DiscoverTech Talks Daily
Tech Talks Daily
Claim Ownership

Tech Talks Daily

Author: Neil C. Hughes

Subscribed: 1,758Played: 68,627
Share

Description

If every company is now a tech company and digital transformation is a journey rather than a destination, how do you keep up with the relentless pace of technological change?


Every day, Tech Talks Daily brings you insights from the brightest minds in tech, business, and innovation, breaking down complex ideas into clear, actionable takeaways.


Hosted by Neil C. Hughes, Tech Talks Daily explores how emerging technologies such as AI, cybersecurity, cloud computing, fintech, quantum computing, Web3, and more are shaping industries and solving real-world challenges in modern businesses.


Through candid conversations with industry leaders, CEOs, Fortune 500 executives, startup founders, and even the occasional celebrity, Tech Talks Daily uncovers the trends driving digital transformation and the strategies behind successful tech adoption. But this isn't just about buzzwords.


We go beyond the hype to demystify the biggest tech trends and determine their real-world impact. From cybersecurity and blockchain to AI sovereignty, robotics, and post-quantum cryptography, we explore the measurable difference these innovations can make.


Whether improving security, enhancing customer experiences, or driving business growth, we also investigate the ROI of cutting-edge tech projects, asking the tough questions about what works, what doesn't, and how businesses can maximize their investments.


Whether you're a business leader, IT professional, or simply curious about technology's role in our lives, you'll find engaging discussions that challenge perspectives, share diverse viewpoints, and spark new ideas.


New episodes are released daily, 365 days a year, breaking down complex ideas into clear, actionable takeaways around technology and the future of business.
3441 Episodes
Reverse
What happens when artificial intelligence starts accelerating cyberattacks faster than most organizations can test, fix, and respond? In this episode of Tech Talks Daily, I sat down with Sonali Shah, CEO of Cobalt, to unpack what real-world penetration testing data is revealing about the current state of enterprise security. With more than two decades in cybersecurity and a background that spans finance, engineering, product, and strategy, Sonali brings a grounded, operator-level view of where security teams are keeping up and where they are quietly falling behind. Our conversation centers on what happens when AI moves from an experiment to an attack surface. Sonali explains how threat actors are already using the same AI-enabled tools as defenders to automate reconnaissance, identify vulnerabilities, and speed up exploitation. We discuss why this is no longer theoretical, referencing findings from companies like Anthropic, including examples where models such as Claude have demonstrated both power and unpredictability. The takeaway is sobering but balanced. AI can automate a large share of the work, but human expertise still plays a defining role, both for attackers and defenders. We also dig into Cobalt's latest State of Pentesting data, including why median remediation times for serious vulnerabilities have improved while overall closure rates remain stubbornly low. Sonali breaks down why large enterprises struggle more than smaller organizations, how legacy systems slow progress, and why generative AI applications currently show some of the highest risk with some of the lowest fix rates. As more companies rush to deploy AI agents into production, this gap becomes harder to ignore. One of the strongest themes in this episode is the shift from point-in-time testing to continuous, programmatic risk reduction. Sonali explains what effective continuous pentesting looks like in practice, why automation alone creates noise and friction, and how human-led testing helps teams move from assumptions to evidence. We also address a persistent confidence gap, where leaders believe their security posture is strong, even when testing shows otherwise. We close by tackling one of the biggest myths in cybersecurity. Security is never finished. It is a constant process of preparation, testing, learning, and improvement. The organizations that perform best accept this reality and build security into daily operations rather than treating it as a one-off task. So as AI continues to accelerate both innovation and attacks, how confident are you that your security program is keeping pace, and what would continuous testing change inside your organization? I would love to hear your thoughts. Useful Links Connect with Sonali Shah Learn more about Cobalt Check out the Cobalt Learning Center State of Pentesting Report Thanks to our sponsors, Alcor, for supporting the show.
What happens when AI stops talking and starts working, and who really owns the value it creates? In this episode of Tech Talks Daily, I'm joined by Sina Yamani, founder and CEO of Action Model, for a conversation that cuts straight to one of the biggest questions hanging over the future of artificial intelligence.  As AI systems learn to see screens, click buttons, and complete tasks the way humans do, power and wealth are concentrating fast. Sina argues that this shift is happening far quicker than most people realize, and that the current ownership model leaves everyday users with little say and even less upside. Sina shares the thinking behind Action Model, a community-owned approach to autonomous AI that challenges the idea that automation must sit in the hands of a few giant firms. We unpack the concept of  Large Action Models, AI systems trained to perform real online workflows rather than generate text, and why this next phase of AI demands a very different kind of training data. Instead of scraping the internet in the background, Action Model invites users to contribute actively, rewarding them for helping train systems that can navigate software, dashboards, and tools just as a human worker would. We also explore ActionFi, the platform's outcome-based reward layer, and why Sina believes attention-based incentives have quietly broken trust across Web3. Rather than paying for likes or impressions, ActionFi focuses on verifying real actions across the open web, even when no APIs or integrations exist. That raises obvious questions around security and privacy.  This conversation does not shy away from the uncomfortable parts. We talk openly about job displacement, the economic reality facing businesses, and why automation is unlikely to slow down. Sina argues that resisting change is futile, but shaping who benefits from it remains possible. He also reflects on lessons from his earlier fintech exit and how movements grow when people feel they are pushing back against an unfair system. By the end of the episode, we look ahead to a future where much of today's computer-based work disappears and ask what success and failure might look like for a community-owned AI model operating at scale. If AI is going to run more of the internet on our behalf, should the people training it have a stake in what it becomes, and would you trust an AI ecosystem owned by its users rather than a handful of billionaires? Useful Links Connect with Sina Yamani on LinkedIn or X Learn more about the Action Model Follow on X Learn more about the Action Model browser extension Check out the whitelabel integration docs Join their Waitlist Join their Discord community Thanks to our sponsors, Alcor, for supporting the show.
What does it really take to remove decades of technical debt without breaking the systems that still keep the business running? In this episode of Tech Talks Daily, I sit down with Pegasystems leaders Dan Kasun, Head of Global Partner Ecosystem, and John Higgins, Chief of Client and Partner Success, to unpack why legacy modernization has reached a breaking point, and why AI is forcing enterprises to rethink how software is designed, sold, and delivered. Our conversation goes beyond surface-level AI promises and gets into the practical reality of transformation, partner economics, and what actually delivers measurable outcomes. We explore how Pega's AI-powered Blueprint is changing the entry point to enterprise-grade workflows, turning what used to be long, expensive discovery phases into fast, collaborative design moments that business and technology teams can engage with together. Dan and John explain why the old "wrap and renew" approach to legacy systems is quietly compounding technical debt, and why reimagining workflows from the ground up is becoming essential for organizations that want to move toward agentic automation with confidence. The discussion also dives into Pega's deep collaboration with Amazon Web Services, including how tools like AWS Transform and Blueprint work together to accelerate modernization at scale.  We talk candidly about the evolving role of partners, why the idea of partners as an extension of a sales force is outdated, and how marketplaces are reshaping buying, building, and operating enterprise software. Along the way, we tackle some uncomfortable truths about AI hype, technical debt, and why adding another layer of technology rarely fixes the real problem. This is an episode for anyone grappling with legacy systems, skeptical of quick-fix AI strategies, or rethinking how partner ecosystems need to operate in a world where speed, clarity, and accountability matter more than ever. As enterprises move toward multi-vendor, agent-driven environments, are we finally ready to retire legacy thinking along with legacy systems, or are we still finding new ways to delay the inevitable? Useful Links Connect with Dan Kasun Connect with John Higgins Learn more about Pega Blueprint Thanks to our sponsors, Alcor, for supporting the show.
What does it really take to move AI from proof-of-concept to something that delivers value at scale? In this episode of Tech Talks Daily, I'm joined by Simon Pettit, Area Vice President for the UK and Ireland at UiPath, for a grounded conversation about what is actually happening inside enterprises as AI and automation move beyond experimentation. Simon brings a refreshingly practical perspective shaped by an unconventional career path that spans the Royal Navy, nearly two decades at NetApp, and more than seven years at UiPath. We talk about why the UK and Ireland remain a strategic region for global technology adoption, how London continues to play a central role for companies expanding into Europe, and why AI momentum in the region is very real despite the broader economic noise. A big part of our discussion focuses on why so many organizations are stuck in pilot mode. Simon explains how hype, fragmented experimentation, and poor qualification of use cases often slow progress, while successful teams take a very different approach. He shares real examples of automation already delivering measurable outcomes, from long-running public sector programs to newer agent-driven workflows that are now moving into production after clear ROI validation. We also explore where the next wave of challenges is emerging. As agentic AI becomes easier for anyone to create, Simon draws a direct parallel to the early days of cloud computing and VM sprawl. Visibility, orchestration, and cost control are becoming just as important as innovation itself. Without them, organizations risk losing control of workflows, spend, and accountability as agents multiply across the business. Looking ahead, Simon outlines why AI success will depend on ecosystems rather than single platforms. Partnerships, vertical solutions, and the ability to swap technologies as the market evolves will shape how enterprises scale responsibly. From automation in software testing to cross-functional demand coming from HR, finance, and operations, this conversation captures where AI is delivering today and where the real work still lies. If you're trying to separate AI momentum from AI noise, this episode offers a clear, experience-led view of what it takes to turn potential into progress. What would need to change inside your organization to move from pilots to production with confidence? Useful Links Learn more about Simon Pettit Connect with UiPath Follow on LinkedIn Thanks to our sponsors, Alcor, for supporting the show.
What happens when speed, scale, and convenience start to erode trust in the images brands rely on to tell their story? In this episode of Tech Talks Daily, I spoke with Dr. Rebecca Swift, Senior Vice President of Creative at Getty Images, about a growing problem hiding in plain sight, the rise of low-quality, generic, AI-generated visuals and the quiet damage they are doing to brand credibility. Rebecca brings a rare perspective to this conversation, leading a global creative team responsible for shaping how visual culture is produced, analyzed, and trusted at scale. We explore the idea of AI "sloppification," a term that captures what happens when generative tools are used because they are cheap, fast, and available, rather than because they serve a clear creative purpose. Rebecca explains how the flood of mass-produced AI imagery is making brands look interchangeable, stripping visuals of meaning, craft, and originality. When everything starts to look the same, audiences stop looking altogether, or worse, stop trusting what they see. A central theme in our discussion is transparency. Research shows that the majority of consumers want to know whether an image has been altered or created using AI, and Rebecca explains why this shift matters. For the first time, audiences are actively judging content based on how it was made, not just how it looks. We talk about why some brands misread this moment, mistaking AI usage for innovation, only to face backlash when consumers feel misled or talked down to. Rebecca also unpacks the legal and ethical risks many companies overlook in the rush to adopt generative tools. From copyright exposure to the use of non-consented training data, she outlines why commercially safe AI matters, especially for enterprises that trade on trust. We discuss how Getty Images approaches AI differently, with consented datasets, creator compensation, and strict controls designed to protect both brands and the creative community. The conversation goes beyond risk and into opportunity. Rebecca makes a strong case for why authenticity, real people, and human-made imagery are becoming more valuable, not less, in an AI-saturated world. We explore why video, photography, and behind-the-scenes storytelling are regaining importance, and why audiences are drawn to evidence of craft, effort, and intent. As generative AI becomes impossible to ignore, this episode asks a harder question. Are brands using AI as a thoughtful tool to support creativity, or are they trading long-term trust for short-term convenience, and will audiences continue to forgive that choice?   Useful Links Connect with Dr. Rebecca Swift on LinkedIn VisualGSP Creative Trends Follow on Instagram and LinkedIn Thanks to our sponsors, Alcor, for supporting the show.
What actually happens when a company loses control of its own voice in a world full of channels, platforms, and constant noise? In this episode of Tech Talks Daily, I sat down with Joshua Altman, founder of beltway.media, to unpack what corporate communication really means in 2026 and why it has quietly become one of the most misunderstood leadership functions inside modern organizations. Joshua describes his work as a fractional chief communications officer, a role that sits above individual campaigns, tools, or channels and focuses instead on perception, trust, and consistency across everything a company says and does. Our conversation starts by challenging the assumption that communication is something you "turn on" when a product launches or a crisis hits. Joshua explains why corporate communication is not project-based and not owned by marketing alone. It touches internal updates, investor messaging, brand signals, packaging, email, social platforms, and even the tools teams choose to use every day. If it communicates with internal or external audiences and shapes how the company is perceived, it belongs in the communications function. When that function is missing or fragmented, confusion and noise tend to fill the gap. We also explored why communication has arguably become harder, not easier, despite the explosion of collaboration tools. Email was meant to simplify work, then Slack was meant to replace email, and now AI assistants are transcribing every meeting and surfacing more content than anyone can realistically process. Joshua makes a strong case for simplicity, clarity, and focus, arguing that organizations need to pick channels intentionally and use them well rather than spreading messages everywhere and hoping something lands. Technology naturally plays a big role in the discussion. From the shift away from tape-based media and physical workflows to the accessibility of live global collaboration and affordable computing power, Joshua reflects on how dramatically the workplace has changed since he started his career in video news production. He also shares a grounded view on AI, where it adds real value in speeding up research and reducing busywork, and where human judgment and storytelling still matter most. Toward the end of the conversation, we get into ROI, a question every leader eventually asks. Joshua offers a practical way to think about it, starting with the simple fact that founders, operators, and technical leaders get time back when they no longer have to manage communications themselves. From there, alignment, clarity, and consistency compound over time, even if the impact is not always visible in a single metric. As organizations look ahead and try to make sense of AI, platform shifts, and ever-shorter attention spans, are we investing enough thought into how our companies actually communicate, or are we still mistaking volume for clarity? Useful Links Connect with Joshua Altman Learn more about beltway.media Thanks to our sponsors, Alcor, for supporting the show.
What if your AI systems could explain why something will happen before it does, rather than simply reacting after the damage is done? In this episode of Tech Talks Daily, I sat down with Zubair Magrey, co-founder and CEO of Ergodic AI, to unpack a different way of thinking about artificial intelligence, one that focuses on understanding how complex systems actually behave. Zubair's journey begins in aerospace engineering at Rolls-Royce, moves through a decade of large-scale enterprise AI programs at Accenture, and ultimately leads to building Ergodic, a company developing what he describes as world models for enterprise decision making. World models are often mentioned in research circles, but rarely explained in a way that business leaders can connect to real operational decisions. In our conversation, Zubair breaks that gap down clearly. Instead of training AI to spot patterns in past data and assume the future will look the same, world-model AI focuses on cause and effect. It builds a structured representation of how an organization works, how different parts interact, and how actions ripple through the system over time. The result is an AI approach that can simulate outcomes, test scenarios, and help teams understand the consequences of decisions before they commit to them. We explored why this matters so much as organizations move toward agentic AI, where systems are expected to recommend or even execute actions autonomously. Without an understanding of constraints, dependencies, and system dynamics, those agents can easily produce confident but unrealistic recommendations. Zubair explains how Ergodic uses ideas from physics and system theory to respect real-world limits like capacity, time, inventory, and causality, and why ignoring those principles leads to fragile AI deployments that struggle under pressure. The conversation also gets practical. Zubair shares how world-model simulations are being used in supply chain, manufacturing, automotive, and CPG environments to detect early risks, anticipate disruptions, and evaluate trade-offs before problems cascade across customers and regions. We discuss why waiting for perfect data often stalls AI adoption, how Ergodic's data-agnostic approach works alongside existing systems, and what it takes to deliver ROI that teams actually trust and use. Finally, we step back and look at the organizational side of AI adoption. As AI becomes embedded into daily workflows, cultural change, experimentation, and trust become just as important as models and metrics. Zubair offers a grounded view on how leaders can prepare their teams for faster cycles of change without losing confidence or control. As enterprises look ahead to a future shaped by autonomous systems and real-time decision making, are we building AI that truly understands how our organizations work, or are we still guessing based on the past, and what would it take to change that? Useful Links Connect with Zubair Magrey Learn more about Ergodic AI Thanks to our sponsors, Alcor, for supporting the show.
What does it actually take to build trust with developers when your product sits quietly inside thousands of other products, often invisible to the people using it every day? In this episode of Tech Talks Daily, I sat down with Ondřej Chrastina, Developer Relations at CKEditor, to unpack a career shaped by hands-on experience, curiosity, and a deep respect for developer time. Ondřej's story starts in QA and software testing, moves through development and platform work, and eventually lands in developer relations. What makes his perspective compelling is that none of these roles felt disconnected. Each one sharpened his understanding of real developer friction, the kind you only notice when you have lived with a product day in and day out. We talked about what changes when you move from monolithic platforms to API-first services, and why developer relations looks very different depending on whether your audience is an application developer, a data engineer, or an integrator working under tight delivery pressure. Ondřej shared how his time at Kentico, Kontent.ai, and Ataccama shaped his approach to tooling, documentation, and examples. For him, theory rarely lands. Showing something that works, even in a small or imperfect way, tends to earn attention and respect far faster. At CKEditor, that thinking becomes even more interesting. The editor is everywhere, yet rarely recognized. It lives inside SaaS platforms, internal tools, CRMs, and content systems, quietly doing its job. We explored how developer experience matters even more when the product itself fades into the background, and why long-term maintenance, support, and predictability often outweigh short-term feature excitement. Ondřej also explained why building instead of buying an editor is rarely as simple as teams expect, especially when standards, security, and future updates enter the picture. We also got into the human side of developer relations. Balancing credibility with business goals, staying useful rather than loud, and acting as a bridge between engineering, product, marketing, and the outside world. Ondřej was refreshingly honest about the role ego can play, and why staying close to real usage is the fastest way to keep yourself grounded. If you care about developer experience, internal tooling, or how invisible infrastructure shapes modern software, this conversation offers plenty to reflect on. What have you seen work, or fail, when it comes to earning developer trust, and where do you think developer relations still get misunderstood? Useful Links Connect with Ondrej Chrastina Learn more about CK Editor Thanks to our sponsors, Alcor, for supporting the show.
If artificial intelligence is meant to earn trust anywhere, should banking be the place where it proves itself first? In this episode of Tech Talks Daily, I'm joined by Ravi Nemalikanti, Chief Product and Technology Officer at Abrigo, for a grounded conversation about what responsible AI actually looks like when the consequences are real. Abrigo works with more than 2,500 banks and credit unions across the United States, many of them community institutions where every decision affects local businesses, families, and entire regional economies. That reality makes this discussion feel refreshingly practical rather than theoretical. We talk about why financial services has become one of the toughest proving grounds for AI, and why that is a good thing. Ravi explains why concepts like transparency, explainability, and auditability are not optional add-ons in banking, but table stakes. From fraud detection and lending decisions to compliance and portfolio risk, every model has to stand up to regulatory, ethical, and operational scrutiny. A false positive or an opaque decision is not just a technical issue, it can damage trust, disrupt livelihoods, and undermine confidence in an institution. A big focus of the conversation is how AI assistants are already changing day-to-day banking work, largely behind the scenes. Rather than flashy chatbots, Ravi describes assistants embedded directly into lending, anti-money laundering, and compliance workflows. These systems summarize complex documents, surface anomalies, and create consistent narratives that free human experts to focus on judgment, context, and relationships. What surprised me most was how often customers value consistency and clarity over raw speed or automation. We also explore what other industries can learn from community banks, particularly their modular, measured approach to adoption. With limited budgets and decades-old core systems, these institutions innovate cautiously, prioritizing low-risk, high-return use cases and strong governance from day one. Ravi shares why explainable AI must speak the language of bankers and regulators, not data scientists, and why showing the "why" behind a decision is essential to keeping humans firmly in control. As we look toward 2026 and beyond, the conversation turns to where AI can genuinely support better outcomes in lending and credit risk without sidelining human judgment. Ravi is clear that fully autonomous decisioning still has a long way to go in high-stakes environments, and that the future is far more about partnership than replacement. AI can surface patterns, speed up insight, and flag risks early, but people remain essential for context, empathy, and final accountability. If you're trying to cut through the AI noise and understand how trust, governance, and real-world impact intersect, this episode offers a rare look at how responsible AI is actually being built and deployed today. And once you've listened, I'd love to hear your perspective. Where do you see AI earning trust, and where does it still have something to prove? Useful Links Connect with Ravi Nemalikanti Learn more about Abrigo Thanks to our sponsors, Alcor, for supporting the show.
What really happens after the startup advice runs out and founders are left facing decisions no pitch deck ever prepared them for? In this episode of Tech Talks Daily, I sit down with Vijay Rajendran, a founder, venture capitalist, UC Berkeley instructor, and author of The Funding Framework, to discuss the realities of company building that rarely appear on social feeds or investor blogs. Vijay has spent years working alongside founders at the sharpest end of growth, from early fundraising conversations through to the personal and leadership shifts that scaling demands. That experience shapes a conversation that feels refreshingly honest, thoughtful, and grounded in lived reality. We explore why building something people actually want sounds simple in theory yet proves brutally difficult in practice. Vijay explains how timing, learning velocity, and the willingness to adapt often matter more than stubborn vision, and why many founders misunderstand what momentum really looks like. From there, the discussion moves into investor relationships, not as transactional events, but as long-term partnerships that require founders to shift their mindset from defense to evaluation. The emotional and psychological dynamics of fundraising come into focus, especially the moments when founders underestimate how much power they actually have in shaping those relationships. A big part of this conversation centers on leadership identity. Vijay breaks down the messy transition from being the "chief everything officer" to becoming a true chief executive, and why the most overlooked stage in that journey is learning how to enable others. We talk about the point where founders become the bottleneck, often without realizing it, and why this tends to surface as teams grow and decisions start happening outside the founder's direct line of sight. The plateau many companies hit around scale becomes less mysterious when viewed through this lens. We also challenge some of the most popular startup advice circulating online today, particularly around fundraising volume, pitching styles, and the idea that persistence alone guarantees outcomes. Vijay shares why treating fundraising like enterprise sales, focusing on alignment over volume, and listening more than pitching often leads to better results. The conversation closes with practical reflections on personal growth, co-founder dynamics, and how leaders can regain clarity during periods of pressure without stepping away from responsibility. If you are building a company, leading a team, or questioning whether you are evolving as fast as your business demands, this episode will likely hit closer to home than you expect. And once you've listened, I'd love to hear what resonated most with you and the leadership questions you're still sitting with after the conversation. Useful Links Connect with Vijay Rajendran The Funding Framework Startup Pitch Deck Thanks to our sponsors, Alcor, for supporting the show.
What happens when decades of clinical research experience collide with a regulatory environment that is changing faster than ever? In this episode of Tech Talks Daily, I sat down with Dr Werner Engelbrecht, Senior Director of Strategy at Veeva Systems, for a wide-ranging conversation that explores how life sciences organizations across Europe are responding to mounting regulatory pressure, rapid advances in AI, and growing expectations around transparency and patient trust. Werner brings a rare perspective to this discussion. His career spans clinical research, pharmaceutical development, health authorities, and technology strategy, shaped by firsthand experience as an investigator and later as a senior industry leader.  That background gives him a grounded, practical view of what is actually changing inside pharma and biotech organizations, beyond the headlines around AI Acts, data rules, and compliance frameworks. We talk openly about why regulations such as GDPR, the EU AI Act, and ACT-EU are creating real pressure for organizations that are already operating in highly controlled environments. But rather than framing compliance as a blocker, Werner explains why this moment presents an opening for better collaboration, stronger data foundations, and more consistent ways of working across internal teams. According to him, the real challenge is less about technology and more about how companies manage data quality, align processes, and break down silos that slow everything from trial setup to regulatory response times. Our conversation also digs into where AI is genuinely making progress today in life sciences and where caution still matters. Werner shares why drug discovery and non-patient-facing use cases are moving faster, while areas like trial execution and real-world patient data still demand stronger evidence, cleaner datasets, and clearer governance. His perspective cuts through hype and focuses on what is realistic in an industry where patient safety remains the defining responsibility. We also explore patient recruitment, decentralized trials, and the growing complexity of diseases themselves. Advances in genomics and diagnostics are reshaping how trials are designed, which in turn raises questions about access to electronic health records, data harmonization across Europe, and the safeguards regulators care about most. Werner connects these dots in a way that highlights both the operational strain and the long-term upside. Toward the end, we look ahead at emerging technologies such as blockchain and connected devices, and how they could strengthen data integrity, monitoring, and regulatory confidence over time. It is a thoughtful discussion that reflects both optimism and realism, rooted in lived experience rather than theory. If you are working anywhere near clinical research, regulatory affairs, or digital transformation in life sciences, this episode offers a clear-eyed view of where the industry stands today and where it may be heading next. How should organizations turn regulation into momentum instead of resistance, and what will it take to earn lasting trust from patients, partners, and regulators alike? Useful Links Connect with Dr Werner Engelbrecht Learn more about Veeva Systems Viva Summit Europe and Viva Summit USA Follow on LinkedIn Thanks to our sponsors, Alcor, for supporting the show.
What happens when an industry that has barely changed for generations suddenly finds itself at the center of one of the biggest shifts in modern work? In this episode of Tech Talks Daily, I'm joined by Kate Hayward, UK Managing Director at Xero, for a conversation about how accounting is being reshaped by technology, education, regulation, and changing expectations from clients and talent alike. Kate describes this moment as the largest reorganization of human capital in the history of the profession, and as we talk, it becomes clear why that claim is gaining traction. We explore how AI is shifting accountants away from pure number processing and toward higher-value advisory work, without stripping away the deep financial understanding the role still demands. Kate shares why so many practices are reporting higher revenues and profits, and how technology is acting as a catalyst for rethinking long-standing workflows rather than simply speeding up broken ones. We also dig into research showing that pairing AI with financial education strengthens analytical thinking while leaving core calculation skills intact, a useful counterpoint to the more dramatic headlines about machines replacing people. Our conversation moves into the practical reality of how firms are using tools like ChatGPT today, from scenario planning to preparing for difficult client conversations, while also discussing where caution still matters, particularly around data security and core financial workflows. Kate also explains how government initiatives such as Making Tax Digital and the digitization of HMRC are changing client expectations and deepening the relationship between accountants and the businesses they support. We also spend time on the future of the profession, including how hiring strategies are evolving, why problem-solving and communication skills are becoming just as valuable as technical knowledge, and why private equity interest in accounting is accelerating digital adoption across the sector. Kate rounds things out by sharing how Xero is thinking about product design in 2026, what users can expect next, and why keeping the human side of the profession front and center still matters. So as accounting moves further into an AI-assisted, digitally native future, how do firms balance efficiency, trust, identity, and long-term relevance, and what lessons can other industries take from this moment of change? Useful Links Follow Kate Hayward on LinkedIn Accounting and Bookkeeping Industry Report Xero Website Follow on LinkedIn, Facebook, X, YouTube, Instagram
What does sales leadership actually look like once the AI experimentation phase is over and real results are the only thing that matters? In this episode of Tech Talks Daily, I sit down with Jason Ambrose, CEO of the Iconiq backed AI data platform People.ai, to unpack why the era of pilots, proofs of concept, and AI theater is fading fast. Jason brings a grounded view from the front lines of enterprise sales, where leaders are no longer impressed by clever demos. They want measurable outcomes, better forecasts, and fewer hours lost to CRM busywork. This conversation goes straight to the tension many organizations are feeling right now, the gap between AI potential and AI performance. We talk openly about why sales teams are drowning in activity data yet still starved of answers. Emails, meetings, call transcripts, dashboards, and dashboards about dashboards have created fatigue rather than clarity. Jason explains how turning raw activity into crisp, trusted answers changes how sellers operate day to day, pulling them back into customer conversations instead of internal reporting loops. The discussion challenges the long held assumption that better selling comes from more fields, more workflows, and more dashboards, arguing instead that AI should absorb the complexity so humans can focus on judgment, timing, and relationships. The conversation also explores how tools like ChatGPT and Claude are quietly dismantling the walls enterprise software spent years building. Sales leaders increasingly want answers delivered in natural language rather than another system to log into, and Jason shares why this shift is creating tension for legacy platforms built around walled gardens and locked down APIs.  We look at what this means for architecture decisions, why openness is becoming a strategic advantage, and how customers are rethinking who they trust to sit at the center of their agentic strategies. Drawing on work with companies such as AMD, Verizon, NVIDIA, and Okta, Jason shares what top performing revenue organizations have in common. Rather than chasing sameness, scripts, and averages, they lean into curiosity, variation, and context. They look for where growth behaves differently by market, segment, or product, and they use AI to surface those differences instead of flattening them away. It is a subtle shift, but one with big implications for how sales teams compete. We also look ahead to 2026 and beyond, including how pricing models may evolve as token consumption becomes a unit of value rather than seats or licenses. Jason explains why this shift could catch enterprises off guard, what governance will matter, and why AI costs may soon feel as visible as cloud spend did a decade ago. The episode closes with a thoughtful challenge to one of the biggest myths in the industry, the belief that selling itself can be fully automated, and why the last mile of persuasion, trust, and judgment remains deeply human. If you are responsible for revenue, sales operations, or AI strategy, this episode offers a clear-eyed look at what changes when AI stops being an experiment and starts being held accountable, so what assumptions about sales and AI are you still holding onto, and are they helping or quietly holding you back? Useful Links Follow Jason Ambrose on LinkedIn Learn more about people.ai Follow on LinkedIn Thanks to our sponsors, Alcor, for supporting the show.
In this episode of Tech Talks Daily, I sat down with Keith Zubchevich, CEO of Conviva, to unpack one of the most honest analogies I have heard about today's AI rollout. Keith compares modern AI agents to toddlers being sent out to get a job, full of promise, curious, and energetic, yet still lacking the judgment and context required to operate safely in the real world. It is a simple metaphor, but it captures a tension many leaders are feeling as generative AI matures in theory while so many deployments stumble in practice. As ChatGPT approaches its third birthday, the narrative suggests that GenAI has grown up. Yet Keith argues that this sense of maturity is misleading, especially inside enterprises chasing measurable returns. He explains why so many pilots stall or quietly disappoint, not because the models lack intelligence, but because organizations often release agents without clear outcomes, real-time oversight, or an understanding of how customers actually experience those interactions. The result is AI that appears to function well internally while quietly frustrating users or failing to complete the job it was meant to do. We also dig into the now infamous Chevrolet chatbot incident that sold a $76,000 vehicle for one dollar, using it as a lens to examine what happens when agents are left without boundaries or supervision. Keith makes a strong case that the next chapter of enterprise AI will not be defined by ever-larger models, but by visibility. He shares why observing behavior, patterns, sentiment, and efficiency in real time matters more than chasing raw accuracy, especially once AI moves from internal workflows into customer-facing roles. This conversation will resonate with anyone under pressure to scale AI quickly while worrying about brand risk, accountability, and trust. Keith offers a grounded view of what effective AI "parenting" looks like inside modern organizations, and why measuring the customer experience remains the most reliable signal of whether an AI system is actually growing up or simply creating new problems at speed. As leaders rush to put agents into production, are we truly ready to guide them, or are we sending toddlers into the workforce and hoping for the best? Useful Links Connect with Keith Zubchevich Learn more about Conviva Chevrolet Dealer Chatbot Agrees to Sell Tahoe for $1 Thanks to our sponsors, Alcor, for supporting the show.
In this episode of Tech Talks Daily, I sit down with Imran Nino Eškić and Boštjan Kirm from HyperBUNKER to unpack a problem many organisations only discover in their darkest hour. Backups are supposed to be the safety net, yet in real ransomware incidents, they are often the first thing attackers dismantle. Speaking with two people who cut their teeth in data recovery labs across 50,000 real cases gave me a very different perspective on what resilience actually looks like. They explain why so many so-called "air-gapped" or "immutable" backups still depend on identities, APIs, and network pathways that can be abused. We talk through how modern attackers patiently map environments for weeks before neutralising recovery systems, and why that shift makes true physical isolation more relevant than ever. What struck me most was how calmly they described failure scenarios that would keep most leaders awake at night. The heart of the conversation centres on HyperBUNKER's offline vault and its spaceship-style double airlock design. Data enters through a one-way hardware channel, the network door closes, and only then is information moved into a completely cold vault with no address, no credentials, and no remote access. I also reflect on seeing the black box in person at the IT Press Tour in Athens and why it feels less like a gadget and more like a last-resort lifeline. We finish by talking about how businesses should decide what truly belongs in that protected 10 percent of data, and why this is as much a leadership decision as an IT one. If everything vanished tomorrow, what would your company need to breathe again, and would it actually survive?   Useful LInks Connect with Imran Nino Eškić Connect With Boštjan Kirm Learn More about HyperBUNKER Lear more about the IT Press Tour Thanks to our sponsors, Alcor, for supporting the show.
What happens when the AI race stops being about size and starts being about sense? In this episode of Tech Talks Daily, I sit down with Wade Myers from MythWorx, a company operating quietly while questioning some of the loudest assumptions in artificial intelligence right now. We recorded this conversation during the noise of CES week, when headlines were full of bigger models, more parameters, and ever-growing GPU demand. But instead of chasing scale, this discussion goes in the opposite direction and asks whether brute force intelligence is already running out of road. Wade brings a perspective shaped by years as both a founder and investor, and he explains why today's large language models are starting to collide with real-world limits around power, cost, latency, and sustainability. We talk openly about the hidden tax of GPUs, how adding more compute often feels like piling complexity onto already fragile systems, and why that approach looks increasingly shaky for enterprises dealing with technical debt, energy constraints, and long deployment cycles. What makes this conversation especially interesting is MythWorx's belief that the next phase of AI will look less like prediction engines and more like reasoning systems. Wade walks through how their architecture is modeled closer to human learning, where intelligence is learned once and applied many times, rather than dragging around the full weight of the internet to answer every question. We explore why deterministic answers, audit trails, and explainability matter far more in areas like finance, law, medicine, and defense than clever-sounding responses. There is also a grounded enterprise angle here. We talk about why so many organizations feel uneasy about sending proprietary data into public AI clouds, how private AI deployments are becoming a board-level concern, and why most companies cannot justify building GPU-heavy data centers just to experiment. Wade draws parallels to the early internet and smartphone app eras, reminding us that the playful phase often comes before the practical one, and that disappointment is often a signal of maturation, not failure. We finish by looking ahead. Edge AI, small-footprint models, and architectures that reward efficiency over excess are all on the horizon, and Wade shares what MythWorx is building next, from faster model training to offline AI that can run on devices without constant connectivity. It is a conversation about restraint, reasoning, and realism at a time when hype often crowds out reflection. So if bigger models are no longer the finish line, what should business and technology leaders actually be paying attention to next, and are we ready to rethink what intelligence really means? Useful Links Connect with Wade Myers Learn More About MythWorx Thanks to our sponsors, Alcor, for supporting the show.
What happens when we finally admit that stopping every cyberattack was never realistic in the first place? That is the thread running through this conversation, recorded at the start of the year when reflection tends to be more honest and the noise dial is turned down a little. I was joined by returning guest Raghu Nandakumara from Illumio, nearly three years after our last discussion, to pick up a question that has aged far too well. How do organizations talk about cybersecurity value when breaches keep happening anyway? This episode is less about shiny tools and more about uncomfortable truths. We spend time unpacking why security teams still struggle to show value, why prevention-only thinking keeps setting leaders up for disappointment, and why the conversation is slowly shifting toward resilience and containment. Raghu is refreshingly direct on why reducing cyber risk, rather than chasing impossible guarantees, is the only metric that really holds up under boardroom scrutiny. We also talk about the strange contradiction playing out across industries. Attackers are often using familiar paths like misconfigurations, excessive permissions, and missing patches, yet many organizations still fail to close those gaps. The issue, as Raghu explains, is rarely a lack of tools. It is usually fragmented coverage, outdated processes, and a talent pipeline that blocks capable people from entering the field while claiming there is a skills shortage. One of the most practical parts of this conversation centers on mindset. Instead of asking whether an attacker got in, Raghu argues that leaders should be asking how far they were able to go once inside. That shift alone changes how success is measured, how teams prepare for incidents, and how pressure-filled P1 moments are handled when boards want answers every fifteen minutes. We also touch on how legal action, public claims campaigns, and customer lawsuits are changing the stakes after a breach, forcing executives to rethink how they frame cyber investment. From there, Raghu shares how Illumio has been working with Microsoft to strengthen internal resilience at massive scale, and why visibility and segmentation are becoming harder to ignore. This is a conversation about realism, responsibility, and growing up as an industry. If cybersecurity is really about safety and not slogans, what would you want your organization to stop saying, and what would you rather hear instead? Please feel free to upload the podcast. Here are also the links we discussed on the call: Useful Links Connect with Raghu Nandakumara on LinkedIn and Twitter Learn more about Illumio Lateral Movement in Cyberattacks Illumio Podcast  Follow on Facebook, Twitter, LinkedIn, and YouTube   Thanks to our sponsors, Alcor, for supporting the show.
What really happens inside an organization when a cyber incident hits and the neat incident response plan starts to fall apart? That question sat at the heart of my return conversation with Max Vetter, VP of Cyber at Immersive. It has been a big year for breaches, public fallout, and eye-watering financial losses, and this episode goes beyond headlines to examine what cyber crisis management actually looks like when pressure, uncertainty, and human behavior collide. Max brings a rare perspective shaped by years in law enforcement, intelligence work, and hands-on cyber defense, and he is refreshingly honest about where most organizations are still unprepared. We talked about why written incident response plans tend to fail at the exact moment they are needed most. Cyber incidents are chaotic, emotional, and non-linear, yet many plans assume calm decision-making and perfect coordination. Max explains why success or failure is often defined by the response rather than the initial breach itself, and why leadership, communication, and judgment matter just as much as technical skill. Real-world examples from major incidents highlight how competing pressures quickly emerge, whether to contain or keep systems running, whether to pay a ransom or risk prolonged downtime, and how every option comes with consequences. One idea that really stood out is Max's belief that resilience is revealed, not documented. Compliance and audits may tick boxes, but they rarely expose how teams behave under stress. We explored why organizations that rely on annual tabletop exercises often develop a false sense of confidence, and how that confidence can become dangerous when decisions are made quickly and publicly. Max shared why the best-performing teams are often the ones that feel less certain in the moment, because they question assumptions and adapt faster. We also dug into the growing role of crisis simulations and micro-drills. Rather than rehearsing a single scenario once a year, Immersive focuses on repeated, realistic practice that builds muscle memory across technical teams, executives, legal, and communications. The goal is not to predict the exact attack, but to train people to think clearly, collaborate across functions, and make defensible decisions when there are no good options. That preparation becomes even more important as cyber incidents increasingly spill into supply chains, manufacturing, and the physical world. As public scrutiny rises and consumer-led legal action becomes more common after breaches, reputation and response speed now sit alongside forensics and recovery as business-critical concerns. This episode is a candid look at why cyber crisis readiness is a discipline, not a document, and why assuming you will cope when the moment arrives is a risky bet. So if resilience only truly shows itself when everything is on the line, how confident are you that your organization would perform when the pressure is real and the clock is ticking? Useful Links Connect with Max Vetter on Linkedin Learn more about Immersive Labs Follow on LinkedIn, Instagram, Twitter and Facebook Thanks to our sponsors, Alcor, for supporting the show.
What happens when the web browser stops being a passive window to information and starts acting like an intelligent coworker, and why does that suddenly make security everyone's problem? At the start of 2026, I sat down with Michael Shieh from Mammoth Cyber to unpack a shift that is quietly redefining how work gets done. AI browsers are moving fast from consumer curiosity to enterprise reality, embedding agentic AI directly into the place where most work already happens, the browser. Search, research, comparison, analysis, and decision support are no longer separate steps. They are becoming one continuous workflow. In this conversation, we talk openly about why consumer adoption has surged while enterprise teams remain hesitant. Many employees already rely on AI-powered browsing at home because it removes ads, personalizes results, and saves time.  Inside organizations, however, the same tools raise difficult questions around data exposure, credential safety, and indirect prompt injection. Once an AI agent starts reading untrusted external content, the browser itself becomes a new attack surface. Michael explains why this risk is often misunderstood and why the real danger is not internal documents, but external websites designed to manipulate AI behavior. We dig into how Mammoth Cyber approaches this challenge differently, starting with a secure-first architecture that isolates trusted internal data from untrusted external sources. Every AI action, from memory to model connections to data access, is monitored and governed by policy. It is a practical response to a problem many security teams know is coming but feel unprepared to manage. We also explore how AI browsers change day-to-day work. A task like competitive analysis, which once took days of manual research and document comparison, can now be completed in minutes when an AI browser securely connects internal knowledge with external intelligence. That productivity gain is real, but only if enterprises trust the environment it runs in. We touch on Zero Trust principles, including work influenced by Chase Cunningham, and why 2026 looks like a tipping point for enterprise AI browsing. The technology is maturing, security controls are catching up, and businesses are starting to accept that blocking AI outright is no longer realistic. If you are curious to see how this works in practice, Mammoth Cyber offers a free Enterprise AI Browser that lets you experience what secure AI-powered browsing actually looks like, without putting your organization at risk. I have included the link so you can explore it yourself and decide whether this is where work is heading next. So, as AI browsers become the new workflow hub for knowledge workers everywhere, is your organization ready to secure the browser before it becomes your most exposed endpoint, and what would adopting one safely change about how your teams work? If you want to see what an enterprise-grade AI browser looks like when security is built in from day one, Mammoth Cyber is offering free access to its Enterprise AI Browser.  It gives you a hands-on way to experience how agentic AI can automate real work inside the browser while keeping internal data isolated from untrusted external sources. You can explore it yourself and decide whether this is how your organization should be approaching AI-powered browsing in 2026. Useful Links Learn more about the Mammoth Enterprise Browser and try it for free  Connect with Michael Shieh on LinkedIn Thanks to our sponsors, Alcor, for supporting the show.
What happens when engineering teams can finally see the business impact of every technical decision they make? In this episode of Tech Talks Daily, I sat down with Chris Cooney, Director of Advocacy at Coralogix, to unpack why observability is no longer just an engineering concern, but a strategic lever for the entire business. Chris joined me fresh from AWS re:Invent, where he had challenged a long-standing assumption that technical signals such as CPU usage, error rates, and logs belong only in engineering silos. Instead, he argues that these signals, when enriched and interpreted correctly, can tell a much more powerful story about revenue loss, customer experience, and competitive advantage. We explored Coralogix's Observability Maturity Model, a four-stage framework that guides organizations from basic telemetry collection to business-level decision-making. Chris shared that many teams stall on measuring engineering health without connecting that data to customer impact or financial outcomes. The conversation became especially tangible when he explained how a single failed checkout log can be enriched with product and pricing data to reveal a bug costing thousands of dollars per day. That shift, from "fix this tech debt" to "fix this issue draining revenue," fundamentally changes how priorities are set across teams. Chris also introduced Olly, Coralogix's AI observability agent, and explained why it is designed as an agent rather than a simple assistant. We discussed how Olly can autonomously investigate issues across logs, metrics, traces, alerts, and dashboards, enabling anyone in the organization to ask questions in plain English and receive actionable insights. From diagnosing a complex SQL injection attempt to surfacing downstream customer impact, Olly represents a move toward democratizing observability data far beyond engineering teams. Throughout our discussion, a clear theme emerged. When technical health is directly tied to business health, observability stops being a cost center and becomes a competitive advantage. By giving autonomous engineering teams visibility into real-world impact, organizations can make faster, better decisions, foster innovation, and avoid the blind spots that have cost even well-known brands millions. So if observability still feels like a necessary expense rather than a growth driver in your organization, what would change if every technical signal could be translated into a clear business impact, and who would make better decisions if they could finally see that connection? Useful LInks Connect with Chris Cooney Learn more about Coralogix Follow on LinkedIn Thanks to our sponsors, Alcor, for supporting the show.
loading
Comments (6)

saini suraj

Fantastic insights! I would also shared a unique content abou Do My Assignment' service is such a game-changer! Their platform is user friendly, and the quality of work they deliver is impressive. Whether it's essays, research papers, or complex projects, they consistently provide well structured and thoroughly researched content. academized do my assignment available at https://academized.com/do-my-assignment It is a fantastic resource for students seeking reliable academic support.

Mar 24th
Reply

Harry M. Henderson

Keep educated regarding the most recent business and tech patterns by paying attention to accounts of others in your field and how they are conquering more info on the http://writewaypub.com/ have additionally collaborated with Citrix and its Citrix Ready accomplices to uncover how they are taking care of issues together while building the fate of work.

Apr 25th
Reply

Gustavo Woltmann

Keep educated regarding the most recent business and tech patterns by paying attention to accounts of others in your field and how they are defeating difficulties with try this https://www.topwritersreview.com/reviews/bestessayhelp/ have additionally collaborated with Citrix and its Citrix Ready accomplices to uncover how they are tackling issues together while building the eventual fate of work.

Apr 21st
Reply

Neil Parker

I enjoy listening to Tech Blog Writer while washing dishes or cooking.

Aug 3rd
Reply

Neil Parker

Fascinating concept & episode. Thoroughly enjoyed it, thanks!

Jun 18th
Reply (1)