DiscoverIn Our Time: Science
In Our Time: Science
Claim Ownership

In Our Time: Science

Author: BBC Radio 4

Subscribed: 37,625Played: 379,388
Share

Description

Scientific principles, theory, and the role of key figures in the advancement of science.

283 Episodes
Reverse
Melvyn Bragg and guests discuss the German physicist who, at the age of 23 and while still a student, effectively created quantum mechanics for which he later won the Nobel Prize. Werner Heisenberg made this breakthrough in a paper in 1925 when, rather than starting with an idea of where atomic particles were at any one time, he worked backwards from what he observed of atoms and their particles and the light they emitted, doing away with the idea of their continuous orbit of the nucleus and replacing this with equations. This was momentous and from this flowed what’s known as his Uncertainty Principle, the idea that, for example, you can accurately measure the position of an atomic particle or its momentum, but not both.With Fay Dowker Professor of Theoretical Physics at Imperial College LondonHarry Cliff Research Fellow in Particle Physics at the University of CambridgeAnd Frank Close Professor Emeritus of Theoretical Physics and Fellow Emeritus at Exeter College at the University of OxfordProducer: Simon TillotsonReading list:Philip Ball, Beyond Weird: Why Everything You Thought You Knew about Quantum Physics Is Different (Vintage, 2018)John Bell, ‘Against 'measurement'’ (Physics World, Vol 3, No 8, 1990)Mara Beller, Quantum Dialogue: The Making of a Revolution (University of Chicago Press, 2001)David C. Cassidy, Beyond Uncertainty: Heisenberg, Quantum Physics, And The Bomb (Bellevue Literary Press, 2010) Werner Heisenberg, Physics and Philosophy (first published 1958; Penguin Classics, 2000)Carlo Rovelli, Helgoland: The Strange and Beautiful Story of Quantum Physics (Penguin, 2022)
Hormones

Hormones

2024-03-0752:37

Melvyn Bragg and guests discuss some of the chemical signals coursing through our bodies throughout our lives, produced in separate areas and spreading via the bloodstream. We call these 'hormones' and we produce more than 80 of them of which the best known are arguably oestrogen, testosterone, adrenalin, insulin and cortisol. On the whole hormones operate without us being immediately conscious of them as their goal is homeostasis, maintaining the levels of everything in the body as required without us having to think about them first. Their actions are vital for our health and wellbeing and influence many different aspects of the way our bodies work.WithSadaf Farooqi Professor of Metabolism and Medicine at the University of CambridgeRebecca Reynolds Professor of Metabolic Medicine at the University of EdinburghAndAndrew Bicknell Associate Professor in the School of Biological Sciences at the University of ReadingProduced by Victoria BrignellReading list:Rachel Carson, Silent Spring (first published 1962; Penguin Classics, 2000)Stephen Nussey and Saffron Whitehead, Endocrinology: An Integrated Approach (BIOS Scientific Publishers; 2001)Aylinr Y. Yilmaz, Comprehensive Introduction to Endocrinology for Novices (Independently published, 2023)
Plankton

Plankton

2023-11-0249:316

Melvyn Bragg and guests discuss the tiny drifting organisms in the oceans that sustain the food chain for all the lifeforms in the water and so for the billions of people who, in turn, depend on the seas for their diet. In Earth's development, the plant-like ones among them, the phytoplankton, produced so much oxygen through photosynthesis that around half the oxygen we breathe today originated there. And each day as the sun rises, the animal ones, the zooplankton, sink to the depths of the seas to avoid predators in such density that they appear on ship sonars like a new seabed, only to rise again at night in the largest migration of life on this planet.WithCarol Robinson Professor of Marine Sciences at the University of East AngliaAbigail McQuatters-Gollop Associate Professor of Marine Conservation at the University of PlymouthAndChristopher Lowe Lecturer in Marine Biology at Swansea UniversityProducer: Simon TillotsonReading list: Juli Berwald, Spineless: The Science of Jellyfish and the Art of Growing a Backbone (Riverhead Books, 2018)Sir Alister Hardy, The Open Sea: The World of Plankton (first published 1959; Collins New Naturalist Library, 2009) Richard Kirby, Ocean Drifters: A Secret World Beneath the Waves (Studio Cactus Ltd, 2010)Robert Kunzig, Mapping the Deep: The Extraordinary Story of Ocean Science (Sort Of Books, 2000)Christian Sardet, Plankton: Wonders of the Drifting World (University of Chicago Press, 2015) Helen Scales, The Brilliant Abyss: True Tales of Exploring the Deep Sea, Discovering Hidden Life and Selling the Seabed (Bloomsbury Sigma, 2022)
Albert Einstein

Albert Einstein

2023-10-1250:363

Melvyn Bragg and guests discuss the man who, in 1905, produced several papers that were to change the world of physics and whose name went on to become a byword for genius. This was Albert Einstein, then still a technical expert at a Swiss patent office, and that year of 1905 became known as his annus mirabilis ('miraculous year'). While Einstein came from outside the academic world, some such as Max Planck championed his theory of special relativity, his principle of mass-energy equivalence that followed, and his explanations of Brownian Motion and the photoelectric effect. Yet it was not until 1919, when a solar eclipse proved his theory that gravity would bend light, that Einstein became an international celebrity and developed into an almost mythical figure.With Richard Staley Professor in History and Philosophy of Science at the University of Cambridge and Professor in History of Science at the University of CopenhagenDiana Kormos Buchwald Robert M. Abbey Professor of History and Director and General Editor of The Einstein Papers Project at the California Institute of TechnologyAndJohn Heilbron Professor Emeritus at the University of California, BerkeleyProducer: Simon TillotsonReading list: Ronald W. Clark, Einstein: The Life and Times (first published 1971; HarperPaperbacks, 2011)Albert Einstein (eds. Jurgen Renn and Hanoch Gutfreund), Relativity: The Special and the General Theory - 100th Anniversary Edition (Princeton University Press, 2019)Albert Einstein, Out of My Later Years (first published 1950; Citadel Press, 1974)Albert Einstein (ed. Paul A. Schilpp), Albert Einstein: Philosopher-Scientist: The Library of Living Philosophers Volume VII (first published 1949; Open Court, 1970)Albert Einstein (eds. Otto Nathan and Heinz Norden), Einstein on Peace (first published 1981; Literary Licensing, 2011)Albrecht Folsing, Albert Einstein: A Biography (Viking, 1997)J. L. Heilbron, Niels Bohr: A Very Short Introduction (Oxford University Press, 2020)Walter Isaacson, Einstein: His Life and Universe (Simon & Schuster, 2008)Max Jammer, Einstein and Religion (Princeton University Press, 2002)Michel Janssen and Christoph Lehner (eds.), The Cambridge Companion to Einstein (Cambridge University Press, 2014)Dennis Overbye, Einstein in Love: A Scientific Romance (Viking, 2000)Abraham Pais, Subtle Is the Lord: The Science and the Life of Albert Einstein (Oxford University Press, 1982)David E. Rowe and Robert Schulmann (eds.), Einstein on Politics: His Private Thoughts and Public Stands on Nationalism, Zionism, War, Peace, and the Bomb (Princeton University Press, 2007)Matthew Stanley, Einstein's War: How Relativity Triumphed Amid the Vicious Nationalism of World War I (Dutton, 2019)Fritz Stern, Einstein’s German World (Princeton University Press, 1999)A. Douglas Stone, Einstein and the Quantum: The Quest of the Valiant Swabian (Princeton University Press, 2013)Milena Wazeck (trans. Geoffrey S. Koby), Einstein's Opponents: The Public Controversy About the Theory of Relativity in the 1920s (Cambridge University Press, 2014)
Jupiter

Jupiter

2023-07-2754:581

Jupiter is the largest planet in our solar system, and it’s hard to imagine a world more alien and different from Earth. It’s known as a Gas Giant, and its diameter is eleven times the size of Earth’s: our planet would fit inside it one thousand three hundred times. But its mass is only three hundred and twenty times greater, suggesting that although Jupiter is much bigger than Earth, the stuff it’s made of is much, much lighter. When you look at it through a powerful telescope you see a mass of colourful bands and stripes: these are the tops of ferocious weather systems that tear around the planet, including the great Red Spot, probably the longest-lasting storm in the solar system. Jupiter is so enormous that it’s thought to have played an essential role in the distribution of matter as the solar system formed – and it plays an important role in hoovering up astral debris that might otherwise rain down on Earth. It’s almost a mini solar system in its own right, with 95 moons orbiting around it. At least two of these are places life might possibly be found. WithMichele Dougherty, Professor of Space Physics and Head of the Department of Physics at Imperial College London, and principle investigator of the magnetometer instrument on the JUICE spacecraft (JUICE is the Jupiter Icy Moons Explorer, a mission launched by the European Space Agency in April 2023)Leigh Fletcher, Professor of Planetary Science at the University of Leicester, and interdisciplinary scientist for JUICECarolin Crawford, Emeritus Fellow of Emmanuel College, University of Cambridge, and Emeritus Member of the Institute of Astronomy, Cambridge
Mitochondria

Mitochondria

2023-06-2954:038

Melvyn Bragg and guests discuss the power-packs within cells in all complex life on Earth. Inside each cell of every complex organism there are structures known as mitochondria. The 19th century scientists who first observed them thought they were bacteria which had somehow invaded the cells they were studying. We now understand that mitochondria take components from the food we eat and convert them into energy. Mitochondria are essential for complex life, but as the components that run our metabolisms they can also be responsible for a range of diseases – and they probably play a role in how we age. The DNA in mitochondria is only passed down the maternal line. This means it can be used to trace population movements deep into human history, even back to an ancestor we all share: mitochondrial Eve. With Mike Murphy Professor of Mitochondrial Redox Biology at the University of CambridgeFlorencia Camus NERC Independent Research Fellow at University College Londonand Nick Lane Professor of Evolutionary Biochemistry at University College LondonProducer Luke Mulhall
Linnaeus

Linnaeus

2023-05-1851:221

Melvyn Bragg and guests discuss the life, ideas and legacy of the pioneering Swedish botanist Carl Linnaeus (1707 – 1778). The philosopher Jean-Jacques Rousseau once wrote: "Tell him I know no greater man on earth". The son of a parson, Linnaeus grew up in an impoverished part of Sweden but managed to gain a place at university. He went on to transform biology by making two major innovations. He devised a simpler method of naming species and he developed a new system for classifying plants and animals, a system that became known as the Linnaean hierarchy. He was also one of the first people to grow a banana in Europe. WithStaffan Muller-Wille University Lecturer in History of Life, Human and Earth Sciences at the University of CambridgeStella Sandford Professor of Modern European Philosophy at Kingston University, Londonand Steve Jones Senior Research Fellow in Genetics at University College, LondonProducer Luke Mulhall
Paul Erdős

Paul Erdős

2023-03-2352:122

Paul Erdős (1913 – 1996) is one of the most celebrated mathematicians of the 20th century. During his long career, he made a number of impressive advances in our understanding of maths and developed whole new fields in the subject. He was born into a Jewish family in Hungary just before the outbreak of World War I, and his life was shaped by the rise of fascism in Europe, anti-Semitism and the Cold War. His reputation for mathematical problem solving is unrivalled and he was extraordinarily prolific. He produced more than 1,500 papers and collaborated with around 500 other academics. He also had an unconventional lifestyle. Instead of having a long-term post at one university, he spent much of his life travelling around visiting other mathematicians, often staying for just a few days. With Colva Roney-Dougal Professor of Pure Mathematics at the University of St AndrewsTimothy Gowers Professor of Mathematics at the College de France in Paris and Fellow of Trinity College, CambridgeandAndrew Treglown Associate Professor in Mathematics at the University of BirminghamThe image above shows a graph occurring in Ramsey Theory. It was created by Dr Katherine Staden, lecturer in the School of Mathematics at the Open University.
Tycho Brahe

Tycho Brahe

2023-03-0254:531

Melvyn Bragg and guests discuss the pioneering Danish astronomer Tycho Brahe (1546 – 1601) whose charts offered an unprecedented level of accuracy.In 1572 Brahe's observations of a new star challenged the idea, inherited from Aristotle, that the heavens were unchanging. He went on to create his own observatory complex on the Danish island of Hven, and there, working before the invention of the telescope, he developed innovative instruments and gathered a team of assistants, taking a highly systematic approach to observation. A second, smaller source of renown was his metal prosthetic nose, which he needed after a serious injury sustained in a duel. The image above shows Brahe aged 40, from the Atlas Major by Johann Blaeu. With Ole Grell Emeritus Professor in Early Modern History at the Open University Adam Mosley Associate Professor of History at Swansea University and Emma Perkins Affiliate Scholar in the Department of History and Philosophy of Science at the University of Cambridge.
Superconductivity

Superconductivity

2023-02-2352:195

Melvyn Bragg and guests discuss the discovery made in 1911 by the Dutch physicist Heike Kamerlingh Onnes (1853-1926). He came to call it Superconductivity and it is a set of physical properties that nobody predicted and that none, since, have fully explained. When he lowered the temperature of mercury close to absolute zero and ran an electrical current through it, Kamerlingh Onnes found not that it had low resistance but that it had no resistance. Later, in addition, it was noticed that a superconductor expels its magnetic field. In the century or more that has followed, superconductors have already been used to make MRI scanners and to speed particles through the Large Hadron Collider and they may perhaps bring nuclear fusion a little closer (a step that could be world changing).The image above is from a photograph taken by Stephen Blundell of a piece of superconductor levitating above a magnet.With Nigel Hussey Professor of Experimental Condensed Matter Physics at the University of Bristol and Radbout UniversitySuchitra Sebastian Professor of Physics at the Cavendish Laboratory at the University of CambridgeAndStephen Blundell Professor of Physics at the University of Oxford and Fellow of Mansfield CollegeProducer: Simon Tillotson
Melvyn Bragg and guests discuss the voyage of HMS Challenger which set out from Portsmouth in 1872 with a mission a to explore the ocean depths around the world and search for new life. The scale of the enterprise was breath taking and, for its ambition, it has since been compared to the Apollo missions. The team onboard found thousands of new species, proved there was life on the deepest seabeds and plumbed the Mariana Trench five miles below the surface. Thanks to telegraphy and mailboats, its vast discoveries were shared around the world even while Challenger was at sea, and they are still being studied today, offering insights into the ever-changing oceans that cover so much of the globe and into the health of our planet.The image above is from the journal of Pelham Aldrich R.N. who served on the Challenger Surveying Expedition from 1872-5.WithErika Jones Curator of Navigation and Oceanography at Royal Museums GreenwichSam Robinson Southampton Marine and Maritime Institute Research Fellow at the University of SouthamptonAndGiles Miller Principal Curator of Micropalaeontology at the Natural History Museum LondonProducer: Simon Tillotson
Melvyn Bragg and guests discuss one of the greatest changes in the history of life on Earth. Around 400 million years ago some of our ancestors, the fish, started to become a little more like humans. At the swampy margins between land and water, some fish were turning their fins into limbs, their swim bladders into lungs and developed necks and eventually they became tetrapods, the group to which we and all animals with backbones and limbs belong. After millions of years of this transition, these tetrapod descendants of fish were now ready to leave the water for a new life of walking on land, and with that came an explosion in the diversity of life on Earth.The image above is a representation of Tiktaalik Roseae, a fish with some features of a tetrapod but not one yet, based on a fossil collected in the Canadian Arctic.WithEmily Rayfield Professor of Palaeobiology at the University of BristolMichael Coates Chair and Professor of Organismal Biology and Anatomy at the University of ChicagoAnd Steve Brusatte Professor of Palaeontology and Evolution at the University of EdinburghProducer: Simon Tillotson
The Electron

The Electron

2022-10-2750:478

Melvyn Bragg and guests discuss an atomic particle that's become inseparable from modernity. JJ Thomson discovered the electron 125 years ago, so revealing that atoms, supposedly the smallest things, were made of even smaller things. He pictured them inside an atomic ball like a plum pudding, with others later identifying their place outside the nucleus - and it is their location on the outer limit that has helped scientists learn so much about electrons and with electrons. We can use electrons to reveal the secrets of other particles and, while electricity exists whether we understand electrons or not, the applications of electricity and electrons grow as our knowledge grows. Many questions, though, remain unanswered.With Victoria Martin Professor of Collider Physics at the University of EdinburghHarry Cliff Research Fellow in Particle Physics at the University of CambridgeAndFrank Close Professor Emeritus of Theoretical Physics and Fellow Emeritus at Exeter College at the University of OxfordProducer: Simon Tillotson
The Death of Stars

The Death of Stars

2022-07-0758:4213

Melvyn Bragg and guests discuss the abrupt transformation of stars after shining brightly for millions or billions of years, once they lack the fuel to counter the force of gravity. Those like our own star, the Sun, become red giants, expanding outwards and consuming nearby planets, only to collapse into dense white dwarves. The massive stars, up to fifty times the mass of the Sun, burst into supernovas, visible from Earth in daytime, and become incredibly dense neutron stars or black holes. In these moments of collapse, the intense heat and pressure can create all the known elements to form gases and dust which may eventually combine to form new stars, new planets and, as on Earth, new life.The image above is of the supernova remnant Cassiopeia A, approximately 10,000 light years away, from a once massive star that died in a supernova explosion that was first seen from Earth in 1690WithMartin Rees Astronomer Royal, Fellow of Trinity College, CambridgeCarolin Crawford Emeritus Member of the Institute of Astronomy and Emeritus Fellow of Emmanuel College, University of CambridgeAndMark Sullivan Professor of Astrophysics at the University of SouthamptonProducer: Simon Tillotson
Homo erectus

Homo erectus

2022-05-1251:3110

Melvyn Bragg and guests discuss one of our ancestors, Homo erectus, who thrived on Earth for around two million years whereas we, Homo sapiens, emerged only in the last three hundred thousand years. Homo erectus, or Upright Man, spread from Africa to Asia and it was on the Island of Java that fossilised remains were found in 1891 in an expedition led by Dutch scientist Eugène Dubois. Homo erectus people adapted to different habitats, ate varied food, lived in groups, had stamina to outrun their prey; and discoveries have prompted many theories on the relationship between their diet and the size of their brains, on their ability as seafarers, on their creativity and on their ability to speak and otherwise communicate.The image above is from a diorama at the Moesgaard Museum in Denmark, depicting the Turkana Boy referred to in the programme. With Peter Kjærgaard Director of the Natural History Museum of Denmark and Professor of Evolutionary History at the University of CopenhagenJosé Joordens Senior Researcher in Human Evolution at Naturalis Biodiversity Centre and Professor of Human Evolution at Maastricht UniversityAndMark Maslin Professor of Earth System Science at University College LondonProducer: Simon Tillotson
Seismology

Seismology

2022-04-0750:0611

Melvyn Bragg and guests discuss the study of earthquakes. A massive earthquake in 1755 devastated Lisbon, and this disaster helped inspire a new science of seismology which intensified after San Francisco in 1906 and advanced even further with the need to monitor nuclear tests around the world from 1945 onwards. While we now know so much more about what lies beneath the surface of the Earth, and how rocks move and crack, it remains impossible to predict when earthquakes will happen. Thanks to seismology, though, we have a clearer idea of where earthquakes will happen and how to make some of them less hazardous to lives and homes.WithRebecca Bell Senior lecturer in Geology and Geophysics at Imperial College LondonZoe Mildon Lecturer in Earth Sciences and Future Leaders Fellow at the University of PlymouthAnd James Hammond Reader in Geophysics at Birkbeck, University of LondonProducer: Simon Tillotson
Looking for the latest episode? New episodes of In Our Time will now be available first on BBC Sounds for four weeks before other podcast apps.If you haven’t already, you can download the BBC Sounds app to listen to the In Our Time podcast first.BBC Sounds is also available in lots of other places. Find us on your voice device or smart speaker, on your connected TV, in your car, or at bbc.co.uk/sounds.The latest episode is available on BBC Sounds right now.BBC Sounds – you can find exclusive music mixes, live BBC radio and more podcasts like this one.
Melvyn Bragg and guests discuss William Herschel (1738 – 1822) and his sister Caroline Herschel (1750 – 1848) who were born in Hanover and made their reputation in Britain. William was one of the most eminent astronomers in British history. Although he started life as a musician, as a young man he became interested in studying the night sky. With an extraordinary talent, he constructed telescopes that were able to see further and more clearly than any others at the time. He is most celebrated today for discovering the planet Uranus and detecting what came to be known as infrared radiation. Caroline also became a distinguished astronomer, discovering several comets and collaborating with her brother.WithMonica Grady Professor of Planetary and Space Sciences at the Open UniversityCarolin Crawford Institute of Astronomy, Cambridge and an Emeritus Fellow of Emmanuel College, University of CambridgeAndJim Bennett Keeper Emeritus at the Science Museum in London.Studio producer: John Goudie
Corals

Corals

2021-10-2852:193

Melvyn Bragg and guests discuss the simple animals which informed Charles Darwin's first book, The Structure and Distribution of Coral Reefs, published in 1842. From corals, Darwin concluded that the Earth changed very slowly and was not fashioned by God. Now coral reefs, which some liken to undersea rainforests, are threatened by human activity, including fishing, pollution and climate change. WithSteve Jones Senior Research Fellow in Genetics at University College LondonNicola Foster Lecturer in Marine Biology at the University of Plymouth AndGareth Williams Associate Professor in Marine Biology at Bangor University School of Ocean SciencesProducer Simon Tilllotson.
The Manhattan Project

The Manhattan Project

2021-10-0749:0510

Melvyn Bragg and guests discuss the race to build an atom bomb in the USA during World War Two. Before the war, scientists in Germany had discovered the potential of nuclear fission and scientists in Britain soon argued that this could be used to make an atom bomb, against which there could be no defence other than to own one. The fear among the Allies was that, with its head start, Germany might develop the bomb first and, unmatched, use it on its enemies. The USA took up the challenge in a huge engineering project led by General Groves and Robert Oppenheimer and, once the first bomb had been exploded at Los Alamos in July 1945, it appeared inevitable that the next ones would be used against Japan with devastating results.The image above is of Robert Oppenheimer and General Groves examining the remains of one the bases of the steel test tower, at the atomic bomb Trinity Test site, in September 1945.WithBruce Cameron Reed The Charles A. Dana Professor of Physics Emeritus at Alma College, MichiganCynthia Kelly Founder and President of the Atomic Heritage FoundationAndFrank Close Emeritus Professor of Theoretical Physics at the University of Oxford and a Fellow of Exeter College, OxfordProducer: Simon Tillotson
loading
Comments (17)

Saba Qamar

🔴✅📺📱💻ALL>Movies>WATCH>ᗪOᗯᑎᒪOᗩᗪ>LINK>👉https://co.fastmovies.org

Feb 9th
Reply

Tony Cucca

One of my favorite podcast. Great variety and very well presented. Thank you for all your work. I doubt anyone associated with this podcast will read this 🤪🤪🤪

Dec 24th
Reply

parsa moeini

Awesome

Sep 19th
Reply

Granny InSanDiego

Why has a show called "In Our Time" failed to connect the PETM to our present situation with a follow up program on our failure to deal with the causes of human causes of climate change? A moral failing of epic scale is the only possible reason.

Dec 13th
Reply

parsa moeini

this was a great episode. thanks

Nov 4th
Reply

Masoud Khamushi

perfect

Nov 2nd
Reply

Kalwinder Singh Dhindsa

The Dirac by Kalwinder Singh Dhindsa (nor MAN ton Collection) Sometimes it's easier to say as little as possible. A reluctance to speak unless there's a very good reason to be audible. When uttering a word proves to be near impossible. So what's the point in saying anything, When a 'No' would be plausible? Dirac was a genius completely absorbed in his work activity. To unify the theories of quantum mechanics and relativity. A being with absolutely no interest in other people and feelings. His number one priority: research productivity dealings. Devoid of any apparent empathy until his taciturn heart was taken, By E.P Wigner's sister Manci, his human love she did awaken.

Feb 26th
Reply

Granny InSanDiego

As per usual, Melvin Bragg, the "moderator" poisoned the discussion and ruined the listening experience by attacking one of the speakers and focusing on minutiae.

Sep 26th
Reply

Aaron Sharpe

spam

Apr 22nd
Reply

Chris Hayes

this is normally good but the questions asked on this topic seem to have slowed the conversation rather than enchance it

Apr 14th
Reply

Ryan Hughes

This podcast would be amazing if they replaced the host with someone who doesn't interrupt people every 30 seconds.

Apr 4th
Reply

JAMES

p

Oct 6th
Reply

Divyangana Rakesh

Love this podcast

Feb 14th
Reply

sternen_meer

The best podcast I've ever come across

Jan 2nd
Reply

Robert J. Simpson

Start at 5:30

Sep 25th
Reply

Robert J. Simpson

Start at 16:25

Sep 24th
Reply

Robert J. Simpson

Begin at 5 minute mark.

Sep 21st
Reply
Download from Google Play
Download from App Store