DiscoverSoftware Engineering DailyModin: Pandas Scalability with Devin Petersohn
Modin: Pandas Scalability with Devin Petersohn

Modin: Pandas Scalability with Devin Petersohn

Update: 2020-07-234
Share

Description


Pandas is a Python data analysis library, and an essential tool in data science. Pandas allows users to load large quantities of data into a data structure called a dataframe, over which the user can call mathematical operations. When the data fits entirely into memory this works well, but sometimes there is too much data for a single box.


The Modin project scales Pandas workflows to multiple machines by utilizing Dask or Ray, which are distributed computing primitives for Python programs. Modin builds an execution plan for large data frames to be operated on against each other, which makes data science considerably easier for these large data sets.


Devin Petersohn started the Modin project, and he joins the show to talk about data science with Python, and his work in the Berkeley RISELab.


Sponsorship inquiries: sponsor@softwareengineeringdaily.com


The post Modin: Pandas Scalability with Devin Petersohn appeared first on Software Engineering Daily.

Comments 
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Modin: Pandas Scalability with Devin Petersohn

Modin: Pandas Scalability with Devin Petersohn

Software Engineering Daily