Discover
MRS Bulletin Materials News Podcast

MRS Bulletin Materials News Podcast
Author: MRS Bulletin
Subscribed: 33Played: 393Subscribe
Share
© 2025 MRS Bulletin Materials News Podcast
Description
Materials News podcast by MRS Bulletin provides breakthrough news & interviews with researchers on hot topics including biomaterials, quantum materials, artificial intelligence, sustainability, perovskites, and robotics. Produced by the Materials Research Society.
108 Episodes
Reverse
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Xingchen Ye of Indiana University about his research group’s studies on the fundamental behavior of colloidal materials. Colloidal materials consist of liquids with nanoparticles suspended in them. Ye’s team is interested in how a colloidal material’s properties change as the team spatially rearranges the nanoparticles in the liquid. They looked specifically at the self-assembly of gold nanocubes into a lattice structure. Ye’s tea...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Fabian Meder from the Italian Institute of Technology in Genova and the Sant’Anna School of Advanced Studies in Piza, Italy about his research group’s device that makes use of wind-driven plant leaf motion to generate electricity which can power a chemical delivery system. Their triboelectric nanogenerator involves an artificial leaf made of a 500 μm silicone elastomer layer and an electrode made from indium tin oxide. This is atta...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Bowen Deng, a graduate student in Gerbrand Ceder’s group at the University of California, Berkeley, about their work on increasing the accuracy of artificial intelligence/machine learning materials prediction models. The use of computer simulations to predict the interaction between atoms in a given molecule is being replaced by machine learning. Researchers describe the atoms’ collective interactions as a quantity of energy, wher...
In this podcast episode, MRS Bulletin’s Laura Leay interviews David Cahen from the Weizmann Institute of Science, Israel, about the impact surface defects have on bulk properties, specifically in the case of lead halide perovskites. In a perspective he co-authored, Cahen connected numerous experimental data from other researchers that exposed this phenomenon. By understanding how surface defects control the material’s electronic behavior, researchers can pursue new materials for the developme...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Gwangmin Bae of Korea University about his work with colleagues on the design of a new smart window system that utilizes compression. Like other smart windows, this window makes use of pores within the material to adjust its transparency. However, instead of using a stretchy material that controls light scattering through the pores, Bae and colleagues used a material that compresses in thickness. That is, the window becomes more t...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Leif Asp of Chalmers University of Technology about his group’s development of an all-carbon fiber-based structural battery. The negative electrode uses carbon fiber and, for the positive electrode, the carbon fiber is coated with lithium iron phosphate. In both cases the carbon fiber takes on the roles of mechanical reinforcement and current collection. This work was published in a recent issue of Advanced Materials.
In this podcast episode, MRS Bulletin’s Laura Leay interviews Nancy Sottos, the Maybelle Leland Swanlund Endowed Chair and head of the Department of Materials Science and Engineering at the University of Illinois–Urbana Champaign (UIUC), and Justine Paul, a former student at UIUC who now holds a position at DuPont, about their work with frontal polymerization. By mimicking patterns in biological materials such as shells, their research group took a multidisciplinary approach to control crysta...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Reza Moini of Princeton University about his group’s development of an enhanced additive manufacturing technique to fabricate cementitious materials with excellent fracture toughness. They based their design of the material on the double-helical or double-bouligand structure of coelacanth fish scales that resist deformation. In order to fabricate the material, Moini’s research team used a two-component robotic additive manufacturin...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews postdoctoral research fellow Rohit Pratyush Behera and Prof. Hortense Le Ferrand of Nanyang Technological University in Singapore about their design of a strong and tough ceramic that absorbs energy, inspired from biology. They borrowed microscopic designs found in a mollusk, a mantis shrimp, and the enamel casing surrounding human teeth. The researchers stacked round discs of aluminum oxide particles in horizontal layers in a hel...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Yen-Hung Lin of Hong Kong University of Science and Technology about his work to eliminate defects in perovskite solar cells. Lin’s group treated the perovskites with a category of molecules known as amino-silanes, which bind vacancies in the perovskites, preventing recombination of the electrons and holes. The amino-silane treatment retained the device’s performance at 95% power conversion efficiency for more than 1500 hours. Thi...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Michael Pettes, deputy group leader and staff scientist at the Center for Integrated Nanotechnologies in Los Alamos National laboratory about a characterization technique that employs a four-dimensional scanning transmission electron microscope (4D-STEM) paired with complex computational data analysis to directly measure the thermal expansion coefficient (TEC) of monolayer epitaxial tungsten diselenide. The standard technique for d...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Michael Dickey of North Carolina State University about the discovery and mechanical properties of glassy gels. Dicky credits his postdoc Meixiang Wang who, while studying ionic liquids, created the first glassy gel. Dicky’s group found that the mechanical properties of their glassy gel include shape memory, self-healing, and adhesion. While other materials may demonstrate comparable toughness and stretchiness, the glassy gel offe...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Coskun Kocabas from The University of Manchester in the UK about his development of a metamaterial that can tailor thermal emission. Rather than using a periodic system, which most topological materials employ, his research team borrowed a concept from laser design and created an optical cavity using a dielectric medium sandwiched between two layers that act as mirrors: a metal substrate and a top layer of platinum. The top layer s...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Rasmus Neilsen from the Technical University of Denmark about his fabrication of a monolithic selenium/silicon tandem solar cell. The selenium forms the top cell of the tandem device, with silicon used as the bottom cell. Selenium-based single-junction solar cells have traditionally used fluorine-doped tin oxide. In this work indium-tin oxide was used as a transparent conductive layer that is easier to deposit and its use is more w...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Mihir Pendharkar of Stanford University about characterizing electronic properties of twistronics materials. Twistronics refers to a type of electronic device consisting of two-dimensional materials layered at a relative twist angle, forming a new periodic structure known as moiré superlattices. Pendharkar and colleagues studied different configurations of graphene layered with hexagonal boron nitride. Determining the twist angle ...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Falon Kalutantirige from the University of Illinois Urbana-Champaign and Ying Li from the University of Wisconsin-Madison about their approach and discovery when characterizing nanovoids in polymer films. Using polyamide (PA) membranes as their subject of study, the researchers applied graph theory combined with electron tomography and molecular dynamics simulations to characterize the morphology of the nanovoids. The key to unders...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Alexandre Dmitriev from the University of Gothenburg, Sweden about his group’s computational model of a three-dimensional metamaterial exhibiting a magnetoelectric effect—known as the Tellegen effect—when exposed to light. The building blocks of the metamaterial are comprised of disks of silicon, 150 nm in diameter, supporting a cylinder of cobalt. Silicon is chosen for its high refractive index and cobalt for its magnetic properti...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Antonio Dominguez-Alfaro from the University of Cambridge, UK about the development of a single-step manufacturing approach for a multimaterial 3D-printing method. The research team created two inks. One ink is a polymeric deep eutectic solvent – polyDES – made by combining and heating two salts to form a deep eutectic monomer and adding a photo-initiator to allow the ink to be cured. This ink is an ionic conductor so can capture s...
In this podcast episode, MRS Bulletin’s Elizabeth Wilson interviews postdoctoral researcher M. Iqbal Bakti Utama of Northwestern University about a method allowing single photon production without defect. Aryl diazonium chemistry has been used in the past to functionalize the surface of carbon nanotubes. Utama’s group found that this chemistry also works for tungsten diselenide surfaces. The group immersed tungsten diselenide monolayers into an aqueous solution of 4-nitrobenzene-diazonium tet...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Irmgard Bischofberger of the Massachusetts Institute of Technology about her investigation of how chirality emerges in nature. She uses liquid crystal molecules of disodium chromoglycate in her studies. When the molecules are dissolved in water, they form linear rods. The research group then forces the rods through a microfluidic cell, causing the rods to assemble into spiral structures without mirror symmetry. The achiral structu...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Eric Pop, Xiangjin Wu, and Asir Intisar Khan from Stanford University about their work building a phase-change memory superlattice at the nanoscale. They created the superlattice by alternating layers of antimony-tellurium nanoclusters with a nanocomposite made from germanium, antimony, and tellurium (GST467). Each layer is ~2 nm thick and the superlattice consists of 15 periods of these alternating layers. The microstructural prop...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Magalí Lingenfelder from the École Polytechnique Fédérale de Lausanne, Switzerland about her group’s discovery of the switching mechanism behind H-bond-linked two-dimensional networks. The hydrogen bonding ability was tuned by comparing carboxylates to aldehydes. Lingenfelder’s group found that the ability of the structure to switch between an open structure to a close-packed one is governed by a synergistic combination of energeti...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Aram Amassian from North Carolina State University about his group’s achievements using RoboMapper, a materials acceleration platform. In researchers’ quest to run environmentally-conscious laboratories, Amassian offers a solution that focuses on characterization of materials. Having found that characterization generates a lot of energy, his group developed an automated approach to screening small samples in order to identify ones ...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Kaveh Ahadi from The Ohio State University about a material his group developed that maintains superconductivity in a magnetic field. The researchers grew a film of lanthanum manganite on a crystal of potassium tantalate. When lowered to the temperature of 2 Kelvin, the material is a superconductor. When Ahadi’s group applied 25 Teslas of magnetic field, the material stayed superconducting. Even though the material is not of pract...
In this podcast episode, MRS Bulletin’s Elizabeth Wilson interviews Manos Mavrikakis from the University of Wisconsin–Madison about his group’s theoretical work on real-world industrial catalytic conditions. It is often assumed that most catalyst surface atoms stay in place during a reaction, firmly bonded to their metal neighbors. However, Mavrikakis’s theoretical framework shows that under industrial reaction conditions, a surprising amount of metal–metal bond breaking is likely happening d...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Nathan Gabor from the University of California, Riverside about his group’s work on imaging and directing the flow of electrons in electronic devices. They designed their device by taking a crystal of yttrium iron garnet, which does not conduct electricity, and putting a nanometers-thick layer of platinum, which does conduct electricity, on top of it. When they illuminate the device with a laser, this device produces an electric c...
In this podcast episode, MRS Bulletin’s Rahul Rao interviews Fereshte Ghahari of George Mason University about the use of a scanning tunneling microscope (STM) to measure the electronic and magnetic properties of moiré quantum materials. Ghahari and collaborators twisted two layers of graphene at a specific angle, then chilled the material to suppress as much motion as possible. They ran an STM across the material while varying the magnetic field. They could precisely observe how those field ...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Hamideh Khanbareh and Vlad Jarkov of the University of Bath in the UK about an application they introduced for using piezoelectric materials in tissue engineering. The researchers fabricated a composite by combining polydimethylsiloxane with a piezoelectric material of potassium-sodium-niobate that is compatible with cell lines similar to neurons. They then studied how the composite material would interact with neural stem cells. T...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Professor Jerry Qi and postdoctoral researcher Mingzhe Li of the Georgia Institute of Technology about their new technique to 3D print silica glass. After using two-photon polymerization to cross-link poly-dimethylsiloxane, Qi’s research team used deep UV to convert the polymer into silica glass. The deep UV irradiation is carried out in an oxygen-rich atmosphere. The UV light converts the oxygen to ozone, which then reacts with th...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Surabhi Madhvapathy of Northwestern University about an implantable bioelectronics system that can perform early detection of kidney transplant rejection in rats. Madhvapathy and her colleagues have developed a wireless sensor that attaches to the kidney itself. The biosensor measures the organ’s temperature and its thermal conductivity. These can point toward inflammation in the kidney, which can be a sign of organ rejection. Thi...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Kento Katagiri, a postdoctoral scholar at Stanford University, about the propagation speed of dislocations in materials. Using an X-ray free electron laser to collect data from single-crystal diamond, Katagiri and colleagues have determined the velocity of wave propagation to be in the transonic region. Katagiri’s work is most applicable to extreme shock events such as missile strikes and shuttle launches where pressures of one ter...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Stanford University’s Jennifer Dionne and her PhD student Fareeha Safir and their colleague Amr. Saleh from Cairo University about their work on identifying bacteria in complex samples. Instead of culturing bacteria then identifying them using specific methods such as a polymerase chain reaction test, which takes hours, Dionne’s research group uses Raman spectroscopy combined with machine learning to detect the presence of two spec...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Alice Soragni of the University of California, Los Angeles about her work in precision oncology. Rather than sequence the DNA of a patient’s tumor, Soragni uses bioprinting to create organoids from the patient’s cells. She then adds various drugs to the cells to directly test their response to each drug. To check the effectiveness of the drugs, Soragni’s group measures the organoid’s mass with a technique called interferometry. In...
While thermodynamics suggests that water sorption is more favorable at a low temperature, MRS Bulletin podcaster Laura Leay interviews post-doctoral researcher Xinyue Liu from the Massachusetts Institute of Technology (MIT) who reports a hydrogel that can adsorb more water at elevated temperatures. Liu and the research team from MIT and the University of Michigan were searching for a way to harvest water from the air without using a lot of energy. They want to tackle the problem of water scar...
Many industrial processes require heat or create it as a by-product. Now, Takayoshi Katase from the Tokyo Institute of Technology has found a way to harness this heat in an eco-friendly way, as he explains in an interview with MRS Bulletin podcaster Laura Leay. One way to harness this heat is to use thermoelectric devices to produce electricity via the Seebeck effect. Conventional thermoelectric materials, however, are composed of heavy metals such as lead and tellurium, which are toxic. To i...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Xuchen Wang of Karlsruhe Institute of Technology in Germany about his work on photonic time crystals. While conventional crystals are composed of repeating unit cells in space, such as eight carbon atoms arranged in a cube to form a diamond, a photonic time crystal has a structure that repeats in time. Theoretical predictions of photonic time crystals referred to designs consisting of three-dimensional metamaterials whose properti...
Little research has been done on the magnetic properties of high-entropy oxides, a challenge taken up by Alannah Hallas at the University of British Columbia in Canada, interviewed by MRS Bulletin podcaster Laura Leay. Hallas’s research group began by choosing five elements that would be magnetic and combining them in oxide form, rendering a spinel structure for further experimentation. To understand how progressive substitution of the magnetic metal cations with non-magnetic gallium would af...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Widi Moestopo, a former graduate student in Julia Greer’s laboratory at the California Institute of Technology (Caltech) and now a postdoc at Lawrence Livermore National Laboratory about their work incorporating microknots in architected materials. Using two-photon lithography, Moestopo scans a resin with a laser to create and shape a three-dimensional (3D) object within foam. Moestopo then used a solvent to wash away the remainin...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Dominic Bresser from the Helmholtz Institute Ulm and the Karlsruhe Institute of Technology in Germany about the suitability of a nanotwinned copper foil as a current collector for the negative electrode in“zero excess” lithium−metal batteries. The nanotwinned copper foil has an essentially pure, single orientation and dense twin boundaries. Bresser’s research group found that lithium deposits more densely and much more homogenously...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Carmel Majidi from Carnegie Mellon University about an adaptive-responsive soft micro-robot. The key is eliciting a liquid–solid phase transition through electromagnetic induction. In addition to using the magnetic field to induce the phase change, it can also be used to make the machine move. A soft, low-rigidity body is vital for adapting a miniature machine to a variety of applications or a changing environment. This work was pu...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Prof. Esma Ismailova and graduate student Marina Galliani from Mines Saint-Etienne about their work toward creating biocompatible, eco-friendly materials for wearable electronics. For this particular project, they developed a conducting material based on a commercial polymer known as PEDOT-PSS, in a water-based solution. They combined it with various solvents to tune the electrical conductivity, which is dependent on the shape and...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Rob Shepherd from Cornell University about an adaptive-responsive self-healing soft robotic system. Shepherd’s research team has developed waveguides made of self-healing polyurethane urea crosslinked with aromatic sulfide bonds. When this material is cut, relatively weak hydrogen bonds quickly form. Disulfide exchange then occurs and, although this takes longer than the formation of hydrogen bonds, results in much stronger bonding...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Jiahui Li, a graduate student at the University of Illinois Urbana-Champaign about designing structures out of gold nanoparticles. When the nanoparticle structure takes the shape of a pinwheel, different types of light interact with the structure differently due to its chirality. Different wavelengths might be transmitted depending on whether the light’s polarization is rotating clockwise or counterclockwise, which could make this...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Robert Hovden from the University of Michigan and his graduate student Jonathan Schwartz on development of the freely available Tomviz platform (tomviz.org) that enables real-time three-dimensional (3D) visual analysis of materials. Building on the already existing Tomviz platform, Schwartz created new algorithms capable of pulling data from transmission and scanning electron microscopes, evolving the 3D image as the experiment pro...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Tao Yang from the City University of Hong Kong in China who focuses on the innovative design of advanced structural materials. In the area of high-strength alloys, Yang’s research team looked specifically at how to stabilize nanoparticles at high temperatures. In an alloy of Ni59.9-xCoxFe13-Cr15Al6Ti6B0.1, Yang’s team achieved ultra-stable nanoparticles at 800–1000°C. They achieved this effect by tailoring the concentration of coba...
In this podcast episode, MRS Bulletin’s Stephen Riffle interviews Alessandra Scagliarini, a professor of infectious disease at the University of Bologna, and Beatrice Fraboni, a professor of physics at the Department of Physics and Astronomy at the University of Bologna, about their electrical transistor assay that quantifies SARS-CoV-2 for antibodies. The purpose is to determine vaccine efficacy over time. The device is built with the semiconducting material poly(3,4-ethylenedioxythiophene) ...
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Murat Onen, a postdoctoral researcher at the Massachusetts Institute of Technology, about analog deep learning that could help lower the cost of training artificial intelligence (AI). The programmable analog device stores information in the same place where the information is processed. The resistor’s main material is tungsten oxide, which can be reversibly doped with protons from an electrolyte material known as phosphosilicate g...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Monica Olvera de la Cruz of Northwestern University and her colleagues who gained insight into biochirality. By analyzing self-assembly for a series of amphiphiles, Cn-K, consisting of an ionizable amino acid [lysine (K)] coupled to alkyl tails with n = 12, 14, or 16 carbons, the researchers found the degree of ionization is what controls the shape. They incorporate this phenomenon into a membrane energetics model. Furthermore, the...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Peter Gumbsch, who is affiliated with both the Karlsruhe Institute of Technology and the Fraunhofer Institute for Mechanics of Materials in Germany about gear-based mechanical metamaterials. The researchers offer a paradigm shift in design where—instead of choosing a material for a given application and compromising on materials properties—engineers can consider an adaptable metamaterial to build shape-morphing structures that can ...
In this podcast episode, MRS Bulletin’s Laura Leay interviews Sergey Artyukhin from the Istituto Italiano di Tecnologia and Louis Ponet, who is affiliated with both the Istituto Italiano di Tecnologia and Scuola Normale Superiore di Pisa about a topologically protected switching phenomena in ferroic materials. When a multiferroic crystal (GdMn2O5) is placed in a magnetic field at a very particular angle to a crystallographic axis, and the magnetic field is swept up and down twice, the system ...
Comments
Top Podcasts
The Best New Mark Levin Podcast Right Now - March 2025The Best New VINCE Podcast Right Now - March 2025The Best New Joe Rogan Experience Podcast Right Now - March 2025The Best New Sports Podcast Right Now - March 2025The Best New Business Podcast Right Now - March 2025The Best New News Podcast Right Now - March 2025The Best New Comedy Podcast Right Now - March 2025The Best New True Crime Podcast Right Now - March 2025