[人人能懂] AI的卡农、定律与标尺
Description
本期节目,我们将一起潜入AI的“思想内核”,看看科学家们是如何像物理学家一样,为AI搭建“比萨斜塔”来找到最关键的架构“补丁”;如何为AI的思考过程立下“定律”,让它不再“乱使劲”;我们还会聊聊,怎样将我们模糊的“感觉”变成一把精准的AI“标尺”;如何找到AI训练中那条介于“跳跃”和“龟行”之间的最优路径;以及如何打造一个既能学得像人类专家,又能开得稳的AI“老司机”团队。准备好了吗?让我们一起出发!
00:00:37 AI研究的“比萨斜塔”:我们看清模型强弱的方式可能错了
00:08:29 给AI立规矩:聪明的大脑是如何炼成的?
00:14:59 AI训练的“最优解”:在跳跃和龟行之间找到第三条路
00:20:32 你的“感觉”,如何变成AI的“标尺”?
00:25:56 如何让AI司机,既学得像,又开得稳?
本期介绍的几篇论文:
[CL] Physics of Language Models: Part 4.1, Architecture Design and the Magic of Canon Layers
[FAIR at Meta]
https://arxiv.org/abs/2512.17351
---
[CL] When Reasoning Meets Its Laws
[University of Illinois Urbana-Champaign & University of Pennsylvania]
https://arxiv.org/abs/2512.17901
---
[LG] Smoothing DiLoCo with Primal Averaging for Faster Training of LLMs
[Meta Superintelligence Lab]
https://arxiv.org/abs/2512.17131
---
[CL] AutoMetrics: Approximate Human Judgements with Automatically Generated Evaluators
[Stanford University & American Express]
https://arxiv.org/abs/2512.17267
---
[LG] Distributionally Robust Imitation Learning: Layered Control Architecture for Certifiable Autonomy
[University of Illinois Urbana-Champaign & University of Pennsylvania]
https://arxiv.org/abs/2512.17899



