[人人能懂] 从“笨办法”学习到“随身小抄”
Description
今天我们不聊模型又变大了多少,而是聊几个让AI变得更聪明、更高效的“巧思”。我们会看到,AI如何用“笨办法”打破人类专家的优化极限,又为什么一本精心准备的“错题本”却教不会它自我反思。接着,我们会探索如何用“名师点拨”和“随身小抄”让AI低成本地自我进化。最后,看看如何让AI裁判学会投出更“聪明”的一票,而不仅仅是少数服从多数。准备好了吗?让我们一起看看,这些最新论文是如何用“四两拨千斤”的智慧,刷新我们对人工智能的认知。
00:00:40 人工智能时代,还有“最优解”这回事吗?
00:05:11 给AI上“错题本”,它就能学聪明吗?
00:09:37 AI自学的终极秘诀:不是“题海战术”,而是“名师点拨”
00:13:43 AI太贵用不起?这里有个“随身小抄”的省钱妙计
00:20:13 AI当裁判,如何投出更聪明的一票?
本期介绍的几篇论文:
[LG] CUDA-L2: Surpassing cuBLAS Performance for Matrix Multiplication through Reinforcement Learning
[DeepReinforce Team]
https://arxiv.org/abs/2512.02551
---
[LG] Synthetic Error Injection Fails to Elicit Self-Correction In Language Models
[UC Berkeley]
https://arxiv.org/abs/2512.02389
---
[LG] Guided Self-Evolving LLMs with Minimal Human Supervision
[Tencent AI Lab in Seattle & Washington University in St. Louis]
https://arxiv.org/abs/2512.02472
---
[LG] In-Context Distillation with Self-Consistency Cascades: A Simple, Training-Free Way to Reduce LLM Agent Costs
[Stanford University & Reve]
https://arxiv.org/abs/2512.02543
---
[LG] Distribution-Calibrated Inference time compute for Thinking LLM-as-a-Judge
[Google & Google DeepMind]
https://arxiv.org/abs/2512.03019



