DiscoverCounselor Toolbox PodcastThe Neurobiological Impact of Trauma and Addiction
The Neurobiological Impact of Trauma and Addiction

The Neurobiological Impact of Trauma and Addiction

Update: 2020-06-065
Share

Description

502 – The Neurobiological Impact of Trauma and Addiction


-Post-traumatic stress disorder: the

neurobiological impact of psychological trauma

Dialogues Clin Neurosci. 2011 Sep; 13(3): 263-278.

https: //www.ncbi.nlm.nih.gov/pmc/articles/PMC3182008/


-This article lays out the many changes and/or

conditions seen in the brain of people with PTSD.


-As clinicians, awareness of these changes can help

us educate patients about their symptoms and

find ways of adapting to improve quality of life.


CEUs are available for this presentation at

https://www.allceus.com/counselortoolbox/


Sponsored by TherapyNotes.com

Manage your practice securely and efficiently. Two free months of TherapyNotes with coupon code “CEU”


Secure email provided by https://www.protonmail.com


The Neurobiological Impact of Trauma and Addiction

Objectives

– Define and explain the HPA-Axis

– Identify the impact of trauma on the HPA Axis

– Identify the impact of chronic stress/cumulative trauma and addiction on the HPA-Axis

– Identify symptoms of HPA-Axis dysfunction

– Identify interventions useful for this population

Based on

– Post-traumatic stress disorder: the neurobiological impact of psychological trauma

Dialogues Clin Neurosci. 2011 Sep; 13(3): 263–278.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182008/

– This article lays out the many changes and/or conditions seen in the brain of people with PTSD.

– As clinicians, awareness of these changes can help us educate patients about their symptoms and find ways of adapting to improve quality of life.

Introduction

– Neurobiological abnormalities in resulting from trauma overlap with features found in traumatic brain injury, including that from addictive behaviors

– The response of an individual to trauma depends not only on stressor characteristics, but also on factors specific to the individual.

– Perception of stressor

– Proximity to safe zones

– Similarity to victim

– Degree of helplessness

– Prior traumatic experiences

– Amount of stress in the preceding months

– Current mental health or addiction issues

– Availability of social support

Introduction

– For the vast majority of the population, the psychological trauma is limited to an acute, transient disturbance.

– The signs and symptoms of PTSD reflect a persistent, abnormal adaptation of neurobiological systems to the witnessed trauma.

– Abuse of stimulants, alcohol and process addictions increase excitotoxicity in the brain

– Excessive use of depressants and opioids, respiration may be impaired causing hypoxia

– During alcohol withdrawal blood pressure increases and can cause stroke

– Alcohol use can also cause WKS due to reduced levels of thiamine in the brain.


What is the HPA Axis

– Hypothalamic-Pituitary-Adrenal Axis AKA the Threat Response System

– Controls reactions to stress and regulates many body processes, including digestion, the immune system, mood and emotions, sexuality, and energy storage and expenditure

– The ultimate result of the HPA axis activation is to increase levels of cortisol and glutamate during times of stress.

– Both intoxication and withdrawal from substances trigger the stress response

– Cortisol's main role is in releasing glucose into the bloodstream in order to facilitate the “flight or fight” response. It also suppresses and modulates the immune system, digestive system and reproductive system.

– Glutamate is the main excitatory neurotransmitter

HPA-Axis Dysfunction

– The body reduces its HPA axis activation when it appears that further fight/flight may not be beneficial. (Hypocortisolism)

– In addiction this is often part of tolerance

– Hypocortisolism seen in stress-related disorders such as CFS, burnout and PTSD is actually a protective mechanism designed to conserve energy during threats that are beyond the organism's ability to cope.

– Dysfunctional HPA axis activation will result in

– Abnormal immune system activation

– Increased inflammation and allergic reactions

– IBS symptoms such as constipation and diarrhea,

– Reduced tolerance to physical and mental stresses (including pain)

– Altered levels of sex hormones

Low Cortisol and PTSD

– Low cortisol has been found to relate to more severe PTSD hyperarousal symptoms.

– Sensitised negative feedback loop in veterans diagnosed with PTSD by means of a greater gluticorticoid responsiveness. (0-100)

– Generally low cortisol, but when a threat is perceived there is an exaggerated stress response. (Flat or furious)

– Evidence points toward a role of trauma experience in sensitizing HPA axis regulation, independent of PTSD development.

– Those with prior trauma may be more at risk of PTSD from later traumas (Area for prevention)


Endocrine Factors

– Core endocrine features of PTSD include abnormal regulation of cortisol, gonadal and thyroid hormones

– Hypocortisolism in PTSD and addiction occurs due to increased negative feedback sensitivity of the HPA axis.

– Studies suggest that low Cortisol levels at the time of exposure to psychological trauma may predict the development of PTSD. (Prior trauma exposure may predispose to PTSD)

– Glucocorticoids interfere with the retrieval of traumatic memories, an effect that may

– Independently prevent or reduce symptoms of PTSD

– Or contribute to difficulty treating PTSD


Neurochemical Factors

– Core neurochemical features of PTSD include abnormal regulation of catecholamine, serotonin, glutamate, amino acid, peptide, and opioid neurotransmitters, each of which is found in brain circuits that regulate/integrate stress and fear responses.

– When a stressor is perceived the HPA Axis releases CRH which interacts with NE to increase fear conditioning and encoding of emotional memories, enhance arousal and vigilance, and integrate endocrine and autonomic responses to stress.

– There is an abundance of evidence that NE, accounts for certain classic aspects of PTSD symptomatology, including hyperarousal, heightened startle, and increased encoding of fear memories


Neurochemical Factors

– Serotonin (5HT)

– Poor serotonin transmission may cause impulsivity, hostility, aggression, depression, and suicidally

Serotonin Receptors (Soap Box)

5-HT1A

• Addiction

• Aggression

• Anxiety

• Appetite

• Blood Pressure

• Heart Rate

• Impulsivity

• Memory

• Mood

• Respiration

• Sexual Behavior

• Sleep

• Sociability

 

5-HT1B

• Addiction

• Aggression

• Anxiety

• Learning/Memory

• Mood


5-HT1D

• Anxiety

 

5-HT2A

• Addiction

• Anxiety

• Appetite

• Cognition

• Imagination

• Learning

• Memory

• Mood

• Perception

• Sexual Behavior

• Sleep

 

5-HT2B

• Anxiety

• Appetite

• GI Motility

• Sleep

 

5-HT2C

• Addiction

• Anxiety

• Appetite

• Mood

• Sexual Behavior

• Sleep


5-HT3

• Addiction

• Anxiety

• GI Motility

• Learning

• Memory

• Nausea

 

5-HT4

• Anxiety

• Appetite

• Learning

• Memory

• Mood

5-HT5A

• Sleep


5-HT6

• Anxiety

• Cognition

• Learning

• Memory

• Mood


5-HT7

• Anxiety

• Autoreceptor

• Memory

• Mood

• Respiration

• Sleep


https://en.wikipedia.org/wiki/5-HT_receptor


Neurochemical Factors

– GABA has profound anxiolytic effects in part by inhibiting the CRH/NE circuits

– Patients with PTSD and HPA Axis Dysregulation exhibit decreased peripheral benzodiazepine binding sites.

– May indicate the usefulness of emotion regulation and distress tolerance skills due to potential emotional dysregulation

– We need to reduce excitotoxicity in order to reduce distress, improve stress tolerance and enable the acquisition of new skills


Neurochemical Factors

– NMDA Receptors

– The NMDA receptor system has been implicated in synaptic plasticity, as well as learning and memory

– Glutamate binds to NMDA receptors. High levels of glutamate are secreted during high levels of stress

– Overexposure of neurons to glutamate is known to be excitotoxic, and may contribute to the loss of neurons in the hippocampus of patients with PTSD

– Elevated glucocorticoids (Cortisol) increase the sensitivity of NMDA receptors, rendering the brain more vulnerable to excitoxic insults at times of stress.

Neurochemical Factors

– Points to ponder

– It may take clients with brain damage from PTSD or addiction more time to master new skills

– If the brain becomes excitotoxic during stress, inhibiting learning and memory, then exposure therapies may also be dangerous.

– People with active addictions or PTSD are more vulnerable to the impact of stress

Changes- In Brain Structure

– A hallmark feature of brain damage from excitotoxicity is reduced hippocampal volume.

– The hippocampus is implicated in the control of stress responses, memory, and contextual aspects of fear conditioning.

– Prolonged exposure to stress and high levels of glucocorticoids damages the hippocampus

– Hippocampal volume reduction may reflect the accumulated toxic effects of repeated exposure to increased glucocorticoid levels (Flat or Furious)

– Decreased hippocampal volumes might be a pre-existing vulnerability factor for developing PTSD.

Changes- In Brain Structure

– Early adverse experience, including prenatal stress and psychological and physiological stress throughout childhood, has profound and long-lasting effects on the development of neurobiological systems, thereby “programming” subsequent stress reactivity and vulnerability to develop PTSD.

– The impact of addictive behaviors on the adolescent brain is exaggerated in comparison to that of adults

Summary

– A variety of changes take place in the brains and nervous systems of persons with PTSD

– Pre-existing issues causing hypocortisolism (the brain has already down regulated) increases the likelihood of the development of PTSD

– This points to the importance of prevention and early intervention of adverse childhood experiences

– People with hypocorticolism may or may not have PTSD

– Hypocorticolism sets the stage for the Flat and the Furious –> toxic levels of glutamate upon exposure to stressors – reduction of hippocampal volume persistent negative brain changes

Summary

– People with PTSD are more reactive to emotional stimuli, even stimuli unrelated to trauma

– Hypocorticolism results when the brain perceives that continued effort is futile.

– Feelings of “fatigue” set in (akin to reduced stress tolerance)

– Reducing fatigue can be accomplished, in part, with psychological factors including

– Motivation/Knowledge of “competitors”

– Feedback (frequent successes)

– Knowledge of an endpoint


Summary

– 46% of people in the US are exposed to adverse childhood experiences. (Early Intervention)

– Instruction in skills to handle emotional dysregulation

– Mindfulness

– Vulnerability prevention and awareness

– Emotion Regulation

– Distress Tolerance

– Problem Solving

– Of those exposed to trauma, education about and normalization of heightened emotional reactivity and susceptibility to PTSD in the future may be helpful

Subscribe


Counselor Toolbox Podcast


Youtube.com/AllCEUsEducation


Facebook: Facebook.com/AllCEUs/

Comments 
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

The Neurobiological Impact of Trauma and Addiction

The Neurobiological Impact of Trauma and Addiction

Charles Snipes