DiscoverData Drivens Podcastרגרסיות, יערות רנדומליים ומה שבינהם
רגרסיות, יערות רנדומליים ומה שבינהם

רגרסיות, יערות רנדומליים ומה שבינהם

Update: 2025-01-02
Share

Description

בפרק זה נצלול לעומקו של עולם הלימוד המפוקח ונכיר את השיטות המרכזיות שבהן מחשבים "לומדים" מנתונים כדי לקבל החלטות. נדבר על אלגוריתמים מובילים כמו רגרסיה לינארית, עצי החלטה, Random Forest ו-Gradient Boosting, ונבין כיצד הם פועלים ומהם היתרונות והחסרונות של כל אחד מהם. בנוסף, נסקור את האתגרים המרכזיים בלימוד מפוקח, כמו Overfitting ו-Underfitting, ונציג דרכים להתמודד איתם. הפרק יספק לכם תובנות מעשיות וכלים שיעזרו לבחור באלגוריתם המתאים ביותר לכל בעיה.

Comments 
loading
In Channel
loading
00:00
00:00
1.0x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

רגרסיות, יערות רנדומליים ומה שבינהם

רגרסיות, יערות רנדומליים ומה שבינהם

Ram Kedem & Gadi Chrust