DiscoverData Engineering Podcast
Data Engineering Podcast

Data Engineering Podcast

Author: Tobias Macey

Subscribed: 2,389Played: 55,666


This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.
151 Episodes
In memory computing provides significant performance benefits, but brings along challenges for managing failures and scaling up. Hazelcast is a platform for managing stateful in-memory storage and computation across a distributed cluster of commodity hardware. On top of this foundation, the Hazelcast team has also built a streaming platform for reliable high throughput data transmission. In this episode Dale Kim shares how Hazelcast is implemented, the use cases that it enables, and how it complements on-disk data management systems.
Databases are limited in scope to the information that they directly contain. For analytical use cases you often want to combine data across multiple sources and storage locations. This frequently requires cumbersome and time-consuming data integration. To address this problem Martin Traverso and his colleagues at Facebook built the Presto distributed query engine. In this episode he explains how it is designed to allow for querying and combining data where it resides, the use cases that such an architecture unlocks, and the innovative ways that it is being employed at companies across the world. If you need to work with data in your cloud data lake, your on-premise database, or a collection of flat files, then give this episode a listen and then try out Presto today.
Data warehouse technology has been around for decades and has gone through several generational shifts in that time. The current trends in data warehousing are oriented around cloud native architectures that take advantage of dynamic scaling and the separation of compute and storage. Firebolt is taking that a step further with a core focus on speed and interactivity. In this episode CEO and founder Eldad Farkash explains how the Firebolt platform is architected for high throughput, their simple and transparent pricing model to encourage widespread use, and the use cases that it unlocks through interactive query speeds.
In order to scale the use of data across an organization there are a number of challenges related to discovery, governance, and integration that need to be solved. The key to those solutions is a robust and flexible metadata management system. LinkedIn has gone through several iterations on the most maintainable and scalable approach to metadata, leading them to their current work on DataHub. In this episode Mars Lan and Pardhu Gunnam explain how they designed the platform, how it integrates into their data platforms, and how it is being used to power data discovery and analytics at LinkedIn.
Most databases are designed to work with textual data, with some special purpose engines that support domain specific formats. TileDB is a data engine that was built to support every type of data by using multi-dimensional arrays as the foundational primitive. In this episode the creator and founder of TileDB shares how he first started working on the underlying technology and the benefits of using a single engine for efficiently storing and querying any form of data. He also discusses the shifts in database architectures from vertically integrated monoliths to separately deployed layers, and the approach he is taking with TileDB cloud to embed the authorization into the storage engine, while providing a flexible interface for compute. This was a great conversation about a different approach to database architecture and how that enables a more flexible way to store and interact with data to power better data sharing and new opportunities for blending specialized domains.
Event based data is a rich source of information for analytics, unless none of the event structures are consistent. The team at Iteratively are building a platform to manage the end to end flow of collaboration around what events are needed, how to structure the attributes, and how they are captured. In this episode founders Patrick Thompson and Ondrej Hrebicek discuss the problems that they have experienced as a result of inconsistent event schemas, how the Iteratively platform integrates the definition, development, and delivery of event data, and the benefits of elevating the visibility of event data collection for improving the effectiveness of the resulting analytics. If you are struggling with inconsistent implementations of event data capture, lack of clarity on what attributes are needed, and how it is being used then this is definitely a conversation worth following.
Finding connections between data and the entities that they represent is a complex problem. Graph data models and the applications built on top of them are perfect for representing relationships and finding emergent structures in your information. In this episode Denise Gosnell and Matthias Broecheler discuss their recent book, the Practitioner's Guide To Graph Data, including the fundamental principles that you need to know about graph structures, the current state of graph support in database engines, tooling, and query languages, as well as useful tips on potential pitfalls when putting them into production. This was an informative and enlightening conversation with two experts on graph data applications that will help you start on the right track in your own projects.
A majority of the scalable data processing platforms that we rely on are built as distributed systems. This brings with it a vast number of subtle ways that errors can creep in. Kyle Kingsbury created the Jepsen framework for testing the guarantees of distributed data processing systems and identifying when and why they break. In this episode he shares his approach to testing complex systems, the common challenges that are faced by engineers who build them, and why it is important to understand their limitations. This was a great look at some of the underlying principles that power your mission critical workloads.
Wind energy is an important component of an ecologically friendly power system, but there are a number of variables that can affect the overall efficiency of the turbines. Michael Tegtmeier founded Turbit Systems to help operators of wind farms identify and correct problems that contribute to suboptimal power outputs. In this episode he shares the story of how he got started working with wind energy, the system that he has built to collect data from the individual turbines, and how he is using machine learning to provide valuable insights to produce higher energy outputs. This was a great conversation about using data to improve the way the world works.
The first stage of every data pipeline is extracting the information from source systems. There are a number of platforms for managing data integration, but there is a notable lack of a robust and easy to use open source option. The Meltano project is aiming to provide a solution to that situation. In this episode, project lead Douwe Maan shares the history of how Meltano got started, the motivation for the recent shift in focus, and how it is implemented. The Singer ecosystem has laid the groundwork for a great option to empower teams of all sizes to unlock the value of their Data and Meltano is building the reamining structure to make it a fully featured contender for proprietary systems.
There are an increasing number of use cases for real time data, and the systems to power them are becoming more mature. Once you have a streaming platform up and running you need a way to keep an eye on it, including observability, discovery, and governance of your data. That's what the DataOps platform is built for. In this episode CTO Andrew Stevenson discusses the challenges that arise from building decoupled systems, the benefits of using SQL as the common interface for your data, and the metrics that need to be tracked to keep the overall system healthy. Observability and governance of streaming data requires a different approach than batch oriented workflows, and this episode does an excellent job of outlining the complexities involved and how to address them.
We have machines that can listen to and process human speech in a variety of languages, but dealing with unstructured sounds in our environment is a much greater challenge. The team at Audio Analytic are working to impart a sense of hearing to our myriad devices with their sound recognition technology. In this episode Dr. Chris Mitchell and Dr. Thomas le Cornu describe the challenges that they are faced with in the collection and labelling of high quality data to make this possible, including the lack of a publicly available collection of audio samples to work from, the need for custom metadata throughout the processing pipeline, and the need for customized data processing tools for working with sound data. This was a great conversation about the complexities of working in a niche domain of data analysis and how to build a pipeline of high quality data from collection to analysis.
The majority of analytics platforms are focused on use internal to an organization by business stakeholders. As the availability of data increases and overall literacy in how to interpret it and take action improves there is a growing need to bring business intelligence use cases to a broader audience. GoodData is a platform focused on simplifying the work of bringing data to employees and end users. In this episode Sheila Jung and Philip Farr discuss how the GoodData platform is being used, how it is architected to provide scalable and performant analytics, and how it integrates into customer's data platforms. This was an interesting conversation about a different approach to business intelligence and the importance of expanded access to data.
Machine learning is a process driven by iteration and experimentation which requires fast and easy access to relevant features of the data being processed. In order to reduce friction in the process of developing and delivering models there has been a recent trend toward building a dedicated feature. In this episode Simba Khadder discusses his work at StreamSQL building a feature store to make creation, discovery, and monitoring of features fast and easy to manage. He describes the architecture of the system, the benefits of streaming data for machine learning, and how a feature store provides a useful interface between data engineers and machine learning engineers to reduce communication overhead.
The landscape of data management and processing is rapidly changing and evolving. There are certain foundational elements that have remained steady, but as the industry matures new trends emerge and gain prominence. In this episode Astasia Myers of Redpoint Ventures shares her perspective as an investor on which categories she is paying particular attention to for the near to medium term. She discusses the work being done to address challenges in the areas of data quality, observability, discovery, and streaming. This is a useful conversation to gain a macro perspective on where businesses are looking to improve their capabilities to work with data.
Data lakes offer a great deal of flexibility and the potential for reduced cost for your analytics, but they also introduce a great deal of complexity. What used to be entirely managed by the database engine is now a composition of multiple systems that need to be properly configured to work in concert. In order to bring the DBA into the new era of data management the team at Upsolver added a SQL interface to their data lake platform. In this episode Upsolver CEO Ori Rafael and CTO Yoni Iny describe how they have grown their platform deliberately to allow for layering SQL on top of a robust foundation for creating and operating a data lake, how to bring more people on board to work with the data being collected, and the unique benefits that a data lake provides. This was an interesting look at the impact that the interface to your data can have on who is empowered to work with it.
Gaining a complete view of the customer journey is especially difficult in B2B companies. This is due to the number of different individuals involved and the myriad ways that they interface with the business. Dreamdata integrates data from the multitude of platforms that are used by these organizations so that they can get a comprehensive view of their customer lifecycle. In this episode Ole Dallerup explains how Dreamdata was started, how their platform is architected, and the challenges inherent to data management in the B2B space. This conversation is a useful look into how data engineering and analytics can have a direct impact on the success of the business.
The PostgreSQL database is massively popular due to its flexibility and extensive ecosystem of extensions, but it is still not the first choice for high performance analytics. Swarm64 aims to change that by adding support for advanced hardware capabilities like FPGAs and optimized usage of modern SSDs. In this episode CEO and co-founder Thomas Richter discusses his motivation for creating an extension to optimize Postgres hardware usage, the benefits of running your analytics on the same platform as your application, and how it works under the hood. If you are trying to get more performance out of your database then this episode is for you!
There have been several generations of platforms for managing streaming data, each with their own strengths and weaknesses, and different areas of focus. Pulsar is one of the recent entrants which has quickly gained adoption and an impressive set of capabilities. In this episode Sijie Guo discusses his motivations for spending so much of his time and energy on contributing to the project and growing the community. His most recent endeavor at StreamNative is focused on combining the capabilities of Pulsar with the cloud native movement to make it easier to build and scale real time messaging systems with built in event processing capabilities. This was a great conversation about the strengths of the Pulsar project, how it has evolved in recent years, and some of the innovative ways that it is being used. Pulsar is a well engineered and robust platform for building the core of any system that relies on durable access to easily scalable streams of data.
Data management is hard at any scale, but working in the context of an enterprise organization adds even greater complexity. Infoworks is a platform built to provide a unified set of tooling for managing the full lifecycle of data in large businesses. By reducing the barrier to entry with a graphical interface for defining data transformations and analysis, it makes it easier to bring the domain experts into the process. In this interview co-founder and CTO of Infoworks Amar Arikere explains the unique challenges faced by enterprise organizations, how the platform is architected to provide the needed flexibility and scale, and how a unified platform for data improves the outcomes of the organizations using it.
Comments (2)

Albert Bikeev

"Java is more readable and maintainable than Scala..." that's a good joke :)

Mar 7th


It's very hard to follow your guest..

Sep 22nd
Download from Google Play
Download from App Store