DiscoverLinear DigressionsData storage: transactions vs. analytics
Data storage: transactions vs. analytics

Data storage: transactions vs. analytics

Update: 2019-09-23
Share

Description

Data scientists and software engineers both work with databases, but they use them for different purposes. So if you’re a data scientist thinking about the best way to store and access data for your analytics, you’ll likely come up with a very different set of requirements than a software engineer looking to power an application. Hence the split between analytics and transactional databases—certain technologies are designed for one or the other, but no single type of database is perfect for both use cases. In this episode we’ll talk about the differences between transactional and analytics databases, so no matter whether you’re an analytics person or more of a classical software engineer, you can understand the needs of your colleagues on the other side.
Comments 
loading
00:00
00:00
1.0x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Data storage: transactions vs. analytics

Data storage: transactions vs. analytics

hello@lineardigressions.com (Ben Jaffe and Katie Malone)