DiscoverScience Bar HoppingПерсональный алгоритм рекомендаций: образовательный контент, реклама и открытые данные
Персональный алгоритм рекомендаций: образовательный контент, реклама и открытые данные

Персональный алгоритм рекомендаций: образовательный контент, реклама и открытые данные

Update: 2022-04-01
Share

Description

В этом эпизоде говорим о рекомендательных системах и создаем идеальную ленту новостей, музыки и кино. Зачем нужны честные алгоритмы рекомендаций? Как вокруг человека формируется информационный пузырь? И реально ли ограничить количество рекламы в своей ленте?

Этот сезон «Бумага» записала совместно с компанией Selectel — одним из ведущих российских провайдеров облаков и IT-инфраструктуры.   

В гостях — архитектор машинного обучения в Yota и преподаватель курса Data Science СПбПУ Дмитрий Перец, заведующая лабораторией социальной и когнитивной информатики НИУ ВШЭ Олеся Кольцова, старший преподаватель института кибербезопасности и защиты информации СПбПУ Андрей Дахнович.

Участвуйте в конкурсе и предлагайте свои идеи: как бы вы переделали существующие рекомендательные алгоритмы, если бы они создавались с нуля? Пишите варианты в комментариях на ютьюбе, где тоже выходит наш подкаст. Автору лучшего ответа мы подарим год подписки на одну из рассылок «Бумаги» и приз от Selectel.

Comments 
In Channel
loading
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Персональный алгоритм рекомендаций: образовательный контент, реклама и открытые данные

Персональный алгоритм рекомендаций: образовательный контент, реклама и открытые данные

Бумага