DiscoverBio Eats WorldJournal Club: Engineering Living Materials
Journal Club: Engineering Living Materials

Journal Club: Engineering Living Materials

Update: 2021-02-233
Share

Description

To date, synthetic biology has been mainly focused on reproducing existing compounds and materials with biomanufacturing. Think of engineering yeast to produce anti-malarial drugs, or bacteria producing spider silk. But as our guest — Professor Tom Ellis of Imperial College London — argues, the future of synthetic biology is in creating materials with fundamentally new and distinct functions. Imagine, a spider silk rope that it is interwoven with cells that can catalyze the dissolution of that rope in certain circumstances. Host Lauren Richardson and a16z bio deal team partner Judy Savitskaya talk to Dr. Ellis about his group's work creating a prototype of an engineered living material (ELM) that can be iterated on and programmed with a huge array of different functions, how ELMs can disrupt established markets, and their varied uses in industry, healthcare, fashion, consumer products, and even potentially in space travel.
Comments 
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Journal Club: Engineering Living Materials

Journal Club: Engineering Living Materials

Tom Ellis, Lauren Richardson, Judy Savitskaya