We don’t know a lot about the newly described whale, since it’s only known from some teeth and partial skull. Scientists think the individual was a juvenile and estimate it was only around 6 feet long when it died, or 2.8 meters. Small as it was, it would have been a formidable hunter when it was alive. Its broad snout was shaped sort of like a shark’s and it had strong, sharp teeth and large eyes. Because it was an early whale, it wouldn’t have looked much like the whales alive today. It might even have had tiny vestigial back legs. Its eyes were huge in proportion to its head, about the size of tennis balls, and it probably relied on its eyesight to hunt prey because it couldn’t echolocate. Its serrated teeth and strong jaws indicate that it might have hunted large animals, but some scientists suggest it could also filter feed the same way a crabeater seal does. Modern crabeater seals have similar teeth as Janjucetus, as do a few other seals. The projections on its teeth interlock when the seal closes its mouth, so to filter feed the seal takes a big mouthful of water, closes its teeth, and uses its tongue to force water out through its teeth. Amphipods and other tiny animals get caught against the teeth and the seal swallows them. If Janjucetus did filter feed, it probably also hunted larger animals. Otherwise its jaws wouldn’t have been so strong or its teeth so deeply rooted. But Janjucetus wasn’t related to modern toothed whales. While it wasn’t a direct ancestor of modern baleen whales, it was part of the baleen whale’s family tree. Baleen whales, also called mysticetes, have baleen plates made of keratin instead of teeth. After the whale fills its mouth with water, it closes its jaws, pushes its enormous tongue up, and forces all that water out through the baleen. Any tiny animals like krill, copepods, small squid, small fish, and so on, get trapped in the baleen. It’s just like the crabeater seal, but really specialized and way bigger. Whether or not Janjucetus could and did filter feed doesn’t really matter, because the fact that it’s an ancestral relation of modern baleen whales but it had teeth helps us understand more about modern whales. Next, Eilee wanted to learn about the Benguela [BEN-gull-uh] dolphin, also called Heaviside’s dolphin. It lives only off the southwestern coast of Africa, and it’s really small, only a little over 5 and a half feet long at the most, or 1.7 meters. It’s dark gray with white markings, with a blunt head that’s almost cone-shaped and a triangular dorsal fin. The Benguela dolphin is named for its ecosystem. The Benguela current flows northward along the coast, bringing cold, nutrient-rich water up from the depths, which attracts lots of animals. The dolphin lives in relatively shallow water and mainly eats fish and octopuses that it finds on or near the sea floor. The Benguela dolphin lives in social groups and sometimes hangs out with other species of dolphin. It doesn’t travel very far throughout the year, barely more than 50 miles, or 80 km. When it hunts for food, it uses very high-pitched navigation clicks that orcas can’t hear, but when it’s in safe areas, socializing without any predators around, it communicates and navigates with lower-pitched sounds. Sharks also sometimes attack it and sometimes humans will catch and eat one, but for the most part, it lives a pretty stress-free life just hanging out with its friends and eating little fish. And that’s basically all we know about this little dolphin. Alexandra wanted to hear about the spinner dolphin, which is common in warmer waters throughout the world. It’s called the spinner dolphin because it likes to leap into the air, spinning around as it does like an American football, which is pretty spectacular. No one except the spinner dolphin is completely sure why it spins, but scientists speculate it serves more than one purpose. The activity takes a lot of energy, so it might be a way to signal to other dolphins that it’s really strong and fit. The big splash when it lands on its side may be a way to communicate with other dolphins. The action might also help dislodge parasites like remora fish that really do attach themselves to bigger, faster animals to hitch rides and incidentally steal food. Whatever the reason, the spinner dolphin is one of the most acrobatic dolphins in the world. It not only spins, but it jumps around, flips, slaps its tail on the water, and basically acts like a kid on the first swimming pool visit of the summer. Like most dolphins and whales, it’s a social animal, hanging out with friends, family, and sometimes other dolphin species. It eats small animals like fish, squid, and crustaceans, and at least some populations are nocturnal so they can hunt animals that migrate to shallower water at night. The spinner dolphin is actually pretty small, growing to not quite 7 feet long at most, or 2.4 meters. It’s mainly dark gray on top, lighter gray on the sides, and pale gray or white on its belly. Let’s finish with our mystery whale or dolphin, called the Alula whale because it was sighted near the town of Alula, Somalia at some time prior to the early 1970s. In 1971 a Dutch sea captain reported that he had seen these whales on multiple occasions, in the Gulf of Aden and the Indian Ocean. But although it’s a distinctive-sounding whale or dolphin, its existence hasn’t been verified. Captain Willem Mörzer Bruyns, whose name I have mispronounced, described the Alula whale as being similar in size and shape to the orca or pilot whale, with a tall dorsal fin and rounded forehead. It was sepia brown all over, though, except for white scars all over its body that were shaped sort of like stars. He reported seeing small groups of these whales, anywhere from 4 to 8 of them, traveling together on at least four occasions. He estimated the whales were up to 24 feet long, or 7.2 meters. There’s quite a bit of confusion about this mystery whale spread across the internet. Some sites I looked at mentioned a book written by Mörzer Bruyns called Field Guide of Whales and Dolphins, published in 1971, but quoted a different book, A World Guide to Whales, Dolphins, and Porpoises published in 1981 by Donald S. Heintzelman. Let me quote the relevant paragraphs from the 1971 book, the original: “At first encounter a school of 4 approached the ship head on and seeing the dorsal fins the author thought they were [orcas]. When they passed the ship at a distance of less than 50 yards just under the surface in the flat calm, clear sea, it was obvious that this was a different species. … These dolphins were seen in the area during crossings in April, May, June and September, usually swimming just under the surface with the dorsal fin above the water. One duty officer reported he observed them chasing a school of smaller dolphins, who tried to escape. There is, however, a possibility that both species were chasing the same prey.” If you go to Wikipedia to read about the Alula whale, as of mid-November 2025, it states that the dorsal fin was about 6 and a half feet tall, or 2 meters. But Mörzer Bruyns reported that the dorsal fin was 2 feet tall, or about 60 cm. That’s an important difference. Orcas, AKA killer whales even though they’re actually big dolphins, are distinctively patterned with black and white, and a male orca can have a dorsal fin up to 6 feet tall, or 1.8 meters, while a female’s is typically less than half that height. The pilot whale is also a dolphin, despite its name, but it has a relatively small dorsal fin and is black, dark gray, or sometimes brown. Some researchers suggest that Mörzer Bruyns misidentified pilot whales as something mysterious, but the details he provided don’t really match up. There are a lot of little-known whales alive today, some only discovered in the last few decades. It’s possible that the Alula whale really is a very rare small whale or dolphin. It’s not clear from his report, but it sounds like Mörzer Bruyns saw the whales on several occasions in the same year. If so, maybe the Alula whale doesn’t actually live in that part of the ocean most of the time, and Mörzer Bruyns saw the same small group several times that just happened to have traveled to the Indian Ocean that year. Maybe no one else has seen them because they’re all living in some remote part of the ocean where humans seldom travel. Hopefully someone will spot one soon. You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have ques
Thanks to Viki, Erin, Weller, and Stella for their suggestions this week! Further reading: Tasmanian tiger pups found to be extraordinary similar to wolf pups The thylacine could open its jaws really wide: A sugar glider, gliding [photo from this page]: A happy quokka and a happy person: A swimming platypus: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’re going to learn about some marsupial mammals suggested by Erin, Weller, and Stella, and a bonus non-marsupial from Australia suggested by Viki. Marsupials are mammals that give birth to babies that aren’t fully formed yet, and the babies then finish developing in the mother’s pouch. Not all female marsupials actually have a pouch, although most do. Marsupials are extremely common in Australia, but they’re also found in other places around the world. Let’s start with Weller’s suggestion, the Tasmanian tiger. We’ve talked about it before, but not recently. We talked about it in our very first episode, in fact! Despite its name, it isn’t related to the tiger at all. Tigers are placental mammals, and the Tasmanian tiger is a marsupial. It’s also called the thylacine to make things less confusing. The thylacine was declared extinct after the last known individual died in captivity in 1936, but sightings have continued ever since. It’s not likely that a population is still around these days, but the thylacine is such a great animal that people hold out hope that it has survived and will one day be rediscovered. It got the name Tasmanian tiger because when European colonizers arrived in Tasmania, they saw a striped animal the size of a big dog, about two feet high at the shoulder, or 61 cm, and over six feet long if you included the long tail, or 1.8 meters. It was yellowish-brown with black stripes on the back half of its body and down its tail, with a doglike head and rounded ears. The thylacine was a nocturnal marsupial native to mainland Australia and the Australian island of Tasmania, but around 4,000 years ago, climate change caused more and longer droughts in eastern Australia and the thylacine population there went extinct. By 3,000 years ago, all the mainland thylacines had gone extinct, leaving just the Tasmanian population. The Tasmanian thylacines underwent a population crash around the same time that the mainland Australia populations went extinct—but the Tasmanian population had recovered and was actually increasing when Europeans showed up and started shooting them. The thylacine mostly ate small animals like ducks, water rats, and bandicoots. Its skull was very similar in shape to the wolf, which it wasn’t related to at all, but its muzzle was longer and its jaws were comparatively much weaker. Its jaws could open incredibly wide, which usually indicates an animal that attacks prey much larger than it is, but studies of the thylacine’s jaws and teeth show that they weren’t strong enough for the stresses of attacking large animals. Next, Stella wanted to learn about the sugar glider, and I was surprised that we haven’t talked about it before. It’s a nocturnal marsupial native to the forests of New Guinea and parts of Australia, with various subspecies kept as exotic pets in some parts of the world. It’s called a glider because of the animal’s ability to glide. It has a flap of skin between its front and back legs, called a patagium, and when it stretches its legs out, the patagia tighten and act as a parachute. This is similar to other gliding animals, like the flying squirrel. The sugar glider resembles a rodent, but it isn’t. It’s actually a type of possum. It lives in trees and has a partially prehensile tail that helps it climb around more easily, and of course it can glide from tree to tree. It’s an omnivore that eats insects, spiders, and other small animals, along with plant material, mainly sap. It will gnaw little holes in a tree to get at the sap or gum that oozes out. It will also eat fruit, nectar, pollen, and seeds, but most of the time it prefers to hang around flowers and wait for insects to approach. Then it grabs and eats the insect without having to chase it. The sugar glider is gray with black and white markings, big eyes that allow it to see well in darkness, rounded ears, and a really long, thick, furry tail. It’s a social animal that lives in family groups in small territories. Both males and females help take care of the joeys when they’re out of the mother’s pouch, mainly by helping them stay warm when it’s cold. Our last marsupial of this episode is Erin’s suggestion, the quokka. It’s about the size of a domestic cat, related to wallabies and kangaroos. It’s shaped roughly like a chonky little wallaby but with a smaller tail and with rounded ears, and it’s grey-brown in color. The quokka is considered incredibly cute because of the way its muzzle and mouth are shaped, which makes it look like it’s smiling. If you take a picture of a quokka’s face, it looks like it has a happy smile and that, of course, makes the people who look at it happy too. This has caused some problems, unfortunately. People who want to take selfies with a quokka sometimes forget that they’re wild animals. While quokkas aren’t very aggressive and are curious animals who aren’t usually afraid of people, they can and will bite when frightened. Touching a quokka or giving it food or drink is strictly prohibited, since it’s a protected animal. The quokka is most active at night. It sleeps during most of the day, usually hidden in a type of prickly plant that helps keep predators from bothering it. It gets most of its water needs from the plants it eats, and while it mostly hops around like a teensy kangaroo, it can also climb trees. Let’s finish with our non-marsupial animal. Viki wanted to learn about the platypus, which we haven’t really talked about since way back in episode 45. It’s native to Australia and is very weird-looking, so it’s easy to think it’s another marsupial, but the platypus is even weirder than that. It’s not a marsupial and it’s not a placental mammal. Instead, it’s an extremely rare third type of mammal called a monotreme. There are only two kinds of monotremes alive today, the echidna and the platypus. Monotremes retain a lot of traits that are considered primitive in mammals. Instead of giving birth to live babies, a monotreme mother lays eggs. The eggs have soft, leathery shells, but when they hatch, the babies look like marsupial newborns. The platypus is sometimes called the duck-billed platypus, because its snout does kind of look like a duck’s bill, but instead of being hard, the snout is soft and rubbery, and it’s packed with electroreceptors that allow the platypus to sense the tiny electrical fields generated by muscle contractions in its prey. I bet that was not what you expected from what looks like a small beaver with a duck bill! The platypus grows not quite two feet long, or 50 cm, and has short, dense, brown fur. It spends a lot of its time in the water, and has a flattened tail that acts as a rudder when it swims, along with its hind feet. It propels itself through the water with its front feet, which are large and have webbed toes. It lives in eastern Australia along rivers and streams, and digs a short burrow in the riverbank to sleep in. The female digs a deeper burrow before she lays her eggs, and she makes them a nest out of leaves. Baby platypuses are called puggles, and while the mother doesn’t have a pouch, she keeps her babies warm by tucking them against her tummy with her tail. Monotremes don’t have teats, but they do produce milk from what are called milk patches. The puggles lick the milk up. Until scientists figured out that monotremes have these milk patches, in 1824, they thought monotremes weren’t mammals at all but something more closely related to reptiles. Monotremes were much more common throughout the world until about 60 to 70 million years ago, when marsupials started outcompeting them. Marsupials don’t spend much time in water, though, because if they did their joeys would drown. The platypus and echidna both survived to the present day because they’re adapted for the water. The platypus mainly navigates in the water using its electrolocation abilities, and eats worms, fish, insects, crustaceans, and anything else it can catch. It’s easy to think, “Oh, that mammal is so primitive, it must not have evolved much since the common ancestor of mammals, birds, and reptiles was alive 315 million years ago,” but of course that’s not the case. It’s just that the monotremes that survived did just fine with the basic structures they evolved a long time ago, and they’re still going strong today. You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. Thanks for listening!
Episode 457: Parrots!

Episode 457: Parrots!

2025-11-0311:06

Thanks to Fleur, Yuzu, and Richard from NC for their suggestions this week! Further reading: World’s rarest parrot, extinct in wild, hatches at zoo Kakapo recovery This Parrot Stood 3 Feet Tall and Ruled the Roost in New Zealand Forests 19 Million Years Ago The magnificent palm cockatoo: The gigantic kakapo: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we have a bird episode, specifically some interesting parrots. Thanks to Fleur, Yuzu, and Richard from NC for their suggestions! Parrots are intelligent, social birds that are mostly found in tropical and subtropical parts of the world, but not always. Most parrots eat plant material exclusively, especially seeds, nuts, and fruit, but some species will eat insects and other small animals when they get the chance. Most parrots are brightly colored, but again, not always. And, unfortunately, most parrot species are endangered to some degree due to habitat loss, hunting for their feathers and for the pet trade, and introduced predators like cats and rats. All parrots have a curved beak that the bird uses to open nuts and seeds, but which also acts as a tool or even a third foot when it’s climbing around in trees. All parrots have strong clawed feet that they also use to climb around and perch in trees, and to handle food and tools. Let’s start with Yuzu’s suggestions, the cockatoo and the parakeet. A parakeet is a small parrot, but it’s a term that refers to a lot of various types of small parrots. This includes an extinct bird called the Carolina parakeet. It was small parrot that was common throughout a big part of the United States. It had a yellow and orange head and a green body with some yellow markings, and was about the size of a mourning dove or a passenger pigeon. Its story of extinction mirrors that of the passenger pigeon in many ways. The Carolina parakeet lived in forests and swamps in big, noisy flocks and ate fruit and seeds, but when European settlers moved in, turning forests into farmland and shooting birds that were considered pests, its numbers started to decline. In addition, the bird was frequently captured for sale in the pet trade and hunted for its feathers, which were used to decorate hats. By 1860 the Carolina parakeet was rare anywhere except the swamps of central Florida, and by 1904 it was extinct in the wild. The last captive bird died in the Cincinnati Zoo in 1918, which was not only the same zoo where the last passenger pigeon died in 1914, it was the same cage. It was declared extinct in 1939. The parakeet Yuzu is probably referencing is the budgie, or budgerigar. It’s the one that’s extremely common as a pet, and it’s native to Australia. In the wild it’s green and yellow with black markings, but the domestic version, which has been bred in captivity since the 1850s, can be all sorts of colors and patterns, including various shades of blue, yellow all over, white, and piebald, meaning the bird has patches of white on its body. The budgie can learn to repeat words and various sounds, especially if it’s a young bird. I had two parakeets as a kid, named Dandelion and Sky so you can guess their colors, and neither learned to talk although I really tried to teach them. Some birds just aren’t interested in mimicry, while others won’t stop, especially if they get attention when they speak. In the wild, budgies live in flocks that will travel long distances to find food and water. The birds mostly eat grass seeds, especially spinifex, but will sometimes eat wheat, especially in areas where farmland has destroyed much of their wild food. They’re social birds that are sometimes called lovebirds, although that’s the name of a different type of bird too, because they will preen and feed their mates. Like many birds, the parakeet can see ultraviolet light, and their feathers glow in UV light. This makes them even more attractive to potential mates, as if the parakeet wasn’t beautiful enough to start with. Yuzu also asked about the cockatoo. There are 21 species of cockatoo, also native to Australia and other nearby places, including Indonesia and New Guinea. It’s much larger than the budgie and most species have a crest of some kind. It lives in flocks and eats various types of plant material, including flowers and roots, but it will also eat insects. The cockatoo isn’t as brightly colored as many parrots, and is usually black, white, or gray, often with patches of color on the crest, cheeks, or tail. The pink cockatoo is white with pale salmon pink markings on the body, and brighter pink and yellow on its crest. The sulphur-crested cockatoo is white with pale yellow on the undersides of the wings and tail, and a bright yellow crest. We talked about the palm cockatoo in episode 23 because not only does it look like it should be a drummer of the Muppet Animal variety, since it’s black with red cheeks and a big messy crest, it does actually use sticks and nuts to drum against tree branches, to attract a mate. Richard from NC suggested we learn about Spix’s macaw, also called the blue macaw, because it’s considered one of the world’s rarest parrots. In fact, it was declared extinct in the wild in 2019. It only survives at all because of intensive conservation efforts, including a captive breeding program spread over multiple zoos. The blue macaw is native to one small part of Brazil in South America, although it used to be much more common several hundred years ago. It’s blue with a gray-blue head. It’s such a beautiful parrot that it was driven to extinction by people trapping the birds to sell as pets, even though that had been outlawed by Brazil, although its numbers had been falling for centuries due to habitat loss. It relied on a particular species of tree called the tree of gold, because its flowers are bright yellow. The blue macaw nested in these trees, and its seedpods were one of its main foods. As groves made up of the tree of gold were chopped down to make way for farmland and towns, the bird became more and more rare. Luckily, even though the blue macaw doesn’t breed very quickly in captivity, by 2022 there were enough healthy young birds to release twenty into the wild. Just a few weeks ago as this episode goes live, another egg has hatched in captivity in a bird conservation center in Belgium, after the previous hundred eggs were infertile and never hatched. Next, Fleur wanted to learn more about the kakapo, a flightless, nocturnal parrot that lives only in New Zealand. We talked about it in episode 313, but it’s definitely time to revisit it. The kakapo is the largest living parrot. It has green feathers with speckled markings, blue-gray feet, and discs of feathers around its eyes that make its face look a little like an owl’s face. That’s why it’s sometimes called the owl parrot. Males are almost twice the size of females on average. It can grow over two feet long, or 64 cm, and can weigh as much as 9 lbs, or about 4 kg. That’s way too heavy for it to fly, but its legs are short but strong and it will jog for long distances to find food. It can also climb really well, right up into the very tops of trees. It uses its strong legs and its large curved bill to climb. Then, to get down from the treetop more efficiently, the kakapo will spread its wings and parachute down, although its wings aren’t big enough or strong enough for it to actually fly. A big heavy male sort of falls in a controlled plummet while a small female will land more gracefully. The kakapo evolved on New Zealand where it had almost no predators. A few types of eagle hunted it during the day, which is why it evolved to be mostly nocturnal. Its only real predator at night was one type of owl. As a result, the kakapo was one of the most common birds throughout New Zealand when humans arrived. But by the end of the 19th century, the kakapo was becoming increasingly rare everywhere. By 1970, scientists worried that the kakapo was already extinct. Fortunately, a few of the birds survived in remote areas. Several islands were chosen as refuges, and all the kakapos scientists could find were relocated to the islands, 65 birds in total. While the kakapo is doing a lot better now than it has in decades, it’s still critically endangered. The current population is 237 individuals according to New Zealand’s Department of Conservation. The kakapo may be the largest living parrot, but it’s not the largest parrot that ever lived. That would be the giant parrot. It’s known only from a few fossils dated to between 16 and 19 million years ago, but from those fossils scientists estimate that the giant parrot grew around 3 feet tall, or almost a meter, and possibly weighed almost twice what the kakapo weighs. It’s the largest parrot that ever lived as far as we know, and it was probably related to the kakapo. We don’t know a lot about the giant parrot because only two fossils have been found, both of them leg bones and probably from the same individual. They bones are so big that scientists initially thought they belonged to an eagle. Hopefully soon more fossils will come to light so we can learn more about the giant parrot. For all we know, those leg bones belonged to a young parrot that wasn’t fully grown yet. Maybe the adults were even bigger than we think! You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. Thanks for listening!
Thanks to William who suggested we talk about the Loch Ness Monster for our big Halloween episode! Further reading: 1888 (ca.): Alexander Macdonald’s Sightings 1933, July 22: Mr. and Mrs. George Spicer’s Loch Ness Encounter The 1972 Loch Ness Monster Flipper Photos White Mice, Bumblebees, and Alien Worms? Unexpected Mini-Monsterlings in Loch Ness Further watching: 1933 King Kong clip: Brontosaurus attack! The following stills are from the above King Kong clip: The drawing by Rupert T. Gould for his 1934 book about the Loch Ness Monster. He drew it after interviewing Mr. Spicer about his 1933 sighting: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week is our big Halloween episode to finish off monster month! I hope your October has been amazing and you have fun plans for Halloween. William suggested we learn about the Loch Ness Monster, so let’s go! We talked about the Loch Ness Monster, AKA Nessie, a really long time ago, back in episode 29. Those old episodes aren’t even available in the feed anymore—you have to go to the website to find them, and the audio isn’t very good. So here’s a revised and updated Nessie episode! There are some spooky stories associated with this one, but not too scary. Let’s call it one and a half out of five monsters on the spooky scale. First, a little background about what Loch Ness is. It’s the biggest of a chain of long, narrow, steep-sided lakes and shallow rivers that cut the Scottish Highlands right in two along a fault line. Loch Ness is 22 miles long, or 35 km, with a maximum depth of 754 feet, or 230 meters, the biggest lake in all of the UK, not just Scotland. During the Pleistocene, or ice age, Scotland was repeatedly covered with glaciers and ice sheets that were almost a kilometer thick. The ice only completely melted about 8,000 years ago. The massive weight of the glaciers over the fault line, where the rocks are already weaker, started the process of carving out the lake, and when the ice started melting in earnest around 10,000 years ago, the massive amounts of meltwater washed the weakened rocks out and left the deep valley that is now Loch Ness. The land slowly rose from where the ice had pressed it down, so that Loch Ness is now about 50 feet above sea level, or 15 meters. In other words, Loch Ness is only about 10,000 years old. All the lochs and their rivers have made up a busy shipping channel since the Caledonian Canal made them more navigable with a series of locks and canals in 1822, but the area around Loch Ness was well populated and busy for centuries before that. It’s a beautiful area, so Loch Ness has also long been a popular tourist destination, well before the Nessie sightings started. There have been stories of strange creatures in Loch Ness and all the lochs, but nothing that resembles the popular idea of Nessie. The stories were mostly of water monsters of Scottish folklore, like the kelpie we talked about in episode 351, or of out-of-place known animals like a bottle-nosed dolphin that was captured at sea and released in the loch as a prank in 1868. The oldest monster report in the area actually comes from the 7th century, but it’s supposed to have happened in the River Ness, which drains from the lake. When local people told St. Columba about a monster that had grabbed a man swimming in the River Ness, and presumably ate him, the saint went there to take care of the monster. He told one of his followers to swim across the river, which sounds pretty rough, but the saint said, “Don’t worry, fam, I gotchu,” but in old-timey language. The man started swimming and sure enough, a water beast approached. The saint made the sign of the Christian cross and said, “Stop right there, don’t touch him. Get back, monster!” The monster swam away immediately and was never seen again. The next sighting important enough for people to write down happened more than 1,400 years later, in 1933. The newspaper Inverness Courier printed a sighting by a woman named Aldie Mackay, who saw something that looked like a whale rolling around in the lake while she looked out the car window as her husband drove. Her husband saw it too. Mackay’s sighting happened in mid-April of 1933 and the report appeared in May. But the big sighting that pretty much everyone has heard about happened two months later, in late July. It’s sometimes reported as an August sighting because the initial report appeared in the Inverness Courier on August 4, 1933. A couple on holiday from London, Mr. and Mrs. George Spicer, reported seeing a large creature crossing the road around 50 meters in front of their car. In his initial report, Mr. Spicer described it as grayish with a thick body and a long neck, moving jerkily. The neck twisted and moved up and down. He didn’t see legs or a tail, but thought that a flopping movement around the downward slope of the body toward the neck might be the end of the tail, curved around the body. Mrs. Spicer disagreed and thought it was a small animal being carried at its shoulder. Mr. Spicer initially described the monster as being about 6 to 8 feet long, or 1.8 to 2.4 meters, because, he said later, he was worried about accidentally exaggerating the size. Later, after he returned to look at the road again, he realized the monster had to have been around 25 feet long, or over 7.5 meters, since it was longer than the road was wide and its front and back ends were hidden in the trees on either side. By the time the Spicer’s car reached the monster, it had already disappeared down the slope toward the lake, although neither witness actually saw it in the water. Mr. Spicer said that the monster actually looked like “a huge snail with a long neck.” The Spicers didn’t stop where they saw the monster, but shortly later they stopped and talked to a man on a bicycle, telling him what they’d seen. The man must have read about the April sighting, or heard about it, because he told the Spicers that there were other recent monster reports around Loch Ness. But something else featuring monsters happened in April of 1933. The movie King Kong was released in the first week of April, before the Spicer sighting and only a few days before the Aldie Mackay sighting. In addition to the giant gorilla King Kong, the movie featured dinosaurs, including a brontosaurus that attacks some people on a raft. Like the other monsters in King Kong, the brontosaurus was filmed using stop-motion animation, where a model is moved small increments, photographed, moved a little more, photographed again, and so on, so that when the photos are put together into a film, the model appears to move. This is how Wallace and Gromit is animated, and some old holiday specials like Rudolph the Red-Nosed Reindeer. It’s done well in King Kong, but the movements are a little jerky. To make the model look more realistic, the dinosaur was obscured by fog and trees in many scenes. It also emerges initially from the water and pursues the men onto land. Spicer admitted in an interview a few months after his sighting that he had seen King Kong and that his monster strongly resembled the dinosaur in the movie. It’s possible that he and his wife really did see something crossing the road that they couldn’t identify, and that their memories of the King Kong dinosaurs filled in the gaps of what they couldn’t actually see. Remember that Mr. Spicer described the animal as moving jerkily with its neck moving up and down and twisting, something that also happens in the movie. He didn’t see any legs, and most of the time in the movie the brontosaurus’s legs are hidden or mostly hidden. After the Spicer sighting, lots of previous monster sightings were reported. For instance, the Northern Chronicle newspaper printed a letter it received about an 1888 sighting, or sightings. A man named Alexander Macdonald traveled on the mail steamer pretty frequently, and he often saw what he said looked like a stubby-legged, really big salamander in the water. But by 1933 Macdonald was long dead, so no one could ask him if the letter-writer maybe just made it all up. One good thing has come from Nessie’s popularity. Loch Ness has been studied far more than it would have been otherwise. The water is murky with low visibility, so underwater cameras aren’t much use. However, submersibles with cameras attached have been deployed many times in the loch. In 1972 a dramatic result was reported, with a clearly diamond-shaped flipper photographed from a submersible, but it turned out that the flipper was basically painted onto two photos that otherwise show nothing but the reflection of light on silt or bubbles. Sonar scanning has been done on the entire lake repeatedly, in 1962, 1968, 1969, twice in 1970, 1981 through 1982, 1987, 2003, and 2023. They found no gigantic animals. The 1987 scan resulted in three hits of something larger than the biggest known salmon in the loch, but much smaller than a lake monster. It’s possible that the hits were only debris such as sunken boats or logs. From all the scans, though, we know there are no hidden outlets to the sea under the lake’s surface. There are lots of known animals in and around the loch, from salmon to otters, and lots and lots of birds. Seals frequently visit, coming up the shallow River Ness through its locks. Any of these animals, especially the seals, may have contributed to Nessie sightings over the years, together with boats seen in the distance and floating debris such as logs. The lake doesn’t contain enough fish to sustain a population of large mystery animals even if they had somehow eluded all those sonar scans. No bones or dead bodies have been found, and no clear photographs have ever been taken of an unknown animal. In the 1970s the idea that sightings of the Loch Ness Monster might actually be sightings of unusually large eels became popular. A 2018 environmental DNA study brought the idea back up, since the study discovered that there are a whol
Thanks to Richard of NC, Richard my brother, Siya, Ezra, and Owen and Aksel for their suggestions this week! Further reading: Creature Feature: Googly-Eyed Stubby Squid Nocturnal Spiders Use Trapped Fireflies as Glowing Bait to Attract Additional Prey A male vampire deer: The adorable googly eyed squid [still taken from video linked above]: The snowy owl [photo by Bill Bouton from San Luis Obispo, CA, USA – Snowy Owl, Bubo scandiacus, male, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=19899431]: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week for monster month, let’s learn about some animals that are considered spooky, although in actuality they’re just regular animals who don’t even know the meaning of spooky. Thanks to Ezra, Owen and Aksel, Richard from NC, my brother Richard, and Siya for their suggestions! We’ll start with the two Richards. Richard from NC suggested vampire deer, and my brother Richard suggested zombie salmon. The vampire deer is more commonly called the water deer, but considering it has tusks growing down from its upper jaw that look like fangs, vampire deer is an excellent name. Females have short tusks, but in males they grow quite long, sometimes over 3 inches long, or 8 cm. Since the animal only stands about two feet tall at the shoulder, or 65 cm, that’s pretty impressive. Its hind legs are longer than its front, so that when it runs it sort of bounces like a rabbit. It has a very short tail, small rounded ears, and is golden brown in color with a lighter underside. It doesn’t have antlers. We talked about the musk deer in episode 366, which also has fangs instead of antlers, but the vampire deer isn’t closely related to the musk deer. The vampire deer currently lives in Korea, China, and Russia although it used to be much more widespread. It mostly lives in reedy habitats near rivers, and it’s a solitary animal although females will sometimes congregate to eat. Males protect their territories by fighting with their tusks, although they don’t actually drink blood. As for the zombie salmon, it’s not a type of fish but something that can happen to an ordinary salmon. The salmon is a fish that famously spends most of its adult life in the ocean, but travels up rivers to spawn. The eggs hatch in freshwater and the baby fish grow up in the river, and then they migrate to the ocean and live there for almost the rest of their lives. Eventually the fish is fully mature and ready to spawn, so it travels to the river where it was hatched, fights its way upstream, and the cycle starts all over with the new generation. Almost all salmon die after spawning. This is partly because the energy requirements of swimming upstream is so high, but also because a salmon is genetically programmed to die after spawning. This is called senescence, and while it’s common in invertebrates like octopuses and some insects, it’s rare in vertebrates. Not only that, there’s not enough food for an adult salmon in the spawning area, and an adult salmon’s body is adapted for salt water, not fresh water, so it can’t live long in rivers as an adult anyway. A small number of female Atlantic salmon are able to return to the ocean, recover and regain their strength, and spawn again a few years later, but for all other species, after spawning, that’s it. Within days all the salmon have died. But sometimes, rarely, a salmon remains alive for weeks after spawning. It doesn’t have the energy to return to the ocean, and its body is in the process of shutting down for planned senescence, and the freshwater is causing damage to the fish’s skin. But still it survives, growing more and more raggedy, just like a zombie in a movie. But unlike movie zombies, it doesn’t want to eat brains. Eventually the zombie salmon dies, if something doesn’t catch and eat it first. Next, Siya suggested the googly-eyed squid. Some people find squid and octopuses scary because they look so strange, but I admit I added this squid to the episode because I think its name is funny. It’s also called the stubby squid or the googly-eyed stubby squid. Its scientific name is Rossia pacifica, which gives you a hint that it lives in the northern Pacific Ocean. In the winter it likes shallow water without strong currents, but in summer it migrates to deeper water where it doesn’t get too warm. The googly-eyed squid is small and closely related to the cuttlefish. It grows less than four and a half inches long, or 11 cm, including its eight short arms and two retractable tentacles. It’s usually reddish-brown or purplish in color, but like most squid it can change color when it needs to. It gets its name because it has large eyes that show white around the edges and have a black pupil, which makes it look like it has googly eyes. During the day, the googly-eyed squid buries itself most of the way in sand or mud at the bottom of the sea floor, with just its googly eyes showing so it can watch for danger. At night it comes out to hunt small animals like crabs and other crustaceans, mollusks, and fish, but what it really likes is shrimp. Naturally, it has good eyesight. Next, let’s talk about a bird that some people find spooky. Ezra, Owen, and Aksel all suggested the snowy owl. The snowy owl is mostly snow-white although young birds have black and gray markings. Its eyes are yellow and it often hunts in the daytime, but not always. Its wingspan can be as much as six feet across, or 1.8 meters. The snowy owl lives throughout the Arctic and nearby regions, especially in summer, but sometimes travels long distances to find food. It’s also migratory, traveling south for the winter. Snowy owls have been spotted in such far-flung places as Hawaii, Bermuda, Pakistan and India, Iran, and Japan and Korea. The snowy owl mostly eats small animals like lemmings and mice, although it will kill and eat pretty much anything it can catch, including ducks and other water birds, fish, and even insects and frogs. It will sometimes eat carrion and even sometimes steals food from other birds. It swallows small animals whole, and a day or two later, regurgitates a compacted pellet made up of the indigestible parts, including bones and fur. A lot of predatory birds do this, not just snowy owls. Scientists who study the birds love finding these pellets, because they can dissect them and learn what the bird has been eating. Not only does the snowy owl make its nest on the ground, sometimes it hunts on the ground too, just running along after an animal on its big feet. This is what the snowy owl sounds like: [owl call] Let’s finish with an invertebrate that a lot of people are scared of, a spider! This particular spider is a species of sheet-web spider, which lives in Taiwan. It’s a nocturnal spider that was only described in 2012. Unlike a lot of spiders, which build upright webs to trap insects that are flying along between branches and twigs, the sheet-web spider builds its web horizontally just above the ground. The webs are light-colored and reflect light. The spiders build their webs in shady areas, and scientists think that moths see the light reflecting off the webs, and think the webs are actually the ground in an area open to the sky. Moths like open areas like this, and moths also happen to be one of the spider’s favorite foods. When a group of scientists experimented by darkening some webs with charcoal dust, they determined that the darkened webs attracted considerably fewer moths. But it turns out that the sheet-web spider does something even more extraordinary. If a firefly gets caught in the web, the spider doesn’t eat it—or at least, not right away. It lets it stay in the web, flashing its light. Scientists noticed this and were intrigued. Did the fireflies not taste good, or was something else going on? They placed LEDs that blinked like fireflies in some webs, but not in others, and monitored the results. It turns out that three times the number of insects were attracted to the webs with fake fireflies, and most of those were other fireflies. Fireflies attract a mate by flashing. The spiders were taking advantage of having a built-in lure stuck in their webs. So even though spiders are very tiny and have tiny brains, sometimes they’re pretty darn smart. You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. Thanks for listening!
Episode 454: Bats!

Episode 454: Bats!

2025-10-1316:45

This week we’re going to learn about a bunch of bats! Thanks to John, Murilo, and Alexandra for their suggestions! Further reading: Why Bats Can’t Walk: The Evolutionary Lock That Keeps Them Flying On a Wing and a Song—Bats Belt out High-Pitched Tunes to Woo Mates Why some bats hunt during the day Puzzling Proto-Bats A pekapeka just walking around catching bugs on the ground [photo by Rod Morris, from link above]: BLOOOOOOD! but a really cute smile too: The western red bat looks ready for Halloween! Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week as monster month continues, we’re going to learn about bats! We’ve talked about bats in lots of previous episodes, but we have a lot of really neat information in this one that we’ve never covered before. Thanks to John, Alexandra, and Murilo for their suggestions! John suggested we learn about diurnal bats and also asked if there are any flightless bats, maybe ones that live on islands. There are lots of island-living bats, and many birds that live on islands evolve to be flightless. It makes sense that bats might do the same thing–but I couldn’t find any information about any known bat that has lost the ability to fly. The reason seems to be how highly derived bats are. That means they’re specialized, the only mammal known that has ever evolved true flight. Unlike birds, which don’t need to use their legs when flying, bats’ legs are actually part of the wings. The wing membranes, called patagia, stretch not just between the elongated finger bones of the bat’s hands, they also stretch between the arms and legs, and connect the legs too. A January 2025 study comparing bat skeletons to the skeletons of birds determined that unlike in birds, where the size of the legs doesn’t have anything to do with the size of the wings, in bats the leg size and the wing size are closely related. If a bat evolves smaller wings, its legs also evolve to become smaller. That’s why there are no bats that resemble ostriches, with tiny wings but really long legs. Another possible reason is that bat legs have evolved to point backwards compared to other animals. It’s not just the feet, the knees are also rotated backwards. That’s why bats hang upside-down when they’re not flying. Many species of bat never land on the ground, because they literally can’t walk at all. But there are a few species of bats that can walk quite well. One is the increasingly threatened New Zealand lesser short-tailed bat. It lives in a few places in both the North and South Islands, as well as some small islands off the coast, although it used to be much more widespread. It’s also called by its Maori name, the pekapeka. The pekapeka mainly lives in forested areas and is quite small. It’s brown with a lighter belly, and it has big ears, as do most bats. Its eyes are small and its vision isn’t very good, but it has a good sense of smell. Its wings are small so its legs are correspondingly small too, but its legs are also strong despite their size. It has a clawed thumb toe on its feet and on its wings that helps it climb around in trees when it needs to, and it also spends about half of its time on the ground. It walks just fine, crawling with its wings folded so that the ends point up and back, out of the way. And yes, its legs are rotated backwards as you’d expect in a bat, and it roosts by hanging from its feet in trees. The pekapeka flies normally and catches insects using echolocation, just like other microbats throughout the world. It especially likes moths. Unlike almost all other bats, it finds a lot of its food on the ground too, using its sense of smell to track down spiders, insects and larvae, and other small invertebrates. It will actually dig into the dirt and leaf litter to find food. It also eats nectar and flowers, and is an important pollinator of some plants. One great thing about the pekapeka is that the males sing to attract a mate. The sound is so high-pitched that it’s not practical to share it here, because you probably wouldn’t be able to hear it, but I’ll link to an article that has a sample bat song so you can listen. Another bat that can walk just fine is one suggested by Murilo, the vampire bat. In movies, vampire bats are usually depicted as being humongous, as big as a person! In reality, those big bats are actually megabats, and megabats mostly eat fruit. Megabats are the ones that are sometimes called sky puppies, because they don’t rely very much on echolocation so they don’t have the complicated ears and noses that microbats do. Until recently scientists thought megabats couldn’t echolocate at all, but now we know they can, they’re just not all that good at it. The vampire bat is tiny in comparison. There are three species of vampire bat alive today. They share the same subfamily, Desmodontinae, but have been classified in different genera because they differ considerably from each other. Their other relations are ordinary bats that eat insects, fruit, and other things that you’d expect from bats. Vampire bats really do eat blood exclusively. The hairy-legged vampire bat is the most basal of the three species, meaning it retains traits that haven’t changed as much from its ancestors. It feeds exclusively on bird blood. The white-winged vampire bat also mostly feeds on bird blood, but it will sometimes eat the blood of mammals. It’s the common vampire bat that eats the blood of mammals. Vampire bats probably evolved from ancestors that ate insects. Scientists hypothesize that they might have originally specialized in eating ectoparasites of other animals, or possibly insects that were attracted to animal wounds. If that’s the case, the bat would have already been eating a lot of blood along with the insects, and at some point it started taking a shortcut to getting that yummy blood. We know this has happened at least one other time, in a bird. I thought we had talked about the red-billed oxpecker in an old episode, but if we did, I couldn’t find it. It lives throughout the savannas of sub-Saharan Africa and is brown with a bright orange bill and eyes, with a yellow eye ring. It eats ticks that it picks off rhinoceroses, cattle, and other large mammals, but it actually mainly eats blood. It’s happy to eat the ticks, because they’re full of blood, and the animals it perches on are happy that it eats ticks, but the bird will also peck at wounds so it can drink blood directly from the animal. So it’s likely that the vampire bat started out eating ticks or other ectoparasites, then began eating the blood that oozed from the wound after it removed a tick. From there it was a short step to biting the animal to cause blood to flow, and within four million years, it was fully adapted to drinking blood. The vampire bat has extremely sharp front teeth that stick out so that it can use them to make little cuts in an animal’s skin, after first using its teeth to shave the fur down so it can reach the skin more easily. Its fangs lack enamel, so they stay razor sharp. The vampire bat’s saliva contains anticoagulants, so the blood won’t clot right away and the bat can lick it up until it’s full, which takes about 20 minutes. It digests blood extremely quickly, so that it absorbs the nutrients from the blood and starts urinating the extra liquid within a few minutes of starting to feed. That way it can eat more and it can also stay light enough to take flight if it’s disturbed. If you were wondering, its poop is the same as other bat poop. It does echolocate, although not as expertly as bats that eat insects, but the common vampire bat also has specialized thermoreceptors on its nose that sense heat. It’s the only mammal known that can detect infrared radiation, and the only other vertebrates known that can do the same thing are some snakes. Because vampire bats have to be able to walk around on animals to find a good spot to bite them, the bats have evolved to be able to walk, run, and even jump just fine. Like the pekapeka, it folds the ends of its wings back out of the way and basically walks on the wrists of its wings and its backwards-pointing feet. Even though the pekapeka and the vampire bat are comfortable running around on the ground, neither has lost the ability to fly. Being able to fly seems to be baked into being a bat. So while it’s not impossible that a bat might eventually become truly flightless, it’s unlikely. As for bats that are diurnal, or daytime bats, there are a few. A study published in 2018 determined that of the four known species of bat that routinely go out hunting during the daytime, all four live on islands where there are no predatory birds. That doesn’t mean that all bats that live in places where there aren’t any hawks or eagles or crows are active during the day, because most species are still nocturnal, but that seems to be the one requirement for a daytime bat. John was also interested in learning about the biggest fossil bat ever found. Bats are delicate creatures and don’t fossilize very well, so the bat fossil record is really fragmentary. For example, until 2015 the oldest pekapeka fossil discovered was only 17,500 years old. In 2015, a new fossilized pekapeka ancestor was discovered on the South Island that’s been dated to 16 to 19 million years ago. The fossil shows that the bat was adapted to walk just as the modern pekapeka is, and its teeth are similar so it probably had a similar diet—but it’s estimated to be three times the size of the pekapeka! That sounds like it must have been a huge bat, but the pekapeka only weighs 15 grams at most. That’s barely more than half an ounce, or about the same weight as a CD or DVD, not counting the case. Its ancestor is estimated to have weighed as much as 40 grams, which is almost as heavy as a golf ball. It’s also what a typical vampire bat weighs, if you were wondering. An even bigger fossil bat has been discovered in a fossil site in France, a country in Europe, and anoth
It’s October, AKA Monster Month! Let’s learn about some animals of the Skeleton Coast–which sounds spooky, but actually isn’t. Lots of brown fur seals [photo by Robur.q – Own work, CC BY-SA 4.0]: The desert plated lizard [photo by redrovertracy, some rights reserved (CC BY) – https://www.inaturalist.org/photos/45483586, CC BY 4.0]: Rüppell’s korhaan [photo by By Charles J. Sharp – Own work, from Sharp Photography, sharpphotography.co.uk, CC BY-SA 4.0]: The pearl spotted owlet is cute rather than spooky, but it has a haunting call [photo by Charles J. Sharp – Own work, from Sharp Photography, sharpphotography.co.uk, CC BY-SA 4.0]: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. It’s October at last, and that means monster month! To start us off this year, we’re going to learn about animals of the Skeleton Coast, which sounds a lot more spooky than it actually is. The Skeleton Coast is a stretch of coastline 310 miles long, or 500 km, on the Atlantic coast of Africa. It’s part of Namibia, a huge country in southern Africa that’s mostly quite dry, with two deserts within its borders. Because the country gets so little rainfall, it has to conserve water for its people, animals, and crops, so the government is serious about conservation and natural resources. It’s home to one of the most cutting-edge water treatment plants in the world, and since the government’s establishment in 1993, it’s been working to help farmers and citizens in general to practice sustainable natural resource management. It’s also a beautiful part of the world, with amazing geography, and animals and plants found nowhere else in the world, so eco-tourism has been increasing, which helps the economy. Namibia is also home to the San people, who call the Skeleton Coast “the land god made in anger.” The northern part of the coast is blocked off from land by huge sand dunes, while the southern part is rocky. To get there, you have to cross a desert, and then cross a treacherous marsh that’s hundreds of miles across. Then to get home, you have to go back the way you came across the marsh and the desert, because launching a boat from the Skeleton Coast is impossible if you don’t have a powerful engine. The sea along the Skeleton Coast is treacherous, with lots of rocks offshore, extremely heavy surf, and frequent thick fogs. There are around a thousand shipwrecks visible along the coast, with the oldest dating to the 1530s, and thousands more documented that aren’t visible or haven’t been found yet. Ships still wreck there sometimes. Animals do live along the Skeleton Coast, especially seals. The brown fur seal, also called the Cape fur seal, has a huge colony in the northern part of the coast, which is a national park. The brown fur seal lives in various parts of southern Africa, with a subspecies that also lives on some islands off southeastern Australia and Tasmania. A big male can grow 7 ½ feet long, or 2.3 meters, and as you can probably guess from its name, it’s mostly brown in color. Males have a short mane on the neck that’s usually darker than the rest of its fur. It has magnificent long whiskers, especially males. The brown fur seal mainly eats fish, but it also likes squid and will eat other animals like crustaceans and even birds. It can dive deeply and stay underwater for over seven minutes. It spends most of its life in the water, mainly only coming out on land to breed, give birth, and take care of the babies. The seals used to be killed for their fur, but this was outlawed in Namibia in 1990 except by special permit, which has allowed the seals’ numbers to increase. The Skeleton Coast is named that mainly because of the massive amounts of seal bones that fur hunters left behind after killing and skinning seals. Unfortunately, something the rocks around the Skeleton Coast collect are plastic debris, especially fishing debris like nets. So many brown fur seals get caught in the debris and drown that a group of volunteers called Ocean Conservation Namibia go out almost every day to help untangle seals. The Skeleton Coast doesn’t get any rain to speak of, or only trace amounts in any given year, but it does get thick sea fogs. Most of the plants along the coast are succulents and lichens that don’t need a lot of moisture. A lot of larger animals that hunt seals along the coast actually live farther inland, like hyenas and lions. The animals that live year-round on the coast are much smaller. That includes the desert plated lizard, which is only found in parts of Namibia and Angola. It’s a slender but strong lizard that can grow over 6 inches long, or 16 cm, not counting its long tail. It’s mainly the color of sand, tan or orange and gray, or gray-white, or some other similar variation, with a white belly, and this is because it lives on sand dunes. The sand dunes are covered with scrubby vegetation, so in the daytime the lizards come out and eat anything they can find among the plants or in the sand, from seeds and other plant materials to insects and other arthropods. If a potential predator approaches, the lizard will dive into the sand to hide. Its scales are smooth and its legs are short, which allows it to “swim” through sand efficiently and fast. The desert plated lizard lives in small colonies, and although it only lives in this one small part of Africa, it’s extremely common throughout its territory. A lot of birds visit the skeleton coast—306 of them, in fact, including Rüppell’s korhaan, a species of bustard that only lives in Namibia. It’s a gray and brown bird with black and white markings, with a long neck and fairly long legs. Its body is chunky but its neck is very thin, which makes it look slightly weird but very cute. It mainly eats insects, especially termites, but it will also eat small animals like lizards when it can find them, and it also eats seeds and other plant material. It’s small for a bustard, because bustards are pretty big birds, with the largest species, the great bustard that lives in parts of Europe and Asia, standing over three feet tall, or about a meter. Rüppell’s korhaan is about a third of that size. Let’s finish with another bird that’s a little more spooky, considering that it’s October. It’s the pearl-spotted owlet, a little owl that’s found throughout much of sub-Saharan Africa, including along the Skeleton Coast. It’s a very small owl, barely more than 8 inches long, or 21 cm. It’s brown with lots of white speckles and streaks, yellow eyes, and two black spots on the back of its head that look like MORE EYES. It shares this trait with some other species of owl, including the northern pygmy owl of western North America, and in fact the two owls belong to the same genus, so they’re closely related. The pearl spotted owlet is active during the day, but it mostly hunts at night. Since it’s such a small owl, barely larger than a typical songbird, it eats lots of insects, but it will also eat other small birds, bats, lizards, and any other small animal it can catch. It’s not a very spooky-looking owl, despite having eye spots on the back of its head, but it has a spooky call. Listen to this and be glad you’re not a little bat hearing this sound and wondering if you’re in danger: [owl call] You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. Thanks for listening!
Thanks to Brody, Oz, and Sam for their suggestions this week! Further reading: Chasing gold Two spectacled hare-wallabies hanging out under a spinifex bush [picture from this site]: A regular swamp wallaby [photo by jjron – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4022233]: The glorious golden swamp wallaby [photo by Jack Evershed, taken from the first article linked above]: The takin can also be golden: The gaur is so incredibly big! It’s so big, honestly, it’s just ridiculous: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we have suggestions from Oz, Sam, and Brody, with some interesting mammals! Let’s start with Brody’s suggestion, the wallaby! It’s been a while since we talked about the wallaby, which is an adorable marsupial closely related to the kangaroo. It’s native to Australia and New Guinea, part of the family Macropodidae. One thing everyone knows about kangaroos, which is also true for wallabies, is that they hop instead of running. Their hind legs are extremely strong with big feet, and in fact the word Macropodidae means big feet. The animal hops by leaning forward and jumping, with its big hind feet leaving the ground at about the same time, and landing at the same time too before it bounces again. Its big tail helps it balance. We talked about the wallaby last in episode 390, so let’s learn about some species of wallaby that we didn’t talk about then. For example, the spectacled hare-wallaby. It’s a small species that’s common in northern Australia and parts of Papua New Guinea. It’s active at night and is mostly solitary, so unless you’re wandering around at night you might not have seen one. It’s called the spectacled hare-wallaby because it has orange-colored fur around its eyes so that it looks sort of like it’s wearing glasses. The rest of its fur is brown, gray, and golden. Its ears are small and its tail and hind legs are very long, with short little front legs. It’s very cute. The spectacled hare-wallaby prefers sandy or stony areas, like dunes and shrubland, where it can find lots of plants to eat but can easily hop away if it spots a predator. It’s smaller than a domestic cat, but it can travel incredibly fast when it wants to. If you live along the eastern part of Australia, you might have seen the swamp wallaby, also called the black wallaby because it’s mostly dark gray or gray-brown in color, often with a white tip to the tail. It’s stocky and much larger than the spectacled hare-wallaby, almost three feet tall, or 85 cm, when it’s sitting up. It doesn’t just live in swamps but also likes forests and other areas with lots of places to hide. Unlike the spectacled hare-wallaby, it’s not that fast and can’t always outrun potential predators, but it’s good at hiding because its fur is so dark. Most wallabies are grazers, meaning they mainly eat grass, but the swamp wallaby is a browser. Instead of having grinding teeth to break down grass, its teeth are sharper for cutting through plant material like bushes, shrubs, and ferns. The swamp wallaby will even use its front legs to pull branches into reach so it can eat the leaves. Wallabies are marsupials, meaning the babies are born extremely early by our standards, crawl into the mother’s pouch and clamp onto a teat, and continue to develop in the pouch. Wallabies usually only have one baby at a time, but the mother swamp wallaby has two babies in its pouch almost all its adult life. The swamp wallaby has two uteruses, and a few days before the first baby is ready to be born, the female comes into estrus again, meaning she’s ready to mate. By the time her first baby is born, she’s already pregnant with her second baby. When the second baby is born, the first baby is old enough that’s it doesn’t spend all the time in the pouch—but by then, she’s already pregnant with her third baby. By the time the third baby is born, the first baby is grown up and on its own, the second baby is old enough that it isn’t in the pouch all the time, and—you guessed it—the mother is already pregnant with baby four. It sounds exhausting, but it works well for the swamp wallaby. As I mentioned, the swamp wallaby is also called the black wallaby, but there’s a rare color variation that’s called a golden swamp wallaby. It’s still a swamp wallaby but its fur is golden yellow and it has a white face. The coloration is due to a mutation in coat color, but golden swamp wallabies seem to be perfectly safe in the few areas where they’re found, so it doesn’t seem to be a detriment. Some scientists suspect the color morph is helpful in open forests with sandier soil, which is exactly where the golden swamp wallabies are found. Speaking of golden animals, let’s talk next about the takin, suggested by Sam. We talked about the golden takin back in episode 218, which is a subspecies of takin. The takin is closely related to sheep and mountain goats, but it looks more like a small musk ox. The takin lives in the eastern Himalaya Mountains, and is a strong, stocky animal with a lot of adaptations to intense cold. It has a thick coat that grows even thicker in winter, with a soft, dense undercoat to trap heat next to the body. It also has large sinus cavities that warm the air it breathes before it reaches the lungs, which means it has a big snoot. Its skin is oily, which acts as a water repellent during rain and snowstorms. In spring it migrates to high elevations, but when winter starts it migrates back down to lower elevations where it’s not quite as cold. It will eat just about any plant material it can reach, including tree bark, tough evergreen leaves, and bamboo. It sometimes shares the same bamboo forests where pandas live. It will even sometimes push over small trees so it can eat the leaves. It visits salt licks regularly, and some researchers think it needs the minerals available at salt licks to help neutralize the toxins found in many plants it eats. Both male and female takins have horns, which grow sideways and back from the forehead in a crescent and can be almost three feet long, or 90 cm. It can stand over four feet tall at its humped shoulder, or around 1.4 m. Its fur is mainly golden-brown with gray and white patches. A full-grown takin is big enough and strong enough that it doesn’t have many predators. If a bear or wolf threatens it, it can run fast if it needs to or hide in dense underbrush. But it’s just a little tiny baby compared to our last animal this week, suggested by Oz: the gaur. [pronounced gow-ur] We’ve only mentioned the gaur once on the podcast, way back in episode 58, when I mispronounced it “gar.” It’s the largest living bovid, also called the Indian bison, although it doesn’t just live in India. It’s native to southeast Asia, but it’s increasingly rare due to habitat loss and poaching, even though it’s a protected animal. The gaur looks kind of like a domestic cow, but much larger. It’s dark brown and its lower legs are white, as is its nose. It has a fairly short tail and long curving horns that are mostly pale but black at the tips, and its ears are large. Females are lighter in color than males and calves are a pale sandy-brown. How big is the gaur? A big bull can grow over seven feet high at the shoulder, or 2.2 meters, and it’s even a bit taller if you measure it at the muscular hump just behind the shoulder. It’s an incredibly heavy animal too, with only elephants, rhinos, hippos, and giraffes being heavier than a big bull. A bull can weigh over 3,300 lbs, or 1,500 kg. It’s so massive and muscular that bulls in particular look like they just got back from the gym and they’re flexing to show off. The gaur is a bovid, but it doesn’t eat very much grass. Like the swamp wallaby, it’s a browser. It’s mainly found in forests, where it eats leaves, flowers, fruit, and even the bark of some trees, and it lives in herds of about a dozen animals each led by a wise old cow. Almost the only predator that can kill a full-grown gaur is a tiger, and naturally the gaur does not like tigers at all as a result. If a herd spots a tiger, they form a ring around the calves to protect them, and if the tiger tries to approach, the adult gaurs attack and try to drive the tiger away. Sometimes the gaurs can even kill the tiger. At night the adult gaurs make a ring around the calves this same way, so that if a tiger or other predator approaches in the night, the adults are ready to defend their babies as soon as they wake up. Personally, if I were a tiger I think I wouldn’t bother trying to kill a gaur. You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. Thanks for listening!
Thanks to Joelle, Jacob, and Anna for their suggestions this week! Further reading/watching: Gulper Eel Balloons Its Massive Jaws Watch rare footage of a shapeshifting eel with ‘remarkably full tummy’ swimming in the deep sea The beautiful stellar jay: The maybe not quite as beautiful but really awesome gulper eel (with its mouth full of water, image taken from first video linked above): The same eel as above but with its mouth open so you can see just how big it is! Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’re going to learn about a bird suggested by Joelle, Jacob, and Anna, and a weird fish also suggested by Jacob. Let’s start with the bird, the stellar jay, also called Steller’s jay! In the last few years there has been a push among bird enthusiasts to change the common names of birds named after people to names that are more general. While Steller’s jay hasn’t officially been renamed to the stellar jay, a lot of people are calling it that already so that’s what we’ll call it here. The word stellar means outstanding, and that’s definitely a good description of this bird. The stellar jay is a beautiful bird that lives in western North America down into parts of Central America. It’s closely related to the blue jay found in eastern North America, and if you saw it from the middle down you might think it was a blue jay, except that it doesn’t have white markings on its tail and wings. It has a blue tail and wing feathers with dark bars, but from about the shoulders up it looks very different from the blue jay. It’s silvery-gray, brownish, or black on its head, neck, and back. Some populations have a white eyebrow marking that makes the bird look like it’s frowning. It has a crest like the blue jay, but its crest is bigger, spikier like it hasn’t brushed its hair yet, and the bird itself is bigger overall than its eastern cousin. The stellar jay lives in forests, especially coniferous forests, where it eats pretty much anything it can find. It’s an omnivore that likes insects and other invertebrates, eggs and baby birds of other species, and even small animals like lizards and mice, but it also eats lots of nuts, berries, seeds, and other plant material. It will visit bird feeders, and especially likes sunflower seeds and raw peanuts. The stellar jay is a corvid, distantly related to crows and magpies, and it shares the corvid trait of being intelligent, sometimes aggressive, and loud. It will imitate hawks in order to scare other birds away from food, and it will often chase smaller birds away from feeders. During nesting season, the birds get a lot quieter, and the male will sneak his way to and from the nest to feed his mate while she’s sitting on the eggs. The stellar jay prefers to build its nest in a conifer, either in a hollow in the trunk or on branches close to the trunk. This is what the stellar jay sounds like: [bird calls] Jacob also suggested we learn about the gulper eel, which is sort of the opposite of the stellar jay. It’s a deep-sea fish with a lot of names, including pelican eel and my favorite, the umbrella-mouth. It’s black or sometimes dark brown and can grow up to about three feet long, or 90 cm. Much of its length consists of a long, whip-like tail. The gulper eel’s mouth is ENORMOUS, ridiculously enormous, especially considering how slender the rest of the fish is. Its lower jaw is hinged and is extremely long, with a stretchy pouch of skin that forms its mouth and I guess you can call them cheeks. It is a very weird fish. Most of the time it keeps its jaw folded down against its sides, so that the jaws are barely visible and it looks more or less like a regular eelh. But when it wants to, the gulper eel can unfold its jaw and gulp in water to inflate its pouch, which makes it look like a black balloon with a tail. It sometimes does this if it feels threatened so that it looks bigger, but the huge jaws are actually for swallowing animals whole. Not only can its mouth stretch to engulf animals bigger than the gulper eel is, its stomach can stretch just as much. It has tiny teeth, though, so it’s not likely that it would try to eat animals stronger than it is, because if it swallowed a big fish, that fish might thrash around inside the gulper eel and kill it. More often, the gulper eel’s stretchy mouth and stomach allow it to eat large groups of very small animals, mostly shrimp and other small crustaceans. It also helps it swallow squid and other soft-bodied animals that are larger than it is but not dangerous. The gulper eel has a well-developed lateral line system, more properly called the octavolateralis system. All fish and some amphibians have this system, and in many species you can see it. It’s a line or a series of dots along the fish’s sides, and it’s actually a series of modified cells that are super sensitive to water motion. The lateral line system is what allows schools of fish to stay in formation while moving around as a group, and it also helps a fish know when a predator is approaching or when potential prey is nearby. It can even help the fish sense obstacles in the water that aren’t moving, like rocks. In the gulper eel, instead of the sensory cells being in a tiny canal under the skin, they’re on the surface to increase the amount of information the fish can gather from tiny water movements. At the end of the tail, the gulper eel has a tiny organ called a caudal appendage, which is translucent. It has tiny tentacles and glows with a pinkish light, although it occasionally flashes red. Some researchers report that the lateral line also sometimes produces bioluminescence. The bioluminescence may lure small animals to the gulper eel the same way the anglerfish’s lure does. It’s possible that the gulper eel sometimes hangs in the deep water with its long tail curved up over its head, waiting for prey to approach, but for the most part it’s an active hunter of small crustaceans and other animals. You may remember from other episodes that most deep-sea animals can’t see the color red. Some predatory fish, including a species of dragon fish, use that to their advantage by emitting red light that they can see but their prey can’t. It’s possible that the gulper eel’s tail emits red light to help it find groups of the tiny crustaceans it mostly eats. It has very small eyes and we don’t even know if it can see the color red or not. We also don’t know if its bioluminescent tail also gives off other light wavelengths that would act as a lure to small animals, or if it uses its caudal appendage to communicate with other gulper eels. The gulper eel lives in many of the world’s oceans, especially in tropical areas, in depths up to 9,800 feet, or 3,000 meters. Sometimes it lives in shallower water too. Because it lives so deep most of the time, we don’t know a whole lot about it. Luckily, in the last few years scientists have learned a lot more about it from deep-sea rover observations. You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. Thanks for listening!
Thanks for Preston and Pranav for suggesting this week’s topics! Further reading: DNA has revealed the origin of this giant ‘mystery’ gecko Snow Leopards Dispersed Out of Tibetan Plateau Multiple Times, Researchers Say Conquest of Asia and Europe by snow leopards during the last Ice Ages uncovered The crested gecko AKA the eyelash gecko: The fluffy snow leopard: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we have a couple of suggestions from Preston and one from Pranav! This is the first episode I’ve recorded in my new apartment, so let’s make it a good one. First, Preston wanted to learn more about the crested gecko, mainly because he has a pet crested gecko named George Washington. That is one of the best gecko names ever! The crested gecko is also called the eyelash gecko. We’ve talked about it a few times, but not recently at all. It’s native to a collection of remote Pacific islands called New Caledonia, where it spends most of its time in trees, eating insects and other small animals, but also fruit, nectar, and lots of other food. It’s an omnivore and nocturnal, and can grow more than 10 inches long, or 25 cm. It gets its names from the tiny spines above its eyes that look like eyelashes, and more spines in two rows down its back, like a tiny dragon. It can be brown, reddish, orange, yellow, or gray, with various colored spots, which has made it a popular pet. These days all pet crested geckos were bred in captivity, since it’s now protected in the wild. The crested gecko has tiny claws on its toes, which is unusual since most geckos don’t have claws. It can drop its tail like other geckos if a predator is after it, but the tail doesn’t grow back. Since its tail is prehensile and helps it climb around in trees, you’d think the gecko would have trouble climbing after it loses its tail, but it doesn’t. Maybe that’s because in addition to claws, like other geckos it has basically microscopic hairlike structures on its toes that allow it to climb smooth surfaces like windows and walls and the trunks of smooth trees. It can also jump long distances to get to a new branch. The crested gecko was discovered by science in 1866, but wasn’t seen after that in so long that people thought it was extinct. Then in 1994, a German herpetologist out looking for specimens after a tropical storm found a single crested gecko. It turns out that the geckos had been fine all along, but because they’re nocturnal and mostly live in trees, scientists just hadn’t spotted any. While we’re talking about geckos, Pranav requested that we revisit Delcourt’s giant gecko with some updated information. We did mention the new findings back in episode 389, but it’s really interesting so let’s go over it again. Way back in episode 20 we talked about Delcourt’s giant gecko, which is only known from a single museum specimen donated in the 19th century. In 1979 a herpetologist named Alain Delcourt, working in the Marseilles Natural History Museum in France, noticed a big taxidermied lizard in storage and wondered what it was. It wasn’t labeled and he didn’t recognize it, surprising since it was the biggest gecko he’d ever seen—two feet long, or about 60 cm. He sent photos to several reptile experts and they didn’t know what it was either. Finally the specimen was examined and in 1986 it was described as a new species. No one knew anything about the stuffed specimen, including where it was caught. At first researchers thought it might be from New Caledonia since a lot of the museum’s other specimens were collected from the Pacific Islands. None of the specimens donated between 1833 and 1869 had any documentation, so it seemed probable the giant gecko was donated during that time and probably collected not long before. More recently there was speculation that it was actually from New Zealand, since it matched Maori lore about a big lizard called the kawekaweau. In June of 2023, Delcourt’s gecko was finally genetically tested and determined to belong to a group of geckos from New Caledonia, the same archipelago of islands where the crested gecko is from. Many of its close relations are large, although not as large as it is. It’s now been placed into its own genus. Of course, this means that Delcourt’s gecko isn’t the identity of the kawekaweau, since it isn’t very closely related to the geckos of New Zealand, but it might mean the gecko still survives in remote parts of New Caledonia. It was probably nocturnal and lived in trees, hunting birds, lizards, and other small animals. Now we’re done with geckos for today, but we’re not done with this episode! Preston also wanted to learn about the snow leopard, and it’s amazing that we’ve never talked about it before! The snow leopard is a big cat that’s most closely related to the tiger, although they don’t look very much alike. The term big cat refers to tigers, lions, leopards, snow leopards, and jaguars, but it can also include cheetahs and cougars depending on who you ask. Big cats have round pupils instead of slit pupils like domestic cats and other smaller cats. The snow leopard mostly lives in cold, mountainous areas in parts of Asia, from Siberia to India. It prefers to live in rocky areas where its coat pattern hides it from its prey. Its fur is thick and it can be anywhere from pure white to tan or gray, with black spots and rosettes. Its head is small, its legs relatively short, and its tail is very fluffy and incredibly long. A big male can grow up to 1.5 meters long, or 5 feet, plus a tail that’s almost as long as his body, but he’s only about two feet tall at the shoulder, or not quite 60 cm. The snow leopard is well adapted to cold and snow. Fur grows on the underside of its paws to keep its feet warm, its paws are really large to act as snowshoes, and its ears are small and rounded to keep the tips from being frostbitten. Its long tail helps it balance when climbing over rocks. Its tail also stores fat, and is so long and fluffy that the snow leopard can use its tail as a blanket when it’s sleeping. Built-in blanket! Unfortunately for the snow leopard, its thick, beautiful fur has been used as a blanket by humans for a long time, and it’s still sometimes killed for its fur even though it’s a protected species almost everywhere it lives. It’s also sometimes killed by farmers and herders who think the snow leopard will kill their livestock. It actually doesn’t attack livestock very often, and almost never attacks people. It eats small animals of various kinds depending on where it lives, like mice and rats, hares and rabbits, wild goats and sheep, marmots, deer, civets, and even rhesus macaques. It mainly only kills livestock where its wild prey has been reduced because of human activity. It’s also vulnerable to habitat loss and climate change. Snow leopards are mostly solitary, although a mated pair will hunt together and of course the mother snow leopard teaches her babies to hunt as they get older. Individuals leave scent marks and spray urine to let other snow leopards know they’re around. Males roam widely but females usually stay to a territory that they’re familiar with, although the territory may be quite large. Most snow leopard cubs are born in the early summer, and a female usually only has two or three babies in a litter. The mother takes care of her babies by herself. She makes a den among rocks and lines it with her belly fur, but cubs are born with a lot of fur already to keep them warm. The mother takes care of them for about two years until they finally leave to find their own territories. Lions, tigers, leopards, and jaguars can all roar. Snow leopards, cheetahs, and cougars can’t. But snow leopards, cheetahs, and cougars can purr, while lions, tigers, leopards, and jaguars can’t. The ability to roar is due to special adaptations in the larynx, but these adaptations also mean the animal can’t purr. So basically a cat can either roar or purr but not both and the snow leopard can purr. We actually don’t know a whole lot about the snow leopard because it lives in such remote places, and one big mystery is how the snow leopard ended up adapted to cold. Most cats, large and small, prefer hot climates. Until recently, we didn’t even have any snow leopard fossils to give us a clue. Then a collection of leopard fossils revealed some snow leopard fossils mixed in. They’re about a million years old, collected in parts of China, France, and Portugal. A study of the fossils, and a beautifully preserved partial skeleton found in Portugal, has shed light on the migration and evolution of the snow leopard. The snow leopard was already well adapted for mountainous areas, but when the climate became colder during the Pleistocene, AKA the Ice Age, it evolved to thrive in a cold climate. It spread into many parts of Asia and Europe, especially mountainous areas, out-competing other predators like leopards that weren’t well adapted to cold. With the warming climate after the ice ages ended, the snow leopard was at a disadvantage and gradually died out except around the Tibetan plateau where it still lives today, and we’re very lucky to still have it. You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. Thanks for listening!
This is a chapter of the Beyond Bigfoot and Nessie book, which you can buy or request at the library! Further reading: Debunking a Great New England Sea Serpent A narwhal. I use this picture all the time: The diseased black snake that was taken for a baby sea serpent: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we’re going to have a sea monster episode! This is actually a chapter of the book that I published a few years ago now, Beyond Bigfoot and Nessie, and it’s called the Gloucester Sea Serpent. We had a Patreon episode recently that was about a different sea serpent, and while I was researching that, it was driving me completely nuts, because I kept trying to find the episode where I talked about the Gloucester sea serpent, and I finally remembered that that wasn’t an episode at all. It was just a chapter in the book. Maybe it’s time to record it. While the Gloucester sea serpent was first mentioned in a traveler’s journal in 1638, it really came to prominence almost two centuries later. On August 6, 1817, two women said they’d seen a sea monster in the Cape Ann harbor. A fisherman said he’d seen it too, but neither the fisherman nor the women were believed. A 60-foot, or 18-meter, sea serpent in the harbor? Ridiculous! Only a few days later, though, the monster started showing up in Gloucester Bay and attracted major attention—not because it was elusive, but because it was so commonly seen. Sailors, fishers, and even people on shore saw what was described as a huge serpent in the waters of Gloucester Bay, Massachusetts, in the northeastern United States. On one occasion more than two hundred people watched it for nearly four hours. The creature’s length was described as anywhere up to 150 feet long, or 46 meters, and many people said it had a horse-sized head. Some people described its head as being about the same shape as a horse’s too, although with a shorter snout. The body was snake-like and about the thickness of a barrel. Many people thought the sea monster had humps along the back, usually referred to as bunches or occasionally joints. Others said it undulated through the water in an up-and-down motion, which looked like humps. Others said it had no bunches or humps at all. Most people agreed that its back was dark brown. One of the earlier witnesses, a man named Amos Story, watched the sea serpent from shore for an hour and a half. He was adamant that it had no bunches, that he only saw at most about 12 feet of its length at one time, or 3.6 meters, and that its head resembled that of a sea turtle. It was also fast, with Story claiming it covered a mile in only three minutes or so. That’s about 20 miles per hour, or 32 kilometers per hour—an incredible speed for an animal in the water. As it happens, the leatherback sea turtle has been recorded as swimming that fast, and it can grow over 7 feet long, or 2.2 meters, and possibly much longer. It lives throughout the world’s oceans and is just as happy in cold waters as it is in tropical waters. In other words, it’s possible Story actually saw a huge leatherback turtle, which would explain why it had a turtle-like head that it held above the surface of the water at least part of the time. This is something leatherback turtles do. Then again, the leatherback has distinctive ridges and serrations on its back that Story didn’t mention. So many people reported seeing the sea serpent that the Linnaean Society of New England decided it needed to investigate. The society had only formed a few years before, in 1814, to promote natural history. By 1822 it had disbanded, but in those eight years it accomplished quite a bit, including opening a small museum in Boston. Its most controversial endeavor was the sea serpent investigation. Members of the Linnaean Society interviewed witnesses, making careful notes that were signed by the interviewees to indicate the details were accurate. These statements tell us a lot about what people saw, although it hasn’t helped us determine what the sea serpent actually was. For instance, Captain Solomon Allen saw the creature more than once and gave a clear description of it. It was at least 90 feet long, or 27.5 meters, with as many as fifty joints, or bunches. Its head was snake-like—specifically rattlesnake-like, presumably meaning it was wider at the back and had a narrower snout—but the size of a horse’s head. It was dark brown, plain in color, and swam with an undulating side-to-side motion. It dived by sinking straight down, moved quickly, and sometimes seemed to play in the water by swimming in circles. All this is great information, but it doesn’t resemble any known animal. It also doesn’t necessarily resemble the other witness statements. Let’s go over some of the more detailed sightings and see if we can come to some conclusions. A man named William Foster reported bunches along the monster’s length, although he also described them as rings. When the animal’s head rose from the water, the first thing Foster saw was what he described as a prong or spear. It was about a foot long, or 30 centimeters, and tapered to a point. His interviewer asked if the spear might have been a tongue, but Foster didn’t think so. Three men on a schooner named the Laura, becalmed in the mouth of the harbor, witnessed the monster in late August. Sewall Toppan, master of the ship, reported that the monster’s head was the size of a 10-gallon keg, which would have been about 18 inches tall, or 46 centimeters, and 16 inches in diameter, or 40 centimeters. He said its head was held about 6 inches out of the water, or 15 centimeters, and that he could see 10 or 15 feet of its length disappearing into the water, or 3 to 4.5 meters. He didn’t see any kind of prong, but two of his sailors did. One of the two sailors was Robert Bragg, who reported that the monster was swimming rapidly toward the ship with its head and about 15 feet of its body out of the water, or 4.5 meters. As it drew closer he saw its tongue, which he described as looking like a harpoon about 2 feet long, or 61 centimeters. He even reported that the animal raised its tongue almost straight up several times. He also said it was dark brown and smooth. The third Laura witness, helmsman William Somerby, corroborated Bragg’s details, including the animal’s tongue, which he mentioned was light brown. As the monster passed within 40 feet of the ship, or 12 meters, Somerby even saw one of its eyes clearly. He said it was the size of an ox’s eye and was completely dark brown or possibly black. He and Bragg both noted that the animal had a bunch above its eyes, presumably meaning a bump or knob of some kind. All three men said that they were familiar with whales and the animal was not a whale. August 14 was a warm day and the water was calm. A man named Matthew Gaffney, a ship’s carpenter by trade but in his heart a monster hunter, borrowed a boat and took his brother and a friend with him to row. He also took a musket. As the small boat approached cautiously, the monster was spiraling around in the water, as various people reported it doing on and off throughout the day. Gaffney waited until the boat was as close as it could safely approach without risking being capsized, then fired a shot at the monster’s head. He was a good marksman and was certain he hit the animal, which sank immediately below the surface and vanished. Worried that the wounded monster would be enraged once its initial shock wore off, Gaffney and all the other boats on the harbor took off for shore. But when the sea monster resurfaced some distance off, it was obviously unbothered by being shot at. It continued its apparently playful circling around in the harbor. Several witnesses who saw the monster on August 14, before and after Gaffney’s attempt to shoot it, gave statements. William H. Foster said it at first moved slowly, but then sped up and twisted and turned through the water. Sometimes its head would bend around toward its tail, and Foster specifically said that when that happened, parts of its body between the bunches would raise up as much as 8 inches out of the water, or 20 centimeters, showing that the animal was at least 40 feet long, or 12 meters. Lonson Nash saw the sea serpent and reported that it moved quickly and left a long wake, and that while it swam underwater sometimes, it didn’t seem to be very far under. He could track its progress underwater by the disturbance it made on the surface. He also saw it double around so that its head was sometimes near its tail, but he mentioned that when it was swimming forward, it appeared perfectly straight. Later that day, a shipmaster named Epes Ellery saw the monster’s head through a spyglass. He reported that it was flattened on top like a snake’s and that its mouth resembled a snake’s mouth—presumably meaning it had a thin lower jaw. He reported that its joints were the size of two-gallon kegs and rose about 6 inches above the surface, or 15 centimeters. He said the animal swam with a vertical motion, not a side-to-side motion. An unnamed woman reported that the sea monster’s bunches looked like gallon kegs tied in a line. Another man said he saw the creature’s bunches at the surface as it lay still for a while, and that around 50 feet, or 15 meters, of its length was visible although he couldn’t see its head or tail. Other witnesses that same day reported much the same thing. Captain Elkanah Finney saw the sea monster from shore later in August, after his son reported seeing something strange in the harbor. Finney first thought it was a bunch of seaweed, but when he looked at it through his spyglass he realized it was an animal moving quickly through the water. He said it might have been 100 feet long, or 30 meters, with 30 or 40 bunches down its length. In fact, he said it looked like a string of buoys and that each bunch was about the size of a barrel. There are lots of other reports, all of them similar t
While I’m at Dragon Con, here’s an old Patreon episode about Tennessee water mysteries, including some spooky sightings of what were probably bears, and some mystery fish! Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. As this episode goes live, I should be at Dragon Con, so I decided to go ahead and schedule an old Patreon episode to run instead of trying to get a new episode ready in time. It’s about some water mysteries in my home state of Tennessee, although I actually just moved away from Tennessee to Georgia. Tennessee is in the southeastern United States, a long thin state divided into three geographical sections. East Tennessee borders the southern Appalachian Mountains, Middle Tennessee is on the Cumberland Plateau, and West Tennessee borders the Mississippi River. The only natural lake in the state is Reelfoot in northwestern Tennessee, a shallow, swampy body of water formed in the early 19th century. Before 1811, instead of a lake a small river flowed through the area, a tributary of the Mississippi. In earlier accounts, Reelfoot River is called Red Foot River. Most of the residents of the area at the time were Choctaw, although white settlers lived in the small town of New Madrid near the bank of the Mississippi. From December 1811 through February 1812, a series of earthquakes in the New Madrid Seismic Zone changed the land radically. There were three main quakes and innumerable smaller ones, ranging from an estimated 6.7 for the smallest quake to a possible 8.8 for the largest. In the initial quake and aftershocks on 16 December 1811, chimneys collapsed, trees fell, and fissures opened and closed, projecting water or sand high in the air. Boats on the Mississippi capsized as huge waves crashed from bank to bank. A woman named Eliza Bryan, who lived in New Madrid, wrote an account of the quakes: On the 16th of December, 1811, about 2 o’clock a.m., a violent shock of earthquake, accompanied by a very awful noise, resembling loud but distant thunder, but hoarse and vibrating, followed by complete saturation of the atmosphere with sulphurous vapor, causing total darkness. The screams of the inhabitants, the cries of the fowls and beasts of every species, the falling trees, and the roaring of the Mississippi, the current of which was retrograde for a few minutes, owing, as it is supposed, to an eruption in its bed, formed a scene truly horrible. From this time on until the 4th of February the earth was in continual agitation, visibly waving as a gentle sea. On that day there was another shock…and on the 7th, at about 4 o’clock a.m., a concussion took place so much more violent than those preceding it that it is denominated the ‘hard shock.’ The Mississippi first seemed to recede from its banks, and its waters gathered up like a mountain… Then, rising 15 or 20 feet perpendicularly and expanding, as it were, at the same time, the banks overflowed with a retrograde current rapid as a torrent. A riverboat captain reported in another account that his boat was caught in a ferocious current on the Mississippi, crashing across waves he estimated as six feet high, or 1.8 m. He also reported whirlpools that he estimated were 30 feet deep, or 9 m. He saw all the trees on either bank fall at once. The December quake was so large it was felt across North America, from Canada to the Gulf Coast. Then, only five weeks later, it happened again, followed by the third major earthquake on 7 February. Only 15 miles, or 24 km, from the epicenter, the land dropped 20 feet, or 6 m, and created a basin that immediately filled with water. Reelfoot Lake was formed, Tennessee’s only natural lake. Reelfoot is a state park these days, popular with boaters, fishers, hunters, and birdwatchers. The only cryptid sighting I could find took place in the Glass community near Obion, within ten miles, or 16 km, of the lake. A man who grew up in Glass reported in 2009 that a bipedal creature 8 or 9 feet tall, or 2.5-2.7 m, and covered in off-white hair was well-known to the residents of the community. They referred to it as “the white thing.” The man had seen it several times as a child and his father, who was initially a skeptic, changed his mind when he found huge tracks in the woods. Technically, Tennessee has two natural lakes, but the “Lost Sea” is underground. It’s located in a large cave system called Craighead Caverns in the foothills of the Great Smoky Mountains. It’s one of the largest underground lakes ever found, although it hasn’t been fully explored so its actual size isn’t known. The lake doesn’t support any known animals, although scientific explorations haven’t been conducted as far as I could find. In the 1960s the cave owners stocked the lake with rainbow trout in hopes that they would discover an exit to the surface. They didn’t, and the fish have to be fed and restocked since they have no natural food sources and won’t spawn in the lake. The cave, and the lake, are a local tourist attraction. Besides Reelfoot Lake, Tennessee is home to many man-made lakes. Most are in East Tennessee. During the Great Depression, President Roosevelt set up the New Deal plan, creating government-funded projects to employ out-of-work Americans. The Tennessee Valley Authority was founded in 1933 to improve the lives of people who lived along the Tennessee River and its tributaries. To curb seasonal flooding and stop the spread of malaria, and to bring electricity to residents, TVA built numerous hydroelectric dams. I grew up in a town built in the 1930s to house workers on Norris Dam, which formed Norris Lake from the Clinch River. Norris Dam was TVA’s first large project, completed in 1936. This makes the lake only 85 years old, but that’s certainly long enough for local lore to grow up around it. As a kid I heard about monster catfish—as big as a VW Beetle—living at the bottom of the spillway. The largest fish ever caught in the lake, however, was a 49.5 pound, or 22.45 kg, striped bass in 1978. The largest catfish ever caught in Tennessee was a blue catfish that weighed 112 pounds, or 50.8 kg. That’s huge, but not the size of a car. There are other strange reports from around Norris Lake. On the night of 3 March 2012, two men went to a clearing near the first man’s house, in a swampy area near the lake’s edge, to build a bonfire and talk. They noticed footsteps and the sound of a large animal moving around in the trees nearby but assumed it was a white-tailed deer, although both men did have the sensation of being watched throughout the evening. Around midnight, when the men decided to leave, they heard sticks breaking in the trees as though being stepped on. One of the men knocked on a tree with a piece of wood and heard knocking in response, and then both were frightened by a loud, deep, long growl. Black bears do occasionally stray into the Norris area from the nearby Smoky Mountains, but black bears don’t growl—they make distinctive moaning or chuffing noises instead. They also usually stay away from humans and fire. In the late 1980s, possibly September of 1988, a woman returning to her car after a day of fishing with her family saw a huge hairy Bigfoot-type figure cross the trail ahead of her at speed. She only caught a quick glimpse of it at dusk but estimated it was 8 or 9 feet tall, or 2.5-2.7 m, with long arms that swung oddly as it took huge strides. Other Tennessee lakes have their share of mysteries too. The “catzilla” legend is repeated in just about every waterway, with the catfish’s size usually compared to that of a small car. There really are some enormous fish in Tennessee’s lakes, though. In January of 2021 a man caught and released an American paddlefish in Cherokee Lake that might have approached the world record weight of 151 pounds, or 68.5 kg. It was six feet long, or 1.8 m. There’s also a 19th century mystery associated with the Tennessee River. The earliest report of it I could find is from April 1878 in the Chattanooga Daily Times, an account from an old resident about river monster sightings from earlier that century. The first sighting by a white settler is from 1822, when a man named Buck Sutton was fishing and sighted the monster. The next reported sighting was near the same area five years later, when a man named Billy Burns saw the monster while crossing the ferry. Jim Windom was fishing in 1829 when he saw it. All three men died the summer after their encounters, although subsequent sightings (including 1836 and 1839) didn’t lead to anyone’s death. The sightings all apparently took place in a part of the Tennessee River near Chattanooga, now dammed to form Chickamauga Lake. At the time the river there was relatively sluggish and shallow, with many shoals. The monster was described as serpent-like and about the length of a canoe, or around 20 to 25 feet long, or 6 to 7.6 m. At least one report says it had a doglike head. Billy Burns reported that its belly was yellow and its back was blue. The most interesting detail comes from at least two reports, that of a tall black fin on its back that stood at least 18 inches high, or 45 cm, or possibly two feet high, or 61 cm. The Tennessee River has its share of unusual animals, from tiny freshwater jellyfish to the paddlefish, a filter feeder with an elongated rostrum, but nothing with such a large and prominent dorsal fin. The lake sturgeon, which can grow well over seven feet long, or 2.2 m, has bony plates on its back and an elongated snout, which doesn’t fit the description given by witnesses. The alligator gar can grow 10 feet long, or 3 m, but like the lake sturgeon, its dorsal fin is small and set far back on the body. The longnose gar can grow six feet long, or 1.8 m, but again, its dorsal fin is small and set far back on its body, and as its name implies, its jaws are elongated. In shallow water the tail fins of any of these fish or others can show above the surface higher than the dorsal fin, but not two feet out of the
Thanks to Mila for suggesting one of our topics today! Further reading: The mystery of the ‘missing’ giant millipede Never-before-seen head of prehistoric, car-size ‘millipede’ solves evolutionary mystery A centipede compared to a millipede: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. Let’s finish invertebrate August this year with two arthropods. One is a suggestion from Mila and the other is a scientific mystery that was solved by a recent discovery, at least partially. Mila suggested we learn about centipedes, and the last time we talked about those animals was in episode 100. That’s because centipedes are supposed to have 100 legs. But do centipedes actually have 100 legs? They don’t. Different species of centipede have different numbers of legs, from only 30 to something like 300. Like other arthropods, the centipede has to molt its exoskeleton to grow larger. When it does, some species grow more segments and legs. Others hatch with all the segments and legs they’ll ever have. A centipede’s body is flattened and made up of segments, a different number of segments depending on the centipede’s species, but at least 15. Each segment has a pair of legs except for the last two, which have no legs. The first segment’s legs project forward and end in sharp claws with venom glands. These legs are called forcipules, and they actually look like pincers. No other animal has forcipules, only centipedes. The centipede uses its forcipules to capture and hold prey, and to defend itself from potential predators. A centipede pinch can be painful but not dangerous unless you’re also allergic to bees, in which case you might have an allergic reaction to a big centipede’s venom. Small centipedes can’t pinch hard enough to break a human’s skin. A centipede’s last pair of legs points backwards and sometimes look like tail stingers, but they’re just modified legs that act as sensory antennae. Each pair of a centipede’s legs is a little longer than the pair in front of it, which helps keep the legs from bumping into each other when the centipede walks. The centipede lives throughout the world, even in the Arctic and in deserts, but it needs a moist environment so it won’t dry out. It likes rotten wood, leaf litter, soil, especially soil under stones, and basements. Some centipedes have no eyes at all, many have eyes that can only sense light and dark, and some have relatively sophisticated compound eyes. Most centipedes are nocturnal. The largest centipedes alive today belong to the genus Scolopendra. This genus includes the Amazonian giant centipede, which can grow over a foot long, or 30 cm. It’s reddish or black with yellow bands on the legs, and lives in parts of South America and the Caribbean. It eats insects, spiders–including tarantulas, frogs and other amphibians, small snakes and lizards, birds, and small mammals like mice. It’s even been known to catch bats in midair by hanging down from cave ceilings and grabbing the bat as it flies by. Some people think that the Amazonian giant centipede is the longest in the world, but this isn’t actually the case. Its close relation, the Galapagos centipede, can grow 17 inches long, or 43 cm, and is black with red legs. But if you think that’s big, wait until you hear about the other animal we’re discussing today. It’s called Arthropleura and it lived in what is now Europe and North America between about 344 and 292 million years ago. Before we talk about it, though, we need to learn a little about the millipede. Millipedes are related to centipedes and share a lot of physical characteristics, like a segmented body and a lot of legs. The word millipede means one thousand feet, but millipedes can have anywhere from 36 to 1,306 legs. That is a lot of legs. It’s probably too many legs. The millipede with 1,306 legs is Eumillipes persephone, found in western Australia and only described in 2021. It lives deep underground in forested areas, where it probably eats fungus that grows on tree roots. It’s long and thin with short legs and no eyes. It’s only about 1 mm in diameter, but can grow nearly 4 inches long, or almost 10 cm. Millipedes mostly eat decaying plant material and are generally chunkier-looking than centipedes. They have two pairs of legs per segment instead of just one, with the legs attached on the underside of the segment instead of on the sides. A millipede usually has short, strong antennae that it uses to poke around in soil and decaying leaves. It can’t pinch, sting, or bite, although some species can secrete a toxic liquid that also smells terrible. Mostly if it feels threatened, a millipede will curl up and hope the potential predator will leave it alone. The biggest millipede alive today is probably the giant African millipede, which can grow over 13 inches long, or almost 34 cm, but because millipedes are common throughout the world and are often hard for scientists to find, there may very well be much larger millipedes out there that we just don’t know about. As an example, in 1897 scientists discovered a new species of giant millipede in Madagascar and named it Spirostreptus sculptus. One specimen found was almost 11 inches long, or over 27 cm. But after that, no scientist saw the millipede again—until 2023, when a scientific expedition looking for lost species rediscovered it, along with 20 other species of animal. It turns out that the millipede isn’t even uncommon in the area, so the local people probably knew all about it. But Arthropleura was way bigger than any millipede or centipede alive today. It could grow at least 8 ½ feet long, or 2.6 meters, and possibly longer. It probably weighed over 100 lbs, or 45 kg. We have plenty of fossilized specimens, but not one of them has an intact head. Then scientists discovered two beautifully preserved juvenile specimens in France, and CT scans in 2024 revealed that both specimens had nearly complete heads. The big question about Arthropleura was whether it was more closely related to millipedes or centipedes, or if it was something very different. Without a head to study, no one could answer that question with any confidence, although a lot of scientists had definite opinions one way or another. Studies of the head scans determined that Arthropleura was indeed more closely related to modern millipedes—but naturally, since it lived so long ago, it also had a lot of traits more common in centipedes today. It also had something not found in either animal, eyes on little stalks. There are still lots of mysteries surrounding Arthropleura. For instance, what did it eat? Because of its size, scientists initially thought it might be a predator. Now that we know it was more closely related to the millipede than the centipede, scientists think it might have eaten like a millipede too. That would mean it mostly ate decaying vegetation, but we don’t know for sure. We also don’t know if it could swim or not. We have a lot of Arthropleura tracks that seem to be made along the water’s edge, so some scientists hypothesize that it could swim or at least spent part of its time in the water. Other scientists point out that Arthropleura didn’t have gills or any other way to absorb oxygen while in the water, so it was more likely to be fully terrestrial. The first set of scientists sometimes comes back and argues that we don’t actually know how Arthropleura breathed or even why it was able to grow so large, and maybe it really did have gills. A third group of scientists then has to come in and say, hey, everyone calm down, maybe the next specimen we find will show evidence of both lungs and gills, and it spent part of its time on land and part in shallow water, so there’s no need to argue. And then they all go for pizza and remember that they really love arthropods, and isn’t Arthropleura the coolest arthropod of all? At least, I think that’s how it works among scientists. And Arthropleura is really cool. You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. Thanks for listening!
Episode 446: Termites

Episode 446: Termites

2025-08-1809:13

Thanks to Yonatan and Eilee for this week’s suggestion! Further reading: Replanted rainforests may benefit from termite transplants A vast 4,000-year-old spatial pattern of termite mounds A family of termites has been traversing the world’s oceans for millions of years Worker termites [photo from this site]: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week we have a topic I’ve been wanting to cover for a while, suggested by both Yonatan and Eilee. It’s the termite episode! We talk a lot about animals that eat termites, and in many cases termite-eating animals also eat ants. I’ve always assumed that termites and ants are closely related, but they’re not. Termites are actually closely related to cockroaches, which are both in the order Blattodea, but it’s been 150 million years since they shared a common ancestor. They share another trait too, in that no one wants either insect infesting their house. Like most cockroach species, though, most termite species don’t want anything to do with humans. They live in the wild, not in your house, and they’re incredibly common throughout most of the world. That’s why so many animals eat termites almost exclusively. There are just so many termites to eat! There are around 3,000 species of termite and about a third of them live in Africa, with another 400 or so in South America, 400 or so in Asia, and 400 or so in Australia. The rest live in other parts of the world, but they need warm weather to survive so they’re not very common in cold areas like northern Europe. A termite colony consists of a queen, soldiers, and workers, which sounds very similar to ants, but there are some major differences. Worker termites take care of the nest and babies, find and process food so the other termites can eat it, and store the processed food. They also take care of the queen. Unlike ants and bees, worker termites aren’t only female and aren’t always sterile. Soldiers are bigger and stronger than workers, with much bigger heads and jaws so they can fight off potential predators. In some species, the soldiers have such big jaws that they can’t actually eat without help. Worker termites feed them. Finally, the queen is the largest individual in the colony, usually considerably larger than workers, but unlike queen bees and ants, she has a mate who stays with her throughout her life, called a king. Some termite queens can live to be as much as 50 years old, and she and the king spend almost their entire lives underground in a nesting chamber. The larger the colony, the more likely it is that the colony has more than one queen. The main queen is usually the one that started the colony along with her king, and when it was new they did all the work—taking care of the eggs and babies, foraging for food, and building the nest itself. As the first workers grew up, they took on more of those tasks, including expanding the nest. Workers are small and their bodies have little to no pigment, so that they appear white. Some people call them white ants, but of course they’re not ants. Workers have to stay in a humid environment like the nest or their bodies dry out. Workers and soldiers don’t have eyes, although they can probably sense light and dark, and instead they navigate using their antennae, which can sense humidity and vibrations, and chemoreceptors that sense pheromones released by other termites. Termites have another caste that’s not as common, usually referred to as reproductives. These are future kings and queens, and they’re larger and stronger than workers. They also have eyes and wings. When outside conditions are right, usually when the weather is warm and humid, the reproductive termites leave the nest and fly away. Males and females pair off and search for a new nesting site to start their own colony. Termites mainly eat dead plant material, including plant material that most other animals can’t digest. A termite’s gut contains microbes that are found nowhere else in the world, which allow the termite to digest cellulose found in plants, especially wood. Baby termites aren’t born with these microbes, but they gain them from worker termites when the babies are fed or groomed. In some areas termites will eat the wood used to build houses, which is why people don’t like them, but termites are actually important to the ecosystems where they live, recycling nutrients and helping break down fallen trees so other plants can grow. They also host nitrogen-fixing bacteria, which are important to plant life. A recent study in Australia determined that termites are really important for rainforest health. In some parts of Australia, conservation groups have started planting rainforest trees to restore deforested areas. Decomposers like termites are slower to populate these areas, with one site that was studied 12 years after planting showing limited termite activity. That means it takes longer for fallen branches, logs, and stumps to decay, which means it takes longer for the nutrients in those items and others to be available for other plants to use. The problem seems to be that the new forests don’t have very many dead trees yet, so the termites don’t have a lot to eat. The team is considering bringing in fallen logs from more established forests so the termites have food and can establish colonies more easily. Some species of termite in Africa, Australia, and South America build mounds, and those mounds can be huge. A mound is built above ground out of soil and termite dung, held together with termite saliva. It’s full of tunnels and shafts that allow the termites to move around inside and which bring air into the main part of the nest, which is mostly below ground. Different species build differently-shaped mounds, including some that are completely round. Some termite mounds can be twice the height of a tall person, and extremely big around. The biggest measured had a diameter of almost 100 feet around, or 30 meters. But in at least one place on earth, in northeastern Brazil, there’s a network of interconnected termite mounds that is as big as Great Britain. The complex consists of about 200 million mounds, each of them about 8 feet tall, or 2.5 meters, and about 30 feet across, or 9 meters. They’re just huge piles of soil excavated from underground, and tests have determined that the mounds range in age from 690 years old to at least 3,820 years old and are connected by tunnels–but the nests under the mounds are still in use! Not all termite species build mounds or even live underground. A group called drywood termites live in wood and usually have much smaller colonies than other termites. They probably split off from other termites about 100 million years ago, and a 2022 genetic study determined that they probably originated in South America. But drywood termites have spread to many other parts of the world, and scientists think it’s because their homes float. They estimate that over the last 50 million years, drywood termites have actually floated across entire oceans at least 40 times. When their floating log homes washed ashore, the termites colonized the new land and adapted to local conditions. A lot of people worry that termites will damage their homes, but in many parts of the world, people eat termites. The termites are fried or roasted until they’re nicely crunchy, and they’re supposed to have a nut-like flavor. They’re also high in protein and important fats. So the next time you worry about your house, you can shout at any potential termites that if they’re around, you might just eat them as a snack. You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. Thanks for listening!
Episode 445: Salinella

Episode 445: Salinella

2025-08-1107:01

It’s a tiny mystery animal! Further reading: Salinella – what the crap was it? Some of Frenzel’s drawings of Salinella: Show transcript: Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. Johannes Frenzel was a German zoologist in the 19th century. He worked in Argentina for several years, studying microscopic and near-microscopic animals, and seemed to be a perfectly good scientist who did good work but didn’t make a real splash. But these days he’s remembered for a mystery animal that is still causing controversy in the scientific community. Frenzel described a strange worm-like animal he named Salinella salve in 1892, and Salinella hasn’t been seen since. According to Frenzel’s description of it, Salinella is very different from every other animal known. It’s so different, in fact, that some scientists think Frenzel just made the whole thing up. In 1890 or 1891, a colleague gave Frenzel a soil sample reportedly from the salt pans in Argentina. We don’t know exactly where it came from, just that it’s somewhere in the Río Cuarto region. Frenzel put the sample in an aquarium and added water, although apparently some iodine got mixed in too, either on purpose or maybe by accident. Then he forgot all about the sample for a few weeks. It wasn’t covered and Frenzel reported that some dead flies had fallen into the aquarium. When Frenzel finally got around to examining the sample, he discovered something he had never seen before. No one else had either, before or since. He said it was a worm-like animal about 2 millimeters long, and there wasn’t just one of them. There were quite a few in the sample, some in the soil and some attached to the glass. When he studied the tiny worms, he discovered they had a very basic, very unusual body plan. It was basically just a tube open at both ends, with a single layer of cells around the interior sac. Each cell was covered with cilia on both the exterior side of the animal and the interior side. Cilia are hair-like structures, and salinella used them to move around, a method of propulsion called ciliary gliding. It didn’t have any organs or even tissues—basically nothing you’d expect even in a very simple animal. It reproduced by splitting down the middle, called transverse fission. Assuming Frenzel was describing a real animal, and was describing it accurately, this body plan is unlike any other animal known. It’s most similar to what scientists think the body plan was of the precursors to sea sponges. It’s also similar in some ways to a group of parasitic animals called Mesozoa, which are wormlike, very simple, only a few millimeters long at most, and which have an outer layer of ciliated cells. Mesozoans aren’t well understood and most scientists these days think the group is made up of animals that aren’t closely related to each other. Salinella has sometimes been considered a mesozoan, but it’s still not that close of a match. Frenzel took detailed notes and made careful drawings of Salinella, and compared it to known animals like protozoans. His description of the animal is solid, and he described many other animals in his career that are well-known to scientists today. The main reason some scientists now think Frenzel made Salinella up is because it’s so weird and no one has been able to find it since. Frenzel died in 1897 without ever having the chance to look for more specimens. In 1963 an American biologist placed Salinella in its own phylum, which he named Monoblastozoa. In the early 2010s, a team of German scientists visited various saline lakes in Argentina and Chile in hopes of finding Salinella specimens, but without luck. The area where the original soil sample came from has mostly been converted to farmland, so if Salinella was restricted to that one spot, it might well be extinct now. So what happened to the type specimens that Frenzel collected? We don’t know. They vanished sometime between 1891 when Frenzel moved back to Germany from Argentina, and now. It might even be that he couldn’t preserve the specimens, since he reported that every time he tried to preserve one, it disintegrated. While I was researching this episode, I wondered if Salinella actually came from the flies that reportedly fell into the aquarium. Many parasites evolve to become very simple, like Myxozoa that we talked about in episode 422. But Frenzel observed Salinella apparently eating organic matter in the soil, which isn’t something a fly parasite would or could do. At this point, unless we can find a living Salinella specimen, there’s no way to know if the animal was real or a figment of Frenzel’s imagination. Some scientists even suggest that Frenzel was mistaken in his description and the real animal might actually be very different from what he described. Considering how detailed and careful Frenzel’s notes and drawings are, and how many other species he described without causing any controversy at all, I think Salinella was a real animal, just a weird one. Let’s hope that one day it’s discovered again so we can learn more about it. You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. Thanks for listening!
loading
Comments (6)

Happy⚛️Heretic

Always an enjoyable listen.

Sep 18th
Reply

tracie johnson

Just happened upon this podcast and I'm hooked! It's both funny and informative. Thanks so much for putting this out there! I love animals and learning about them. Let me know if you are selling t-shirts to support the podcast. I will buy one for every day of the week. Like my cat, I don't mind wearing the same thing everyday! Keep up the great work!

Jul 12th
Reply

Denise Nichols

Moxie sent me and I'm so glad!! Delightful podcast on my favorite topic ...animals of every kind and description !!! I picked the one on dogs first and was so delighted to see the Carolina Dog pictured and spoken of in notes. My mother had the sweetest smartest Carolina named Rouse for 14 years. Mother was 88 when Rosie passed and she never got over it.Mom passed away the next year. it makes me smile knowing they're together now.

Jun 30th
Reply (1)

PookyBunny

I enjoy hearing about interesting animals and, even if I have done some reading before, you never fail to teach me something I didn't know. I look forward to the next podcast!

Feb 2nd
Reply (1)