Discover
Getting Personal: Omics of the Heart
37 Episodes
Reverse
Jane Ferguson: Hi there. Welcome to Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson, and this is Episode 36 from February 2020. First up, we have “Identification of Circulating Proteins Associated with Blood Pressure Using Mendelian Randomization” from Sébastien Thériault, Guillaume Paré, and colleagues from McMaster University in Ontario. They set out to assess whether they could identify protein biomarkers of hypertension using a Mendelian randomization approach. They analyzed data from a genome-wide association study of 227 biomarkers which were profiled on a custom Luminex-based platform in over 4,000 diabetic or prediabetic participants of the origin trial. They constructed genetic predictors of each protein and then used these as instruments for Mendelian randomization. They obtained systolic and diastolic blood pressure measurements in almost 70,000 individuals, in addition to mean arterial pressure and pulse pressure in over 74,000 individuals, all European ancestry with GWAS data, as part of the International Consortium for Blood Pressure. Out of the 227 biomarkers tested, six of them were significantly associated with blood pressure traits by Mendelian randomization after correction for multiple testing. These included known biomarkers such as NT-proBNP, but also novel associations including urokinase-type plasminogen activator, adrenomedullin, interleukin-16, cellular fibronectin and insulin-like growth factor binding protein-3. They validated all of the associations apart from IL-16 in over 300,000 participants in UK Biobank. They probed associations with other cardiovascular risk markers and found that NT-proBNP associated with large artery atherosclerotic stroke, IGFBP3 associated with diabetes, and CFN associated with body mass index. This study identified novel biomarkers of blood pressure, which may be causal in hypertension. Further study of the underlying mechanisms is required to understand whether these could be useful therapeutic targets in hypertensive disease. The next paper comes from Sony Tuteja, Dan Rader, Jay Giri and colleagues from the University of Pennsylvania and it's entitled, “Prospective CYP2C19 Genotyping to Guide Antiplatelet Therapy Following Percutaneous Coronary Intervention: A Pragmatic Randomized Clinical Trial”. They designed a pharmacode genomic trial to assess effects of CYP2C19 genotyping on antiplatelet therapy following PCI. Because loss of function alleles in CYP2C19 impair the effectiveness of clopidogrel, the team were interested in understanding whether knowledge of genotype status would affect prescribing in a clinical setting. They randomized 504 participants to genotype guided or usual care groups and assessed the rate of prasugrel or ticagrelor prescribing in place of clopidogrel within each arm. As a secondary outcome, they assessed whether prescribers adhere to genotype guided recommendations. Of genotyped individuals, 28% carried loss of function alleles. Within the genotype guided group overall, there was higher use of prasugrel or ticagrelor with these being prescribed to 30% of patients compared with only 21% in the usual care group. Within genotype individuals carrying loss of function alleles, 53% were started on prasugrel or ticagrelor, demonstrating some adherence to genotype guided recommendations. However, this also meant that 47% of people whose genotype suggested reduced effectiveness were nevertheless prescribed clopidogrel. This study highlights that even when genotype information is available, interventional cardiologists consider clinical factors such as disease presentation and may weight these more highly than genotype information when selecting antiplatelet therapy following PCI. The next paper is about “Deep Mutational Scan of an SCN5A Voltage Sensor and comes to us from Andrew Glazer, Dan Roden and colleagues from Vanderbilt University Medical Center. In this paper, the team aim to characterize the functional consequences of variants and the S4 voltage sensor of domain IV and the SCN5A gene using a high throughput method that they developed. SCN5A encodes the major voltage gated sodium channel in the heart and variants in SCN5A can cause multiple distinct genetic arrhythmia syndromes, including Brugada syndrome, long QT syndrome, atrial fibrillation, and dilated cardiomyopathy, and have been linked to sudden cardiac death. Because of this, there's considerable interest in understanding the functional and clinical consequences of different variants, but previous approaches were time consuming and results were often inconclusive with many variants being classified as uncertain significance. This newly developed deep mutational scanning approach allows for simultaneous assessment of the function of thousands of variants, making it much more efficient than low throughput patch clamping. The team assessed the function of 248 variants using a triple drug assay in HEK293T cells expressing each variant and they identified 40 putative gain of function and 33 putative loss of function variants. They successfully validated eight of nine of these by patch clamping data. Their study highlights the effectiveness of this deep mutational scanning approach for investigating variants in the cardiac sodium channel SCN5A gene and suggests that this may also be an effective approach for investigating putative disease variants and other ion channels. The next article is a research letter from Connor Emdin, Amit Khera, and colleagues from Mass General Hospital in the Broad Institute entitled, “Genome-Wide Polygenic Score and Cardiovascular Outcomes with Evacetrapib in Patients with High-Risk Vascular Disease: A Nested Case-Control Study”. In this study, the team set out to probe the utility of using polygenic risk scores to predict the risk of major adverse cardiovascular events within individuals already known to be at high cardiovascular risk and to assess whether genetic scores can identify individuals who would benefit from the use of a CETP inhibitor such as Evacetrapib. They analyze data from the ACCELERATE trial which had tested Evacetrapib in a high risk population, and they found no effect on the incidents of major adverse cardiovascular events overall. Within a nested case-control sample of individuals experiencing major CVD events versus no events, they applied a polygenic risk score and found that the score predicted major cardiovascular events. Patients in the highest quintile of the risk score were at 60% higher risk of a major cardiovascular event than patients in the lowest quintile. There was no evidence of any interaction between the genetic risk score and Evacetrapib. These data suggest that genetic risk scores may have utility in identifying individuals at high risk events but may not have utility in identifying individuals who may derive more benefit from CETP inhibition. The next letter concerns “Epigenome-Wide Association Study Identifies a Novel DNA Methylation in Patients with Severe Aortic Valve Stenosis” and comes from Takahito Nasu, Mamoru Satoh, Makoto Sasaki and colleagues from Iwate Medical University in Japan. They were interested in understanding whether differences in DNA methylation could underlie the risk of aortic valve stenosis. They conducted an EWAS or epigenome-wide association study of peripheral blood mononuclear cells or PBMCs from 44 individuals with aortic stenosis and 44 disease free controls. They collected samples at baseline before a surgical intervention in the individuals with aortic stenosis and collected a follow-up sample one year later. They found that DNA methylation at a site on chromosome eight mapping to the TRIB1, or tribbles homolog one gene, was lower in the aortic stenosis group than in the controls at baseline. They replicated the association in an independent sample of 50 cases and 50 controls. TRIB1 MRNA levels were higher in the aortic stenosis group than the controls. When they looked at methylation status one year after aortic valve replacement or a transcatheter aortic valve implantation in patients with stenosis, they found that DNA methylation had increased in the cases while TRIB1 MRNA decreased. These data suggests that methylation status of TRIB1 and expression of TRIB1 may relate to the disease processes in aortic stenosis such as hemodynamic dysregulation and they can be reversed through surgical intervention. Changes in the methylation status of TRIB1 could be a novel biomarker of response to aortic valve replacement. The next letter comes from Niels Grote Beverborg, Pim van der Harst, and colleagues from University Medical Center Groningen and is entitled, “Genetically Determined High Levels of Iron Parameters Are Protective for Coronary Artery Disease”. Their study addresses the conflicting hypotheses that high iron status is either deleterious or protective against cardiovascular disease. The team constructed genetic predictors of serum iron status using 11 previously identified snips and tested the genetic association with CAD in UK Biobank data from over 408,000 white participants. Overall, the genetic score for higher iron status was associated with protection against CAD. Ten of the snips suggested individual neutral or protective effects of higher iron statu
Jane Ferguson: Hi, everyone. Welcome to episode 35 of Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson, an assistant professor of medicine at Vanderbilt University Medical Center, and an associate editor at Circulation: Genomic and Precision Medicine. This episode is first airing in December 2019. Let's see what we published this month. Our first paper is an “Integrated Multiomics Approach to Identify Genetic Underpinnings of Heart Failure and Its Echocardiographic Precursors: The Framingham Heart Study” from Charlotte Anderson, Ramachandran Vasan and colleagues from Herlev and Gentofte Hospital, Denmark and Boston University. In this paper, the team investigated the genomics of heart failure, combining GWAS with methylation and gene expression data, to prioritize candidate genes. They analyzed four heart failure related and eight echocardiography related phenotypes in several thousand individuals, and then identified SNPs, methylation markers, and differential gene expression associated with those phenotypes. They then created scores for each gene, based on the rank of statistical significance, aggregated across the different omics analysis. They examined the top ranked genes for evidence of pathway enrichment, and also looked up top SNPs for PheWAS associations in UK Biobank, and examined tissue specific expression in public data. While their data cannot definitively identify causal genes, they highlight several genes of potential relevance to heart failure pathogenesis, which may be promising candidates for future mechanistic studies. The next paper is “Genetic Determinants of Lipids and Cardiovascular Disease Outcomes: A Wide-Angled Mendelian Randomization Investigation” and comes from Elias Allara, Stephen Burgess and colleagues, from the University of Cambridge and the INVENT consortium. While it has been established, therapies to lower LDL cholesterol and triglycerides lead to lower risk of coronary artery disease, it remains less clear whether these lipid lowering efforts can also reduce risk for other cardiovascular outcomes. The team set out to address this question using Mendelian randomization. They generated genetic predictors of LDL cholesterol and triglycerides using data from the Global Lipids Genetics Consortium, and then assessed whether genetically predicted increased LDL and triglycerides associated with risk of cardiovascular phenotypes using UK Biobank data. Beyond CAD, they found that higher LDL was associated with abdominal aortic aneurysm and aortic valve stenosis. High triglyceride levels were positively associated with aortic valve stenosis and hypertension, but inversely associated with venous thromboembolism and hemorrhagic stroke. High LDL cholesterol and triglycerides were also associated with heart failure, which appeared to be mediated by CAD. Their data suggests that LDL lowering may have additional cardiovascular benefits in reducing aortic aneurism and aortic stenosis, while efforts to lower triglycerides may reduce the risk of aortic valve stenosis, but could result in increased thromboembolic risk. Next up is a paper from Steven Joffe, G.L. Splansky and colleagues, from the University of Pennsylvania and Boston University, on “Preferences for Return of Genetic Results Among Participants in the Jackson Heart Study and Framingham Heart Study”. There has been increasing discussion and concern about how to handle genetic data, and whether genetic results should be returned to participants, and under which circumstances. In this study, the teams that had to assess what participants themselves think. They query participants in the Jackson Heart Study, the Framingham Heart Study and the FHS Omni cohort, presenting them with potential scenarios that varied by five factors including phenotype severity, actionability, reproductive significance and relative of the absolute risk of the phenotype. Across all scenarios, 88 to 92% of respondents said that they would definitely or probably want to learn their result. In Jackson Heart Study respondents, factors increasing the desire for results included a positive attitude towards genetic testing, lower education, higher subjective numeracy, and younger age. The five pre-identified factors did not affect desire to receive results in Jackson Heart Study. Among Framingham Heart Study respondents, desire for results was associated with higher absolute risk, presentability, reproductive risk and positive attitudes towards genetic testing. Among FHS Omni respondents, desire for results was associated with positive attitudes towards genetic testing and younger age. Overall, these data show that across a variety of studies, there a high level of interest in receiving genetic results and that these are not necessarily linked to the phenotype or clinical significance of the results themselves. The next paper concerns “Peripheral Blood RNA Levels of QSOX1 and PLBD1 Are New Independent Predictors of Left Ventricular Dysfunction after Acute Myocardial Infarction” and this comes from Martin Vanhaverbeke, Peter Sinnaeve and colleagues, from University Hospital Leuven. They were interested in understanding whether they could identify subsequent left ventricular dysfunction in patients who suffered an acute myocardial infarction. They obtained blood and performed RNA-Seq at multiple time points in 143 individuals, following acute MI, to identify transcripts that were associated with subsequent LV dysfunction. They validated candidate gene transcripts in a validation sample of 449 individuals, confirming that expression of QSOX1 and PLBD1 at admission, were associated with LV dysfunction at follow-up. Adding QSOX1 to a model, consisting of clinical variables and cardiac biomarkers, including NT proBNP, had an incremental predictive value. They took their findings to a pig model and found that whole blood expression of both genes was associated with neutrophil infiltration in these ischemic myocardium. This study suggests that expression of QSOX1 and PLBD1 following MI, may have utility in predicting development of LV dysfunction and may be markers of cardiac inflammation. The next paper is a research letter from Hanna Hanania, Denver Sallee and Dianna Milewicz, from the University of Texas Health Science Center, and Emory University School of Medicine. Who set out to answer the question, “Do HCN4 Variants Predisposed to Thoracic Aortic Aneurysms and Dissections?” Previous work has suggested that rare variants in HCN4 associated with thoracic aortic disease, including ascending aortic dilation, left ventricular noncompaction cardiomyopathy, and sinus bradycardia. However, the evidence for disease segregation was relatively weak. The team set out to explore these potential associations using exome sequencing data from 521 individuals, from 347 unrelated families with heritable thoracic aortic disease, as well as 355 individuals with early onset sporadic aortic dissections, but no family history of disease. They identified a missense variant G482R, which segregated with disease in four unrelated families, was absent from the nomad database and was predicted to disrupt protein function and have deleterious effects. Their data support the evidence that HCN4 rare variants can cause heritable thoracic aortic disease with left ventricular noncompaction cardiomyopathy and bradycardia. Our final paper is a white paper from H. Li, X. J. Luo and colleagues, from the National Heart, Lung and Blood Institute at the NIH, and will likely interest anybody who applies for NIH grants, which I'm assuming is most of you listening to this podcast. Their paper on, “Portfolio Analysis of Research Grants in Data Science Funded by the National Heart, Lung, and Blood Institute”, delves into the type of data science research funded by NHLBI between fiscal year 2008 and fiscal year 2017. They identified 630 data science focused grants, funded by NHLBI, using keywords for bioinformatics and computational biology. They then analyzed the distribution of these grants across different disease areas and compared the results to data science grants funded by other NIH institutes or centers. Around 64% of funded grants were for cardiovascular disease with 22% in lung and airway disease, 12% in blood disease and 2% in sleep. NHLBI's investment in data science research grants averaged about 1% of its overall research grant investment, and this remained constant over the 10-year period. However, this proportion does not include other large scale investment by NHLBI in building data science platforms through other mechanisms. Of relevance to our listeners across all institutes, most funded data science research grants were related to genomics and other omics data. In this paper they include lots of graphs breaking down grant distributions across different categories, so it's worth a look as you plan your next grant application. That's all for December and the final episode of 2019. Thanks for listening and happy holidays to all who celebrate. I'm excited to be back in 2020, to kick off the next decade of exciting advances in genomic and precision cardiovascular medicine. This podcast was brought to you by Circulation: Genomic and Precision Medicine, and the American Heart Association Cou
Jane Ferguson: Hi there. Welcome to the November 2019 issue of Getting Personal: Omics of the Heart. I'm Jane Ferguson. This is your podcast from Circulation: Genomic and Precision Medicine. Let's get started. First up from Eric Curruth, Christopher Haggerty and colleagues from Geisinger, we have a paper entitled, “Prevalence and Electronic Health Record-based Phenotype of Loss-of-function Genetic Variance in Arrhythmogenic Right Ventricular Cardiomyopathy-associated Genes”. In this study, the team set out to understand the phenotypic consequences of variants and desmosome genes which has been associated with a arrhythmogenic right ventricular cardiomyopathy or ARVC. In clinical genetic testing, secondary findings of pathogenic or likely pathogenic variants in desmosome genes are recommended for clinical reporting. However, relatively little is known about the phenotypic consequences of these variants in a general clinical population. The team obtained whole exome sequencing data for over 61,000 individuals from the DiscovEHR cohort, part of the Geisinger MyCode Community Health Initiative. They then screened individuals for a putative loss of function variants in PKP2, DSC2, DSG2, and DSP. They evaluated ARVC diagnostic criteria using previously conducted ECG and echocardiograms and performed a phenom-wide association study or PHeWAS using EHR derived phenotypes. They found 140 people with an ARVC variant in one of the four genes, none of whom had an existing diagnosis of ARVC in the EHR. Further, there were no measurable differences in their ECG or echocardiogram findings compared with matched controls. There were also no associations with any heart disease phenotypes as assessed by PHeWAS. Overall, they report a prevalence of ARVC loss of function variants of around one in 435 in a general clinical population of predominantly European descent, but they did not find evidence that these variants associated with specific phenotypes. Thus, the clinical relevance of putative loss of function variants in desmosome genes still remains to be determined. The next paper is titled, “MRAS Variants Cause Cardiomyocyte Hypertrophy in Patients-specific iPSC-derived Cardiomyocytes”. Additional evidence for MRS as a definitive Noonan syndrome susceptibility gene. This comes from Erin Higgins, Michael Ackerman, and colleagues from the Mayo Clinic. They were interested in understanding whether a recently identified Noonan syndrome variant in the MRS gene was necessary and sufficient to cause Noonan syndrome with cardiac hypertrophy. They generated induced pluripotent STEM cell or IPS C lines from patient derived cells carrying the glycine 23 veiling variant and MRS. In addition to isogenic control cells where the pathogenic variant was corrected back to wild-type using CRISPR CAS nine gene editing, they also created a disease model cell line by introducing the MRS variant into unrelated control cells. They then comprehensively characterized the phenotypes of the three cell lines using a variety of approaches including microscopy, immunofluorescence, single cell RNA seek, Western blot, qPCR, and live cell calcium imaging. Both the patient derived and the disease model IPS cardiomyocytes were larger than control cells and demonstrated changes in gene expression and intracellular pathway signaling characteristic of cardiac hypertrophy. The patient and disease model cells also displayed impaired calcium handling. Through in-vitro phenotyping, the team was able to demonstrate that the glycine 23 veiling MRS variant elicits a cardiac hypertrophy phenotype and IPSC cardiomyocytes, that strongly suggests that this variant is responsible for the observed Noonan syndrome associated cardiac hypertrophy in the effected patients. Next up is a review from Christopher Lee, Iftikhar Kullo, and colleagues also from the Mayo Clinic on “New Case Detection by Cascade Testing in Familial Hypercholesterolemia: A Systematic Review of the Literature”. In this review they set out to systematically assess cascade testing programs for familial hypercholesterolemia, a disease which has a prevalence of about one and 250 but is estimated to be diagnosed in under 10% of patients. They identified published studies across the world which had conducted cascade testing and had reported the number of index cases and number of relatives tested and had also specified their methods of contacting relatives and testing. Using these criteria, they identified 10 studies for inclusion spanning several European countries, South Africa, New Zealand, Australia, and Brazil. The team calculated the proportion of relatives testing positive and the number of new cases per index case to facilitate comparison between studies. The mean number of programs was 242 with an average of 826 relatives per study. The average yield was 45%, ranging from 30 to 60%. the mean new cases per index case was 1.65 with a range of 0.22 to 8.0. Studies that use direct contact versus indirect contact for relatives and those that tested beyond first degree relatives had a greater yield. Further, active sample collection versus collection at clinic and using genetic testing versus biochemical testing was similarly associated with a higher yield. Despite differences between the United States and other countries, applying these strategies when establishing new cascade testing programs in the US may help promote success of these programs. Our next paper concerns “Randomization of Left-right Asymmetry and Congenital Heart Defects: The Role of DNAH5 in Humans and Mice”. And this was conducted by Tabea Nöthe-Menchen, Heymut Omran, and colleagues from University Children's Hospital Muenster and the PCD study group. They were interested in understanding the relationship between congenital heart defects and laterality defects where internal organs are atypically positioned, such as in a mirror image as occurs in situs inversus. Ciliary dyskinesia is thought to play a role in situs inversus and the most frequently mutated gene in primary ciliary dyskinesia is DNAH5. The team does hypothesize that DNAH5 mutations may play a role in congenital heart disease. They characterized phenotypes in 132 patients with primary ciliary dyskinesia carrying disease causing DNAH5 mutations and also studied left right access establishment using a DNAH5 mutant mouse model. 66% of patients in their study had laterality defects, 88% of whom presented with situs inversus totalis and 6% presented with congenital heart disease. In the mass model, they observed immotile cilia, impaired flow with the left right organizer and randomization of nodal signaling with normal reversed or bilateral expression of key molecules. Their study thus demonstrates that mutation of DNAH5 is associated with congenital heart defects and they further highlight the ciliary mechanisms underlying defects and development of left right positioning during embryogenesis. Consideration of celiopathy related symptoms may be warranted when examining patients with congenital heart defects. Next up, we have a research letter from William Goodyear, Marco Perez and colleagues from Stanford University on “Broad Genetic Testing in a Clinical Setting Uncovers a High Prevalence of Titan Loss-of-Function Variants in Very Early-Onset Atrial Fibrillation”. They were interested in understanding genetic determinants of atrial fibrillation and hypothesized that causal genetic variants would be enriched in individuals with very early onset AF, who are diagnosed with AF under the age of 45 with no other significant comorbidities. They identified 25 families comprising 23 unrelated patients with very early onset AF who had been evaluated and received genetic counseling at Stanford between 2014 and 2018. The mean age of AF diagnosis was 27.2 years and 76% of patients were male. 40% of patients had a first or second degree relative with very early onset AF, while 36% at first or second degree relatives with either early onset idiopathic cardiomyopathy, unexplained sudden death or strokes. 85% of patients were identified as having at least one rare variant in a cardiomyopathy associated gene. Six patients carried actionable pathogenic or likely pathogenic variants, four of which were in the titan gene. A subset of individuals were further evaluated by MRI or computed tomography on average 817 days after their first presentation and this revealed high rates of cardiac abnormalities including reduced ventricular function, chamber enlargement, borderline LV non compaction, or late gadolinium enhancement. These were not noted on echocardiogram at presentation, suggesting there may have been subsequent disease development or progression. Overall, this study highlights a high rate of familial disease and implicates an association between very early onset AF and rare variants in titan before the clinical onset of cardiomyopathy. The final letter this month comes from Yu Xia, Shaoxian Chen, Ping Li, Jian Zhuang and colleagues from Guangdong Academy of Medical Sciences and is entitled, “A Novel Mutation in MYH6 in Two Unrelated Chinese Han Families with Familial Atrial Septal Defect”. They report on two unrelated families who presented with secundum atrial septal defect or ASD2. Whole exome sequencing revealed a novel variant and the MYH6 gene in both
Jane Ferguson: Hello. Welcome to episode 33 of Getting Personal: Omics Of The Heart, your podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson. This episode is from October 2019. Let's get started. First up is a paper from Sébastien Thériault, Yohan Bossé, Jean-Jacques Schott and colleagues from Laval University, Quebec and INSERM in Mont. They published on genetic association analyses, highlight IL6, ALPL and NAV1 as three new susceptibility genes underlying Calcific Aortic Valve Stenosis. In this paper, they were interested in finding out whether they could identify novel susceptibility genes for Calcific Aortic Valve Stenosis, or CAVS, which is a severe and often fatal condition with limited treatment options other than surgical aortic valve replacement. They conducted a GWAS meta-analysis across four European ancestry cohorts comprising over 5,000 cases and over 354,000 controls. They identified four loci at genome-wide significance, including two known loci in LPA and PALMD as well as two novel loci, IL6 which encodes the interleukin six cytokine, and ALPL, which encodes an alkaline phosphatase. They then integrated transcriptomic data from 233 human aortic valves to conduct the transcriptome wide association study and find an additional risk locus associated with higher expression of NAV1 encoding neuron navigator one. Through fine mapping, integrating conservation scores, and methylation peaks, they narrowed down the putative causal variants at each locus identifying one snip in each of PALMD and IL6 as likely causal in addition to two candidates snips at ALPL and three plausible candidate snips in NAV1. Phenome-Wide Association Analysis, or PheWAS of the top candidate functional snips found that the IL6 risk variant associated with higher eosinophil count, pulse pressure and systolic blood pressure. Overall, this study was able to identify novel loci associated with CAVS potentially implicating inflammation and hypertension in CAVS etiology. Additional functional studies are required to further explore these potential mechanisms. Next up is a paper from Elisavet Fotiou, Bernard Keavney and colleagues from the University of Manchester. Their paper entitled Integration of Large-Scale Genomic Data Sources With Evolutionary History Reveals Novel Genetic Loci for Congenital Heart Disease explored the genetic etiology of sporadic non syndromic congenital heart disease using an evolution informed approach. Ohnologs are related genes that have been retained following ancestral whole genome duplication events which occurred around 500 million years ago. The authors hypothesized that ohnologs which were retained versus duplicated genes that were lost were likely to have been under greater evolutionary pressure due to the need to maintain consistent gene dosage. For example, as could occur when the resulting proteins form complexes that require stochiometric balance. Thus, ohnologs may be enriched for genes that are sensitive to dosage. The group analyzed copy number variant data from over 4,600 non syndromic coronary heart disease patients as well as whole exome sequence data from 829 cases of Tetralogy of Fallot. Compared to control data obtained from public databases, there was evidence for significant enrichment in CHD associated variants in ohnologs but not in other duplicated genes arising from small scale duplications. Through this and various other filtering steps to prioritize likely variants, the group was able to identify 54 novel candidate genes for congenital CHD highlighting the utility of considering the evolutionary origin of genes in the search for disease relevant biology. Next, we have a clinical letter entitled Pathological Overlap of Arrhythmogenic Right Ventricular Cardiomyopathy and Cardiac Sarcoidosis from Ashwini Kerkar, Victoria Parikh and colleagues at Stanford University. They describe a case of a 50 year old woman previously healthy and a long distance runner who presented with tachycardia. She was found to have normal left ventricular size but severe right ventricular enlargement and systolic dysfunction. Genetic testing using an Arrhythmogenic Right Ventricular Cardiomyopathy or ARVC panel identified a variant in DSG2. through cascade testing it was found that two of the patient's three children also carried this variant. The patient experienced worsening RV failure and subsequently underwent heart transplantation at age 55. Pathology of the heart showed evidence of cardiac sarcoidosis. There have been some previous reports of overlap in ARVC and cardiac sarcoid pathology but not in cases with a high confidence genetic diagnosis such as this one. This case raises the possibility of shared disease mechanisms underlying ARVC and cardiac sarcoidosis and suggests that therapies aimed at immune modulation may also have utility in ARVC. However, further work is required to test this hypothesis. Our next paper is a perspective piece from Babken Asatryan and Helga Servatius from Bern University Hospital. In Revisiting the Approach to Diagnosis of Arrhythmogenic Cardiomyopathy: Stick to the Arrhythmia Criterion!, they outline the challenges in defining diagnostic criteria for a Arrhythmogenic Right Ventricular Cardiomyopathy or ARVC, given the variable presentation of the disease. Given recent advances in knowledge, particularly in recognizing disease overlap with Arrhythmogenic Left Ventricular Cardiomyopathy or ALVC and Biventricular Arrhythmogenic Cardiomyopathy, a new clinical perspective was warranted. The Heart Rhythm Society updated their recommendations this year to introduce a new umbrella term that better encompasses the spectrum of disease, Arrhythmogenic Cardiomyopathy or ACM. This recommends the arrhythmia criterion Should be used as a first line screening criteria for ACM. This is a broad criteria and a definitive diagnosis of ACM requires exclusion of systemic disorders such as sarcoidosis, amyloidosis, mild carditis, Chagas disease, and other cardiomyopathies. Implementation of this new approach to diagnosis may require more extensive investigation of arrhythmias including the use of ambulatory ECG monitors or cardiac loop recorders. These changes may also affect who's referred for genetic testing, potentially shifting diagnoses towards genotype rather than phenotype based disease classifications. Despite challenges and adopting new approaches, it is hoped that these changes will ultimately serve to improve risk stratification and allow for improved disease management and intervention to prevent sudden cardiac death. We end with a scientific statement chaired by Sharon Cresci and co-chaired by Naveen Pereira with a writing group representing the AHA Councils on Genomic and Precision Medicine, Cardiovascular and Stroke Nursing and Quality of Care and Outcomes Research entitled Heart Failure in the Era of Precision Medicine: A Scientific Statement From the American Heart Association. This paper provides a comprehensive overview of the current state of omics technologies as they relate to the development and progression of heart failure and considers the current and potential future applications of these high throughput data for precision medicine with respect to prevention, diagnosis and therapy of heart failure. They discuss advances in genomics, pharmacogenomics, epigenomics, proteomics, metabolomics, and the microbiome, and integrate the findings from this rapidly developing field as they pertain to new methods to diagnose, treat, and prevent heart failure. And that's it for October. I hope to see many of you at AHA Scientific Sessions in Philadelphia in November and look forward to bringing you more of the best new science next month. Thanks for listening. This podcast was brought to you by Circulation: Genomic and Precision Medicine and the American Heart Association Council on Genomic and Precision Medicine. This program is copyright American Heart Association 2019.
Jane Ferguson: Hi, everyone. Welcome to Getting Personal: Omics of the Heart, the monthly podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson, an assistant professor of medicine at Vanderbilt University Medical Center and an associate editor at CircGen. This is episode 32 from September 2019. Starting off this month, we have a paper on Genetic Mosaicism in Calmodulinopathy brought to us by Lisa Wren, Alfred George and colleagues from Northwestern University. They were interested in exploring the disease phenotypes that result from variation in the calmodulin genes, CALM1, 2 and 3. Mutations in calmodulin are known to associate with congenital arrhythmia, but the group hypothesized that there may be a broader range of phenotypes associated with calmodulin mutations. They report on four unrelated families all with pro bands exhibiting symptoms of prolonged QTC interval and documented ventricular arrhythmia. They conducted targeted exome sequencing in these individuals and in their families and identified mutations in calmodulin genes, including two novel mutations. In one family with multiple occurrences of intrauterine fetal demise, there was evidence for sematic mosaicism in both parents. The team studied the two novel mutations and found that the variants led to alterations in a calcium binding site resulting in impaired calcium binding. In human induced pluripotent stem cell derived cardiomyocytes, the team showed that the mutations impaired calcium dependent inactivation of L-type calcium channels and prolonged action potential duration. Their study not only demonstrates that mutations in calmodulins can cause dysregulation of L-type calcium channels, but that parental mosaicism maybe a factor in families with unexplained fetal arrhythmia or fetal demise. Our next paper come from Wan G Pang, Christiana Kartsonaki, Michael Holmes and Zing Min Chen from the University of Oxford and Peking University Health Science Center and is entitled Physical Activity, Sedentary Leisure Time, Circulating Metabolic Markers, and Risk of Major Vascular Diseases. In this study, the authors were interested in finding out whether circulating metabolites are associated with the relationship between physical inactivity or sedentary behavior and increased risk of cardiovascular disease. They identified over 3000 cases of incident CVD from the China Kadoorie Biobank and included over 1400 controls without CVD. They measured 225 different metabolites and baseline plasma samples using NMR. They used measures of self-reported physical activity and sedentary leisure time to associate physical activity with circulating metabolites, and then they ran analysis to relate the metabolites to CVD. Physical activity and sedentary leisure time were associated with over 100 metabolic markers. In general, the patterns of associations were similar using either activity measure. Physical activity was inversely related to very low and low density HDL particles, but positively related to large and very large HDL particle concentrations. Physical activity was also inversely associated with alanine, glucose, lactate, acetoacetate, and glycoprotein acetyls. When they examined the associations of these same metabolites with CVD, the directions were generally consistent with expectation, going on the premise that physical activity is protective, and that sedentary behavior is a risk factor for CVD. Their analyses suggests that metabolite markers could explain about 70% of the protective associations of physical activity and around 50% of the risk associations of sedentary leisure time with cardiovascular disease. Next up, we have a paper on Biallelic Variants in ASNA1, Encoding a Cytosolic Targeting Factor of Tail-Anchored Proteins, Cause Rapidly Progressive Pediatric Cardiomyopathy, coming from Judith Verhagen, Ingrid van de Laar and colleagues from University Medical Center Rotterdam. Their focus was on pediatric cardiomyopathies, which are both clinically and genetically heterogeneous. They had identified a family where two siblings had died during early infancy of rapidly progressive dilated cardiomyopathy. Through exome sequencing, they identified variants in the ASNA-1 gene and established that the children were compound heterozygotes for the variants. This highly conserved gene encodes an ATPase, which is required for post-translational membrane insertion of tail-anchored proteins. The team looked at expression of this protein in patient samples and then followed this up with functional analyses using cells and zebrafish. They found that one of the variants was predicted to result in a premature stop codon. In support of this, they observed decreased protein expression in myocardial tissue and skin fibroblasts. The other variant caused a missense mutation, and the team found that this resulted in protein misfolding, as well as less effective tail-anchored protein insertion. In zebrafish, knock out of the ASNA1 gene resulted in reduced cardiac contractility and early lethality, which could not be rescued by either version of the variant mRNA. This translational study highlights the importance of the ASNA1 gene as a cardiomyopathy susceptibility gene and further reveals the importance of tail-anchored membrane protein insertion pathways in cardiac function. The next paper from Karni Moshal, Gideon Koren and colleagues from Brown University is entitled LITAF Regulates Cardiac L-Type Calcium Channels by Modulating NEDD 4-1 Ubiquitin Ligase. In this paper, the authors report on the role of ubiquitination as a crucial component in cardiac ion channel turnover and action potential duration. Previous genome wide association studies of QT interval had identified snips in or near genes regulating protein ubiquitination, particularly the LITAF or lipopolysaccharide-induced tumor necrosis factor gene. Using zebrafish, the team performed optical mapping in hearts to identify calcium and found that knocked down of LITAF resulted in an increase in calcium transients. They studied intracellular calcium handling and rapid derived cardiomyocytes and found that over expression of LITAF caused a decrease in L-type calcium channel current and abundance of the L-type calcium channel alpha1c sub unit or Cava1c, whereas LITAF knocked down increased calcium channel current and Cava1c protein. LITAF downregulated total and surface pools of Cava1c via increased Cava1c ubiquitination and lysosomal degradation in tsA201 kidney cells. There was evidence of colocalization between LITAF and L-type calcium channel, or LTCC, in the tsA201 kidney cells and in cardiomyocytes. In the tsA201 cells, NEDD4-1 protein increased Cava1c ubiquitination, but a catalytically inactive form of NEDD4-1 had no effect. Cava1c ubiquitination was further increased by co-expressed LITAF NEDD4-1, but not the inactive version of NeNEDD4-1. NEDD4-1 knockdown abolished the negative effect of LITAF on L-type calcium channel current and Cava1c levels in three week old rapid cardiomyocytes. Taken together, these data show that LITAF acts as an adapter protein promoting NEDD4-1 mediated ubiquitination and subsequent degradation of LTCC, highlighting LITAF as a novel regulator of cardiac excitation. Rounding out this issue is a review on the Gut Microbiome and Response to Cardiovascular Drugs from Sony Tuteja and Jane Ferguson from the University of Pennsylvania and Vanderbilt University Medical Center. Since that last author is me, I'm sure I have a biased view of the importance of the topic, but the increasing awareness of the microbiome in every aspect of health has also led to increased awareness of the role of commensal microbiota in drug metabolism, including in the metabolism of drugs used to treat cardiovascular diseases. In this article, we aim to review what is currently known about how the gut microbiome interacts with cardiovascular drugs and to summarize some of the mechanisms whereby gut microbiota might affect drug metabolism. Early evidence suggests that the gut microbiome modulates response to statins and antihypertensive medications, but there may be many other drugs that are susceptible to interaction with microbiota. Drug metabolism by the gut microbiome can result in altered drug pharmacokinetics and pharmacodynamics or in the formation of toxic metabolites which can interfere with drug response. While we are still in a relatively early stage in this field, we suggest that a better understanding of the complex interactions of the gut microbiome, host factors and response to medications will be important for the development of novel precision therapeutics in cardiovascular disease prevention and treatment. That's all for the September issue of Circulation: Genomic and Precision Medicine. Come back next month for the next installment. Thanks for listening. This podcast was brought to you by Circulation: Genomic and Precision Medicine and the American Heart Association Council on Genomic and Precision Medicine. This program is copyright American Heart Association 2019.
Jane Ferguson: Hello, and welcome to Getting Personal, Omics of the Heart, your monthly podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson. It is August, 2019, and this is episode 31. Let's get started. Our first paper comes from Freyja van Lint and Cynthia James, from University Medical Center Utrecht, and is entitled Arrhythmogenic Right Ventricular Cardiomyopathy-Associated Desmosomal Variants Are Rarely De Novo, Segregation and Haplotype Analysis of a Multinational Cohort. In this study, the team was interested in exploring variants that are associated with arrhythmogenic right ventricular cardiomyopathy or ARVC. ARVC is often attributable to pathogenic variants in genes encoding cardiac desmosomal proteins, but the origin of these variants had not been comprehensively studied. The investigators identified ARVC probands meeting 2010 task force criteria from three ARVC registries in the United States and Europe and who had undergone sequencing of desmosomal genes. All 501 probands, 322 of them, or over 64%, carried a pathogenic or likely pathogenic variant in the desmosomal genes PKP2, DSP DSG2, DSC2, and JUP. The majority of these, over 75%, we're not unique with these variants occurring in more than one proband. The team performed cascade screening and were able to identify the parental origin of almost all of the variants. However, they identified three de novo variants, including two whole gene deletions. They conducted haplotype analysis for 24 PKP2 variants across 183 seemingly unrelated families and concluded that all of these variants originated from common founders. This analysis sheds light on the origin of variants in desmosomal genes and suggests that the vast majority of these ARVC variants originate from ancient founders with only a very small proportion of de novo variants. These data can inform clinical care particularly concerning genetic counseling and cascade screening of relatives. The next paper continues a theme of cardiomyopathy and comes from Derk Frank, Ashraf Yusuf Rangrez, Corinna Friedrich, Sven Dittmann, Norbert Frey, Eric Schulze-Bahr and colleagues from University Medical Center Schleswig-Holstein. In this paper, Cardiac α-Actin Gene Mutation Causes Atrial-Septal Defects Associated with Late-Onset Dilated Cardiomyopathy, the team was interested in understanding the genetics of familial atrial-septal defect. They studied large multi-generational family with 78 family members and mapped a causal variant on chromosome 15q14, which caused nonsynonymous change in exon 5 of the ACTC1 gene. In silico tools predicted this variant to be deleterious. Analysis of myocardial tissue from an affected individual revealed sarcomeric disarray, myofibrillar degeneration, and increased apoptosis. Proteomic analysis highlighted extracellular matrix proteins as being affected. The team over-expressed the mutation in rats and found structural defects and increased apoptosis in neonatal rat ventricular cardiomyocytes and confirmed defects in actin polymerization and turnover which affected contractility. These data implicate the variant in ACTC1 as causing atrial-septal defects and late-onset cardiomyopathy in this family and revealed the underlying molecular mechanisms affecting development and contractility. The next paper is entitled Characterization of the CACNA1C-R518C Missense Mutation in the Pathobiology of Long-QT Syndrome Using Human Induced Pluripotent Stem Cell Cardiomyocytes Shows Action Potential Prolongation and L-Type Calcium Channel Perturbation, and it comes from Steven Estes, Michael Ackerman and colleagues at the Mayo Clinic. They set out to use patient-derived human induced pluripotent stem cells to understand the pathogenicity of a variant in the CACNA1C gene in Long-QT Syndrome. They obtained cells from dermal punch biopsy from an individual with long-QT and a family history of sudden cardiac death who carried an R518C missense mutation in CACNA1C. Starting with fibroblasts, they reprogrammed the cells into iPSCs and then differentiated these into cardiomyocytes. They corrected the mutation back to wild type using CRISPR/Cas9 and then compared the cardiomyocytes carrying the original patient mutation with isogenic corrected cardiomyocyte controls. They found significant differences in action, potential duration, and in calcium handling. Patch clamp analysis revealed increased L-type calcium channel window current in the original mutation-carrying cells in addition to slow decay time and increased late calcium current compared with the isogenic corrected control human iPSC cardiomyocytes. These data strongly suggest that CACNA1C is a long-QT susceptibility gene and demonstrate the potential in using patient-derived iPSCs and CRISPR/Cas9 to understand underlying mechanisms linking variants to disease. The final paper this month is Blood Pressure-Associated Genetic Variants in the Natriuretic Peptide Receptor-1 Gene Modulate Guanylate Cyclase Activity and comes from Sara Vandenwijngaert, Chris Newton-Cheh and colleagues on behalf of the CHARGE+ Exome Chip Blood Pressure Consortium, the CHD Exome+ Consortium, the Exome BP Consortium, the GoT2D Consortium, the T2D-GENES Consortium, and the UK Biobank CardioMetabolic Consortium Blood Pressure Working Group. This team wanted to understand how variants in the NPR-1 gene affect the function of the atrial natriuretic peptide receptor-1. They performed a meta-analysis across over 491,000 unrelated individuals, including both low frequency and rare variants in NPR-1 to identify their association with blood pressure. They identified three nonsynonymous variants associated with altered blood pressure at genome-wide significance and examined the function of these variants in vitro. Using cells expressing either wild type NPR-1 or one of the three identified variants, they explored the impact of the variants on the ability of cells to catalyzes the conversion of guanosine triphosphate to cyclic 3′,5′-guanosine monophosphate in response to binding of atrial or brain natriuretic peptide. Increased levels of cyclic GMP are known to decrease blood pressure by inducing by natriuresis, diuresis, and vasodilation. Two variants which associated with high blood pressure in the population meta-analysis were associated with decreased cyclic GMP in response to ANP or BNP in vitro, while one variant which associated with lower blood pressure in humans was associated with higher cyclic GMP production in vitro. These data show that variants affecting loss or gain of function in guanylate cyclase activity could have downstream effects on blood pressure at the population level. That's it for this month. Thank you for listening. We will be back with more next month. This podcast was brought to you by Circulation: Genomic and Precision Medicine and the American Heart Association Council on Genomic and Precision Medicine. This program is copyright American Heart Association 2019.
Jane Ferguson: Hi everyone. Welcome to Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson and this is episode 30 from July 2019. First up we have a paper, the Subtype Specificity of Genetic Loci Associated With Stroke in 16664 cases and 32792 Controls, from Matthew Trailer and colleagues on behalf of the NINDS Stroke Genetics Network and the International Stroke Genetics Consortium. They were interested in understanding whether genetic loci previously found to be associated with stroke have distinct associations with stroke subtypes, specifically ischemic and hemorrhagic stroke. They compiled data sets through an international consortium to analyze 16664 stroke cases and 32792 controls, all of European ancestry. The cases were subtyped using two different stroke classification systems: the Trial of ORG 10172 in Acute Stroke Treatment, or TOAST system, and the Causative Classification of Stroke, or CCS system. They selected genetic loci for consideration based on previous association with stroke in general or stroke subtypes in the MEGASTROKE consortium, which had included a large number of the subjects included in the present study. They used a Bayesian multinomial logistic regression approach to evaluate the association of snips at each locus with stroke subtypes identified under the TOAST and CCS classifications, giving five different case groups compared with a set of controls. 16 loci were taken forward for further analysis. There were seven loci which associated with both ischemic and hemorrhagic strokes subtypes, four which clearly associated with either ischemic or hemorrhagic stroke, with the rest showing less consistent effects. One locus, EDNRA, showed opposite affects for ischemic and hemorrhagic stroke. Overall, the findings indicate a large degree of genetic heterogeneity, but some overlap, suggesting common underlying pathophysiological pathways in different stroke subtypes, potentially related to small vessel disease. More detailed phenotyping and further analysis in large samples is required to fully understand genetic mechanisms underlying the risk of different stroke subtypes. And, just to add, this paper was previously submitted to the pre-print server Bio Archive. We support open science and are always happy to consider papers that have been submitted to pre-print servers. So, if you have a particularly cool paper on Bio Archive that fits our scope, do feel free to send it our way. Next up, we have a paper from Fabiola del Greco, Cristian Pattaro, Peter Pramstaller, Alessandera Rossini, and colleagues, from Eurac Research Institute for Biomedicine. This paper, entitled Lipidomics, Atrial Conduction, and Body Mass Index, Evidence from Association, Mediation, and Mendelian Randomization Models, aims to investigate the mechanisms underlying associations between circulating lipids and atrial conduction. They used mass spectrometry measurement of 151 sphingo- and phospholipids in plasma or serum from individuals who had undergone electrocardiogram measurements to ascertain P-wave duration. They first looked for associations in 839 individuals from the micro islets in South Tyrol, or MICROS study, based in Italy, and replicated in 951 participants of the Orkney Complex Disease Study, ORCADES, based in Scotland. They identified and replicated an association between levels of phosphatidylcholine 38-3 and P-wave duration, which was independent of cholesterol, triglycerides, and glucose levels. However, the association was mediated by BMI, and suggested that increased BMI may cause both increased levels of PC38-3 and longer P-wave duration, suggesting a role for body mass in altered lipids in atrial electrical activity. The next paper is a research letter from Hana Bangash, Iftikhar Kullo, and colleagues from the Mayo Clinic on Use of Twitter to Promote Awareness of Familial Hypercholesterolemia. Scientists and health professionals are increasingly using Twitter to communicate. This team wondered whether organized awareness campaigns, including Twitter events like Tweetathons, really make a different. They analyzed Twitter activity related to familial hypercholesterolemia in September 2018, during national cholesterol education month, which included an international familial hypercholesterolemia awareness day and Tweetathon. They also analyzed tweets from August and October 2018, where there was no formal awareness campaign and compared the FH Twitter activity with that of colorectal cancer, which did not have any formal awareness campaigns at that time. In September, FH-related tweets increased by 152.9% compared to August, and then declined by over 58% in October. The topic reach for familial hypercholesterolemia was 11.1 million in August, and increased over 250% in September to 37.7 million. The reach declined by over 71% in October to just over 10 million. In comparison, the reach for colorectal cancer declined from 453 million in August to 300 million in September and then increased to 677 million in October, which happened to be breast cancer awareness month. These data suggest that awareness campaigns like national cholesterol education month do lead to an increase in Twitter activity. However, this increase isn't necessarily sustained during the following month, and it remains unclear whether Twitter activity actually translates into a wider awareness amongst providers or patients, which could translate into clinical benefits. Nonetheless, as the use of Twitter increases, this may be a promising avenue to promote awareness and to disseminate knowledge. And, of course, I have to take this opportunity to mention that Circulation: Genomic and Precision Medicine is on Twitter and you can follow us @Circ_Gen to keep up with what's going on at the journal. Next up, we have a letter entitled B-iallelic Mutations in NUP205 and NUP210 Are Associated with Abnormal Cardiac Left-Right Patterning from WeiCheng Chen, Yuan Zhang, Sunhu Yang, Xiangyu Zhou, and colleagues from Tongji University. They set out to understand the genetic underpinnings of cardiac left-right patterning and to probe why individuals with situs inversus totalis, or SIT, where the chest organs are in a complete mirror image to typical, have almost no symptoms or complications, while individuals with heterotaxy, who have abnormal organ arrangement that is not a mirror image, typically have severe phenotypes including congenital heart disease. They performed whole exome and whole genome sequencing in 61 family trios with SIT or heterotaxy and identified ballielic missense mutations in nucleoporins NUP205 and NUP210. Nucleoporins comprise the main components of the nuclear pore complex in eukaryotic cells. The team generated induced pluripotent sense cells from peripheral blood cells of an affected patient and a healthy control, and found that there were impairments in protein interactions in the variant cells, particularly interactions with another crucial nucleoporin, NUP93. In zebra fish, NUP205 knockdown resulted in left-right assymetry and defects in heart looping formation in a subset of fish embryos. Knockdown of both NUP205 and NUP93 resulted in impairments in cilia and human retinal pigment epithelial cells. Gene expression analysis revealed affects in known cilia genes NEC2 and NEC3. Overall, this study provides evidence that mutations in nucleoporins NUP205 and NUP210 may cause defects in cardiac left/right patterning, potentially through effects on ciliary function. This issue closes with a letter and response conversation around a recent article on missense mutations in the FLNC gene, causing familial restrictive cardiomyopathy. Hisham Ahamed and Muthiah Subramanian from Amrita Institute of Medical Scientists write to share a case of a woman presenting with features of heart failure and muscular weakness consistent with distal myopathy who was found to carry a deletion in exome 37 of the FLNC gene. This case adds to the previous evidence published by Alvaro Roldan Sofia and Julian Palomino-Doza in March 2019 in our journal, Highlighting Mutations in the FLNC Gene in Cardiomyopathy. That's all for this month. Come back in August for your roundup of the next issue. Thanks for listening! This podcast was brought to you by Circulation: Genomic and Precision Medicine, and the American Heart Association Council on Genomic and Precision Medicine. This program is copyright American Heart Association, 2019.
Jane Ferguson: Hi, everyone. Welcome to episode 29 of Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson from Vanderbilt University Medical Center and an associate editor at Circ: Genomic and Precision Medicine. Let's dive in and see what's new in the June issue. First up, Validation of Genome-Wide Polygenic Risk Scores for Coronary Artery Disease in French Canadians from Florian Wünnemann, Guillaume Lettre and colleagues from the University of Montreal. Polygenic scores have the potential to be used to predict disease risk, but have not been broadly validated in different populations. This team was interested in whether polygenic risk scores that have been found to predict coronary artery disease in European ancestry subjects in the UK Biobank would also predict disease in French Canadians. They calculated two different polygenic risk scores in over 3600 cases and over 7000 controls and tested their ability to predict prevalent, incident and recurrent CAD. Both scores predicted prevalent CAD, but did not perform as well in predicting incident or recurrent disease. This maybe because the majority of subjects were on statant treatment. Overall, the study confirms that polygenic risk scores for CAD developed in European ancestry can be used in other populations of European ancestry. However, further work is needed to develop and validate polygenic risk scores in other ancestries and to explore whether well performing risk scores can be developed to predict incident or recurrent disease. Our next paper comes from Farnaz Shoja-Taheri, Michael Davis and colleagues from Emory University and is entitled Using Statistical Modeling to Understand and Predict Pediatric Stem Cell Function. Stem cell therapy is emerging as a potential therapeutic option for treating pediatric heart failure, which otherwise can only be cured through heart transplantation. The success of stem cell therapy depends on many variables, including the reparative ability of the infused cells. In this paper, the author set out to test whether they could predict the behavior of c-kit+ progenitor cells or human CPCs using RNA seq and computational modeling. They obtained CPCs from 32 patients, including eight neonates whose cells are thought to have the highest reparative capacity, and they performed RNA sequencing. The team had previously developed regression models that could link gene expression data from sequencing to phenotypes in the cells, and they tested these models in the CPC cell lines. They tested seven neonate cell lines in vitro and found that cellular proliferation and the chemotactic potential of condition media matched what was predicted by the RNA seq-based model. They used pathway analysis to identify potential mechanisms regulating CPC performance and identified several genes related to immune response, including interleukins and chemokines. They further confirmed the presence of cytokines at the protein level that were associated with well performing cells showing that at least one of the outcomes could be functionally predicted using an ELISA ASA. This type of approach may prove useful to inform ongoing clinical trials to stem cell therapy in congenital heart disease. The next paper, Systems Pharmacology Identifies an Arterial Wall Regulatory Gene Network Mediating Coronary Artery Disease Side Effects of Antiretroviral Therapy comes to us from Itziar Frades, Johan Björkegren, Inga Peter and colleagues from the Icahn School of Medicine at Mount Sinai. They were interested in understanding mechanisms whereby antiretroviral therapy for HIV leads to increased risk for coronary artery disease. They analyzed the transcriptional responses to 15 different antiretroviral therapy or ART drugs in human cell lines and cataloged the common transcriptional signatures. They then cross-referenced these against gene networks associated with CAD and CAD related phenotypes. They found that 10 of 15 ART response networks were enriched for differential expression and connectivity in an atherosclerotic arterial wall of regulatory gene network identified as causal for CAD. They used cholesteryl ester loaded foam cells in an in vitro model to validate their findings and found that ART treatment increased cholesteryl ester accumulation in foam cells which was prevented when the key network regulator gene, PQBP1, was silenced. Their study highlights a gene network which is altered in response to ART and which promotes foam cells formation, highlighting a mechanistic link between HIV treatment and CAD. Targeting this network potentially through PQBP1 maybe a way to reduce the risk of CAD in individuals treated with antiretroviral drugs. The next paper comes from Brooke Wolford, Whitney Hornsby, Cristen Willer, Bo Yang and colleagues from the University of Michigan and is entitled Clinical Implications of Identifying Pathogenic Variants in Individuals With Thoracic Aortic Dissection. They were interested in whether exome sequencing in individuals with thoracic aortic dissection could identify disease associated variance. They conducted exome sequencing in 240 patients and 258 controls and screened 11 genes for potentially pathogenic variance. They identified 24 variance in six genes across 26 cases with no potentially pathogenic variance identified in the controls. They found that carriers of pathogenic variance had significantly earlier age of onset of dissection, higher rates of root aneurysm and greater incidents of aortic disease in family members, while patients without identified variance had more hypertension and a higher rate of smoking. Their study suggests that genetic testing should be considered in patients with thoracic artery dissection particularly in individuals with early age of onset before age 50 and no hypertension with the possibility of cascade screening to follow to identify at risk family members before onset of dissection and possible death. Our next paper is a research letter from Seyedeh Zekavat, Pradeep Natarajan and colleagues from Harvard Medical School, Investigating the Genetic Link Between Arterial Stiffness and Atrial Fibrillation. They aimed to investigate whether arterial stiffness is causal for atrial fibrillation using Mendelian randomization to probe genetic causality. They calculated the genetic component of the arterial stiffness index or ASI, a noninvasive measure of arterial stiffness, in over 131,000 individuals in the UK Biobank. They then assessed whether the genetic predictors of ASI defined as the top six independent variance were also associated with atrial fibrillation in over 225,000 participants in the UK Biobank and in over 588,000 individuals from a multi-ethnic GWAS. They found that the ASI genetic risk score was significantly associated with incident atrial fibrillation in both the UK Biobank and the multi-ethnic AF GWAS. The association held true even after adjustment for age, sex, smoking status, prevalent heart failure, prevalent hypertension, prevalent CAD, prevalent hypercholesterolemia, prevalent diabetes, heart rate, alcohol intake and exercise frequency in the UK Biobank participants. Because some people have hypothesized that atrial fibrillation may actually precede and cause arterial stiffness, the team did the reverse Mendelian randomization experiment and tested whether genetic predictors of AF were associated with the arterial stiffness index. They found no association suggesting that AF does not cause arterial stiffness. In summary, this paper provides genetic evidence supporting arterial stiffness as a causal contributor to atrial fibrillation and suggests that future randomized controlled studies would be warrantied to assess whether methods to reduce arterial stiffness could be protective against atrial fibrillation. The next research letter comes from Scott Damrauer, Kara Hardie, Reed Pyeritz and colleagues from the University of Pennsylvania and is entitled FBN1 Coding Variants and Nonsyndromic Aortic Disease. In this study, the authors were interested in characterizing the frequency of variance associated with Marfan syndrome in the general population. They analyzed data from the Penn Medicine BioBank looking at 12 variance in the FBN1 gene all of which have been reported to associate with Marfan syndrome. Of almost 11,000 individuals who underwent exome sequencing, they identified 70 individuals who were carriers of one of the 12 preselected FBN1 variance. These individuals ranged in age from age 28 to 87 years and 56% of them were male. They combed through clinical data from the participant's electronic health records, including office notes, diagnostic tests and imaging studies. Two individuals had a clinical diagnosis of Marfan syndrome while 21 individuals had evidence of cardiovascular phenotypes related to Marfan syndrome including mitral valve disease, dilated sinus of valsalva, dilated ascending aorta, descending thoracic or abdominal aneurysms or dissections or had undergone surgical procedures involving the mitral valve or thoracic aorta. Compared to age and sex matched controls without known or suspected pathogenic FBN1 variance, the FBN1 variant carriers were significantly more likely to have Marfan syndrome related cardiovascular disease.
Jane Ferguson: Hi, everyone. Welcome to Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. It's May 2019, and this is episode 28. So let's see what papers we have in the journal this month. First up, a paper from Mengyao Yu, Nabila Bouatia-Naji and colleagues from the Inserm Cardiovascular Research Center in Paris, entitled GWAS-Driven Gene-set Analyses, Genetic and Functional Follow-Up Suggest Glis1 as a Susceptibility Gene for Mitral Valve Prolapse. In this paper, they set out to characterize the genetic contributions to mitral valve prolapse, or MVP, to better understand the biological mechanisms underlying disease. They applied the gene-set enrichment analysis for QWAS tool and the pathway enrichment tool DEPICT to existing GWAS for MVP in a French sample to identify gene sets associated with MVP. They find significant enrichment of genes involved in pathways of relevance to valve biology and enrichment for gene expression in tissues of relevance to cardiovascular disease. They zeroed in a Glis family zinc finger gene Glis1 with consistently strong pattern of evidence across the GWAS enrichment and transcription analyses. They replicated the association between Glis1 and MVP in a UK biobank sample. They found that Glis1 is expressed in valvular cells during embryonic development in mice, but is mostly absent at later times. They targeted two Glis1 orthologs in zebrafish and found that knockdown of Glis1 B was associated with a significant increase in the incidence of severe atrioventricular regurgitation. These data highlight Glis1 as a potential regulator of cardiac valve development with relevance for risk of mitral valve prolapse. Next up is a paper from Gina Peloso, Akihiro Namuro, Sek Kathiresan and colleagues from Boston University, Kanazawa University, and Mass General Hospital. In their paper, Rare Protein Truncating Variance in APOB, Lower LDL-C, and Protection Against Coronary Heart Disease, the team was interested in understanding whether protein truncating variance in APOB underlying familial hypobetalipoproteinemia confer any protection against coronary heart disease. They sequenced the APOB gene in 29 Japanese families with hypobetalipoproteinemia as well as in over 57,000 individuals, some with early onset CHD and some without CHD. They found that presence of an APOB truncating variant was associated with lower LDL cholesterol and lower triglycerides, and also with significantly lower risk for coronary heart disease. This study confirms that variance in APOB, leading to reduced LDL and triglycerides are also protective against coronary heart disease. : The next paper entitled Mortality Risk Associated with Truncating Founder Mutations in Titin comes to us from Mark Jansen, Dennis Dooijes, and colleagues from University Medical Center Utrecht. They analyzed the effect of titin truncating variance on mortality in Dutch families. Titin truncating variants are associated with dilated cardiomyopathy, but have a very variable penetrance. In this study, the authors looked at three titin truncating variants, established to be founder mutations, and traced the pedigrees back to 18th century ancestors. They looked at 61 individuals on the transmission line and 360 of their first-degree relatives. They find no evidence for excess mortality in variant carriers overall. However, when they restrict it to individuals over 60 years of age, they did find a significant difference in mortality, which was also observed in individuals born after 1965. What these data tell us is that these titin truncating variants have a relatively mild phenotype with effects on mortality only manifesting later in life in many carriers. Given increases in life expectancy over the past several decades, the prevalence of morbidity and mortality attributable to titin truncating variants may increase. Genetic screening may identify genotype-positive, phenotype-negative individuals who would benefit from preventative interventions. Continuing on the theme of genetic variance, we have a paper from John Giudicessi, Michael Ackerman, and colleagues from the Mayo Clinic, Assessment and Validation of a Phenotype-Enhanced Variant Classification Framework to Promote or Demote RYR2 Missense Variants of Uncertain Significance. In this paper, they aim to find a better way to classify variants of unknown significance, of VUS, in the RYR2 gene. Variants in this gene are commonly associated with catecholaminergic polymorphic ventricular tachycardia, or CPVT. They examined 72 distinct variants in 84 Mayo Clinic cases and find that 48% were classified as VUS under ACMG guidelines. The rate was similar in a second sample from the Netherlands, with 42% of variants originally classified as VUS. They developed a diagnostic scorecard to incorporate a pretest clinical probability of CPVT, which included various clinical criteria, including symptoms and stress test results. Application of the phenotype enhanced ACMG criteria brought the VUS rate down to 7% in Mayo Clinic and 9% in the Dutch samples. The majority of VUS were reclassified as likely pathogenic. This study highlights how incorporation of disease-specific phenotype information can help to improve variant classification and reduce the ambiguity of reporting variants of unknown significance. We also have a number of research letters in the journal this month. From Karine Ngoyen, Gilbert Habib, and coauthors from Marseilles, we have a paper entitled Whole Exome Sequencing Reveals a Large Genetic Heterogeneity and Revisits the Causes of Hypertrophic Cardiomyopathy, Experience of a Multicentric study of 200 French Patients. In this study, they examined the genetic contributions to hypertrophic cardiomyopathy, or HCM, in 200 individuals as part of the HYPERGEN study and compared the benefits of whole exome sequencing compared with targeted sequencing of candidates' sarcomeric genes. All subjects had HCM documented by echocardiography. In the whole exome sequencing data, they first looked for mutations within 167 genes known to be involved in cardiomyopathies or other hereditary diseases. Of these 167 virtual panel genes, they find variants in 101 genes. Following whole exome sequencing, over 87% of the patients had an identified pathogenic, or likely pathogenic, mutation compared with only 35% of patients who only had targeted sequencing of sarcomeric genes. This highlights the generic heterogeneity of HCM and suggests that whole exome sequencing has utility in identifying variants not covered by sarcomeric gene panels. The next letter is from Wouter Te Rijdt, Martin [Vandenberg] and colleagues from University Medical Center Groningen and states that [dissynchronopathy] can be a manifestation of heritable cardiomyopathy. They hypothesized that left bundle branch block, also designated as dissynchronopathy, may be a manifestation of familial cardiomyopathy. They analyzed patients from a database of cardiac resynchronization therapy and identified super-responders whose left ventricular dysfunction was normalized by therapy. They carried out targeted sequencing in 60 known cardiomyopathy genes in 16 of these super-responder individuals and identified several variants, including a pathogenic variant in troponin T in one individual and variants of unknown significance in nine individuals. Pedigree analysis identified multiple family members with dilated cardiomyopathy. This study highlights that dissynchronopathy can be a manifestation of DCM, but that affected individuals may still benefit from cardiac resynchronization therapy. The next letter entitled Targeted Long-Read RNA Sequencing Demonstrates Transcriptional Diversity Driven by Splice-Site Variation in MYBPC3 comes from Alexandra Dainis, Euan Ashley, and colleagues from Stanford University. They set out to understand whether transcriptome sequencing could improve the diagnostic yield over genome sequencing in patients with hypertrophic cardiomyopathy. In particular, they hypothesized that long-read sequencing would allow for identification of alternative splicing linked to disease variance. They used long-read RNA and DNA sequencing to target the MYBPC3 gene in an individual with severe HCM who carried a putative splice-site altering variant in the gene. They were able to obtain heart tissue for sequencing and included several HCM and control subjects in addition to the patient with the MYBPC3 variant. They identified several novel isoforms that were only present in the patient sample, as well as some additional isoforms, including retained introns, extended exons, and an additional cryptic exon, which would not have been predicted based on the DNA variant. While the effects on protein function is not known, the transcripts are predicted to be translated. This analysis highlights the effect of a rare variant on transcription of MYBPC3 and provides additional evidence to link the variant to disease. This is a really nice approach, which could be used to probe causality and mechanisms, not only for cardiovascular disease, but for other rare variants in many disease settings. We finish with a perspective piece from Nosheen Reza, Anjali Owens, and coauthors from the University of Pennsylvania entitled Good Intentions Gone Bad, The Dangers of Sponsored Personalized Genomics. They present a case of a 23-year-old wo
Jane Ferguson: Hello and welcome to Getting Personal: Omics of the Heart, your podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson from Vanderbilt University Medical Center, and this is episode 27 from April 2019. This month, I talk to Riyaz Patel, the first author on not one, but two articles published this issue, presenting analyses from the GENIUS-CHD consortium. But before we get to the interview, let's review what else was published this month. First up, we have a paper from Tamiel Turley, Timothy Olson and colleagues from the Mayo Clinic, entitled Rare Missense Variants in TLN1 Are Associated With Familial and Sporadic Spontaneous Coronary Artery Dissection. In this study, the authors were interested in identifying novel susceptibility genes for spontaneous coronary artery dissection or SCAD, which predominantly affects young women who appeared otherwise healthy. They conducted whole exome sequencing in a family with three affected family members and found a rare missense variant in the TLN1, or talin 1, gene. This gene encodes the talin protein which is part of the integrin adhesion complex linking the actin cytoskeleton to the extracellular matrix. This gene and protein is highly expressed in coronary arteries. They went on to sequence additional sporadic cases of SCAD, and they found additional talin 1 variants in these individuals. While there was evidence for incomplete penetrance, these data implicate TLN1 as a disease-associated gene in both familial and sporadic SCAD. The next paper comes from Miroslaw Lech, Jane Burns, and colleagues from UCSD School of Medicine and Momenta Pharmaceuticals and is entitled Circulating Markers of Inflammation Persist In Children And Adults With Giant Aneurysms After Kawasaki Disease. Kawasaki disease is the most common cause of acquired pediatric heart disease, but disease progression can vary a lot, and it's likely modulated by complex gene-environment interactions. Coronary artery aneurysms occur in about 25% of untreated patients, but early treatment with intravenous immunoglobulin or aspirin reduces the risk for these aneurysms to 5%, suggesting an important role for inflammation. In this study, the authors applied shotgun proteomics, transcriptomics, and glycomics on eight pediatric Kawasaki disease patients at the acute, subacute, and convalescent time points. They identified inflammatory profiles characterizing acute disease which resolved during the subacute and convalescent time points, except for in the patients who went on to develop giant coronary artery aneurysms. They went on to carry out proteomics on nine Kawasaki disease adults with giant coronary artery aneurysms and matched healthy controls, and they confirmed the inflammatory profiles in the adult samples. In particular, calprotectin, which is composed of S100A8 and S100A9, was elevated in the plasma of patients with CAA, an association they confirmed in additional samples of pediatric and adult Kawasaki disease patients and healthy controls. These data suggest that calprotectin may serve as a biomarker of ongoing inflammation in Kawasaki disease patients following acute illness, and may be able to identify individuals at increased risk of aneurysms. Next up, we have a research letter, Heart BioPortal: An Internet-of-Omics for Human Cardiovascular Disease Data, from Bohdan Khomtchouk, Tim Assimes, and colleagues from Stanford University. They had noticed that, in contrast to the field of cancer research, there were no open access platforms for cardiovascular disease data that offered users the ability to visualize and explore high quality data. They set out to fix this and developed the Heart BioPortal, which is accessible at www.heartbioportal.com. This portal allows the user to integrate existing CDD related omics data sets in real time and provides intuitive visualization and analyses in addition to data downloads. The primary goals are to support gene, disease, or variant-specific request, and to visualize the search results in a multi-omics context. They currently collate gene expression, genetic association, and ancestry allele frequency information for over 23,000 human genes and almost 6,000 variants across 12 broadly defined cardiovascular diseases spanning 199 different research studies. And this is just the start, they're hoping to add more studies, more data, and functionality for querying CDD drug targets, along with lots more. This is a really great resource which will no doubt be of real value to the community. I urge you to go online, check it out, put in your favorite gene, and see what you find. Riyaz Patel, Folkert Asselbergs, and many, many collaborators published Subsequent Event Risk in Individuals With Established Coronary Heart Disease: Design and Rationale of the GENIUS-CHD Consortium and Association of Chromosome 9p21 with Subsequent Coronary Heart Disease Events: A GENIUS-CHD Study Of Individual Participant Data. These papers present the design of the genetics of subsequent coronary heart disease, or GENIUS-CHD consortium, which was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events in individuals with established CHD. The consortium currently includes 57 studies from 18 countries, recruiting over 185,000 participants with either acute coronary syndrome, stable CHD, or a mixture of both at baseline. All studies collected biological samples and followed up study participants prospectively for subsequent events. Enrollment into the individual studies took place between 1985 to the present day, and the duration of follow-up ranges from nine months to 15 years. Participants have mostly European ancestry, are more likely to be male, and were recruited between 40 to 75 years of age. In their first analysis using these data, they investigated whether the established 9p21 locus associated with subsequent events in individuals with established coronary heart disease. Confirming previous smaller studies, they showed that while genotype at 9p21 is associated with coronary disease when compared to healthy controls, 9p21 genotype is not associated with a risk of future events in people who already have coronary disease. Dr. Patel joins me to tell me more about the GENIUS-CHD consortium and the analyses described in these papers. Today, I'm joined by Dr. Riyaz Patel, who's an associate professor at University College London and a cardiologist at the Barts Heart Centre in London. Dr. Patel, thank you so much for joining me. Dr. Riyaz Patel: Pleasure to be on, thanks. Jane Ferguson: So, as we're going to discuss, you are the lead author on two back-to-back publications that were published in Circ Gen this month exploring genetic predictors of coronary heart disease as part of the GENIUS-CHD consortium. Before we delve fully into them, could you tell us a little bit about your background and how you got into this research field? Dr. Riyaz Patel: Yes. I'm an academic cardiologist, as you know, and I first got into genetics of coronary disease about 12-13 years ago, now, around the time that genome wide association studies were about to take off, or were taking off. I studied, I worked at Emory University, in fact, in Atlanta, in the US. We had a very big cohort of patients who had coronary disease, who were undergoing coronary angiography. At that time, we were doing quite a lot of genetic association studies and biomarker work in patients with heart disease. One of the key problems we often encountered was sort of looking for replication cohorts and trying to do things at a bigger scale than what we had available. So that kind of really was the initial driver for trying to bring together a bigger collaboration to take that sort of work to the next level. Jane Ferguson: It sounds like you've got valuable expertise, because looking at the author list for these papers, I think it's one of the longest author lists I've ever seen. It's a huge endeavor. I'd love to hear more about how that got started and how you managed to build this consortium, and you know, and tell us what the consortium actually is. Dr. Riyaz Patel: Yeah, it's been a labor of love. And essentially, I started when I returned back to the UK and we were looking to develop this further. We had already collaborated with several colleagues in the US and abroad from my time at Emory. So, we pulled together a small group of people who we were already working together with and then we did predicts of systematic searches of literature to identify cohorts who were also doing similar things. Again, investigating people with heart disease and looking at subsequent event risk. So, we did that and then we systematically approached, very much, as many people as we could find and over the course of the last, maybe 3 or 4 years, we've brought together a small community of collaborators around the world, and as you rightly said, it's a very long list. In total, we're counting around 180 or so investigators. But, in a way, that also speaks to how this consortium is not just a collection of studies. It is a collection of people and a lot of expertise was brought to the table because of that. People have been thinking about these questions for many, many years and this platform essentially is an opportunity for everyone to share that knowledge. Dr. Riyaz Patel: So that's kind of how the consortium started and is being pulled together. We operate on a sort o
Jane Ferguson: Hello, and welcome to episode 26 of Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson. It's March 2019, and I'm ready to spring into this month's papers, and apparently make really bad seasonal related jokes. Sorry all. Okay, let's get started. First up, is a paper from Oren Akerborg, Rapolas Spalinskas, Sailendra Pradhananga, Pelin Sahlén and colleagues from the Royal Institute of Technology in Solna, Sweden entitled "High Resolution Regulatory Maps Connect Vascular Risk Variants to Disease Related Pathways." Their goal was to identify non-coding variants associated with coronary artery disease, particularly those with putative enhancers and to map these to changes in gene function. They generated genomic interaction maps using Hi-C chromosome confirmation capture, coupled with sequence capture in several cell types, including aortic and ethelial cells, smooth muscle cells and LPS stimulated THP-1 macrophages. They captured over 25,000 features and they additionally sequenced the cellular transcriptomes and looked at epigenetic signatures using chromatin immunoprecipitation. They looked at regions interacting with gene promoters and found significant enrichment for enhancer elements. Looking at variants previously implicated in genome-wide associated studies, they identified 727 variants with promoter interactions and they were able to assign potential target genes for 398 GWAS variants. In many cases, the gene associated with a particular variant was not the closest neighbor, highlighting the importance of considering chromatin lupane when assigning intergenic variants to a gene. They identified several variants that interacted with multiple promoters, influencing expression of several genes simultaneously. Overall, this paper is a great resource for the community and takes many of these GWAS hits to the next level in starting to understand their biological relevance. They have a lot of supplemental material available online so it's definitely worth checking that out and taking a look for your favorite non-coding variant or chromosomal region to see if you can get some more information on it. Next up, Pierrick Henneton, Michael Frank and colleagues from the Hopital Europeen Georges-Pompidou in Paris bring us "Accuracy of Clinical Diagnostic Criteria For Patients with Vascular Ehlers-Danlos Syndrome in a Tertiary Referral Center." The authors were interested in determining the accuracy of the diagnostic criteria used to select patients for genetic testing for suspected vascular Ehlers-Danlos syndrome. This is because, despite the Villefrench criteria being recommended for diagnosis, the accuracy of the diagnostic criteria was never formally tested. They selected 519 subjects, including 384 probands and 135 relatives who had been seen between 2001 and 2016. They assessed the sensitivity and specificity of the Villefrench classification. Almost 32% of tested individuals carried a pathogenic COL3A1 variant. The sensitivity of the Villefrench criteria was 79% with a negative predictor value of 87%. Symptomatic probands had the highest accuracy at 92% sensitivity and 95% negative predictive value. However, the specificity was just 60%. Applying revised diagnostic criteria from 2017, it was actually less accurate because even though there was an increase in specificity, the sensitivity was reduced. Overall diagnostic performance was worst in individuals under 25 and neither set of diagnostic classifications allowed for early clinical diagnosis in individuals without a family history. Our next paper is a Mendelian randomization analysis from Susanna Larsson, Stephen Burgess and colleagues from Uppsala University and the University of Cambridge. This paper entitled "Thyroid Function And Dysfunction In Relation to Sixteen Cardiovascular Diseases: A Mendelian Randomization Study" aims to understand how subclinical thyroid dysfunction relates to risk of cardiovascular diseases. They generated genetic predictors for thyroid stimulating hormone, or TSH, through a GWAS meta-analysis in over 72,000 individuals. They then analyzed the association of genetically predicted TSH with cardiovascular outcomes in large GWAS studies of atrial fibrillation, coronary artery disease, and ischemic stroke, and further assessed associations with phenotypes in the UK Biobank. They found genetically decreased TSH levels and hyperthyroidism were associated with increased risk of atrial fibrillation but not other tested phenotypes. Overall, these data support a causal role for TSH and thyroid dysfunction in atrial fibrillation but not in other cardiovascular diseases. The next paper is also a Mendelian randomization analysis from members of the same group, Susanna Larsson, Stephen Burgess and colleagues published "Resting Heart Rate and Cardiovascular Diseases: A Mendelian Randomization Analysis." In this letter, they describe a study of the relationship between genetically increased resting heart rate and cardiovascular diseases. They constructed genetic predictors of resting heart rate and similarly to the previous study, used that as an instrument to test for associations with coronary artery disease, atrial fibrillation, and ischemic stroke in the cardiogram, atrial fibrillation, and mega stroke consortia respectively. They also looked at 13 CVD outcomes in the UK Biobank. They found that genetically predicted heart rate was inversely associated with atrial fibrillation with suggestive evidence for an inverse association with ischemic, cardioembolic, and large artery stroke. The inverse association with AF was replicated in the UK Biobank, supporting previous reports linking resting heart rate to atrial fibrillation. Next up, we have a letter from Robyn Hylind, Dominic Abrams, and colleagues from Boston Children's Hospital. This study entitled "Phenotypic Characterization of Individuals with Variants in Cardiovascular Genes in the Absence of a Primary Cardiovascular Indication For Testing" describes their work to probe incidental findings for potential cardiovascular disease variants in individuals undergoing clinical genomic sequencing for non-cardiac indications. They included 33 individuals who had been referred as carrying variants that were indicated as being associated with cardiovascular disease in primary or secondary findings. The variants were reclassified using the 2015 ACMG guidelines, and then were compared to the original classification report obtained at the time of sequencing. Of 10 pathogenic or likely pathogenic variants, only four of these were actually considered pathogenic or likely pathogenic after reclassification under the 2015 ACMG criteria, and none of these were associated with a cardiac phenotype. None of the variants could be definitively linked to any cardiac phenotype. The costs ranged from $75 to over $3700 per subject with a cost per clinical cardiac finding estimated at almost $14,000. This study highlights the relatively high cost and low yield of investigating potential cardiovascular variants and prompts consideration of how to implement strategies to ensure that variant reporting maximizes clinical return but minimizes the financial, time, and psychological burdens inherent in lengthy follow-ups. The next paper is a clinical letter from Serwet Demirdas, Gerben Schaaf and colleagues from Erasmus University Rotterdam entitled "Delayed Diagnosis of Danon Disease in Patients Presenting with Isolated Cardiomyopathy." They report on a clinical case of a 14-year-old boy presenting with cardiac arrest due to ventricular fibrillation during exercise. Echocardiography and MRI showed cardiac concentric hypertrophy, particularly in the left ventricle. The boy's mother had died at age 31 after being diagnosed with peripartum dilated cardiomyopathy. Sequencing in the boy revealed a variant in the LAMP2 gene, known to be responsible for Danon disease, which typically presents as cardiomyopathy, skeletal myopathy, and intellectual disability. This same LAMP2 variant was found in preserved maternal tissue, but not in other family members. In this case, there was no evidence of muscle or intellectual abnormalities. However, sequencing had allowed for this diagnosis of Danon disease in the child and posthumously in his mother. This study demonstrates a utility of using extended gene panels in clinical sequencing to aid in diagnosis and to inform management of patients. The next letter is from Alvaro Roldan, Julian Palomino-Doza, Fernando Arribas and colleagues from University Hospital of the 12th of October in Madrid and is entitled "Missense Mutations in the FLNC Causing Familial Restrictive Cardiomyopathy: Growing Evidence." This report also highlights clinical cases. In this case, two individuals with variants in the filamin C, or FLNC gene. Two unrelated individuals presenting with restricting cardiomyopathy were sequenced and found to carry two different variants in the FLNC gene, one of which had not been previously reported. This expands the number of reported cases of filamin C mutations in res
Jane Ferguson: Hi everybody. Welcome to Episode 25. I'm Jane Ferguson. This is Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine, and it is February 2019. Let's get started. The first paper this issue is a concurrent publication and comes to us from 29 different editors-in-chief of 27 major cardiovascular journals, led by Joseph Hill, editor-in-chief of Circulation. This editorial, entitled Medical Misinformation: Vet the Message! gives a pointed reminder of the real life risks of misinformation that spreads rapidly through social media and influences people who are making crucial decisions about healthcare for themselves and their families. Quoting directly from the paper they say, "We, the editors-in-chief of the major cardiovascular scientific journals around the globe, sound the alarm that human lives are at stake. People who decline to use a statin when recommended by their doctor, or parents who withhold vaccines from their children, put lives in harm’s way." In this editorial they call on those in the media to do a better job of taking responsibility for the information they disseminate. In particular, in evaluating content before disseminating it, and avoiding false equivalencies where overwhelming scientific evidence favors one side of the so called "debate." I'll add to that that those of us who are medical or scientific professionals need to do our best to take the time to explain our science to those around us. The science underlying most of medicine is complex and hard to explain and sometimes incomplete, but we do a disservice to people if we don't at least try. Let's all join the editors in calling everyone to vet information and hold those with power in the media accountable for the spread of misinformation they enable. Next up this issue, a paper from Jody Ingles, Birgit Funke, and co-authors from the University of Sydney, Harvard Medical School and others, entitled Evaluating the Clinical Validity of Hypertrophic Cardiomyopathy Genes. As panels for clinical genetic testing expands to include more genes, there are more and more variants that are detected and reported to patients, but do not necessarily have underlying evidence to support or disprove pathogenicity. This group aimed to systematically assess the validity of potential gene disease associations with hypertrophic cardiomyopathy and left ventricular hypertrophy by curating variants based on multiple lines of genetic and experimental evidence. They categorized genes based on the strength of evidence of disease causation and reviewed HCM variant classification in the ClinVar variant and phenotype repository. They selected 57 genes to study based on those which were frequently included on test panels or had previous reports of association with HCM. Of HCM genes, only 24% were characterized as having definitive evidence for disease causation, 10% of the genes had moderate evidence, while 66% had limited or no evidence for disease causation. Of syndromic genes, 50% were definitively associated with left ventricular hypertrophy. Of over 4,000 HCM variants in ClinVar, 31% were in genes that, on review, had limited or no evidence for association with disease. What this study shows is that many genes that are included on panels for diagnostic testing for HCM actually have little evidence for any relationship to disease. Systematic curation is required to improve the accuracy of information being acquired and reported to patients and families with HCM. Moving on to the next paper. This manuscript describes the international Triadin Knockout Syndrome Registry: The Clinical Phenotype and Treatment Outcomes of Patients with Triadin Knockout Syndrome. It comes from Daniel Clemens, Michael Ackerman and colleagues from the Mayo Clinic. So, Triadin Knockout Syndrome is a rare inherited arrhythmia syndrome and it is caused by recessive null mutations in the cardiac triadin gene. To improve the ability to study this rare syndrome, this group established the International Triadin Knockout Syndrome Registry, with the goal of including patients across the world with homozygous or compound heterozygous triadin null mutations. The registry currently includes 21 patients from 16 families who have been carefully phenotyped and many of whom exhibit T wave inversions and have transient QTC prolongation. The average age for first presentation with cardiac arrest or syncope was three years of age. Despite a variety of treatments, the majority still have recurrent breakthrough cardiac events. These data highlight the importance of conducting testing for triadin mutations in patients, particularly young children presenting with cardiac arrest, and as this registry grows it will enable a better understanding of the disease and hopefully pave the way for future triadin gene therapy trials. The next paper comes from Daiane Hemerich, Folkert Asselbergs and colleagues from Utrecht University, and is entitled Integrative Functional Annotation of 52 Genetic Loci Influencing Myocardial Mass Identifies Candidate Regulatory Variants and Target Genes. They were interested in whether variants that have been associated with myocardial mass may exert their influence through regulatory elements. They analyze the hearts of hypertrophic cardiomyopathy patients and non-disease controls and ran ChIP-seq in 14 patients and 4 controls and RNA-seq in 11 patients and 11 controls. They selected 52 loci that have been associated with electric cardiogram defined abnormalities in amplitude and duration of the QRS complex and looked specifically at these gene regions. They found differential expression of over 2,700 different genes between HCM and control. They further found differential acetylation over 7,000 regions. They identified over 1000 super enhancers that were unique to the HCM samples. They found significant enrichment for differential regulation between disease and control hearts within the loci previously associated with HCM, compared with loci not associated with HCM. They analyzed regions where putative causal SNPs overlapped regulatory regions, and identified 74 co-localized variants within 20 loci, with particular enrichment for SNPs in differentially expressed promoters. They confirmed associations with 18 previously implicated genes, as well as identifying 14 new genes. Overall, what this study demonstrates is that by looking at regulatory features that differ in affected tissues between disease and healthy individuals, we can learn more about the underlying mechanisms of disease. Moving on, we have a paper entitled Interleukin-6 Receptor Signalling and Abdominal Aortic Aneurysm Growth Rates from Ellie Paige, Marc Clément, Daniel Freitag, Dirk Paul, Ziad Mallatt and colleagues from the University of Cambridge. They aimed to investigate a specific SNP in the Interleukin-6 receptor rs2228145, which has been associated with abdominal aortic aneurysms. Inflammation is thought to be a contributor to aneurism progression. The authors hypothesized that the IL-6 receptor's SNP may affect aneurysm growth. They use data from over 2,800 subjects from nine different prospective cohorts and examine the effect of genotype on annual change in aneurysm diameter. Although there was a significant association between genotype and baseline aneurysm size, there was no statistically significant association with growth over time. It appeared that growth was less in minor allele carriers, but the effect if true, was small and the analyses were not powered for small effect sizes. Sample sizes are limited for cohorts with abdominal aortic aneurysms and the authors already used all available worldwide data. In complimentary experiments in mice, they examined the effect of blocking the IL-6 receptor pathway. They found that selective blockage of the IL-6 trans-signaling pathway mediated by soluble IL-6 receptor was associated with improved survival in two different mouse models. However, blocking the classical membrane-bound IL-6 signaling pathway in addition to the trans-signaling pathway did not lead to improved survival. Although the severe lack of enough subjects for well powered genetic analyses is a major limitation for the study of abdominal aortic aneurism and humans, this paper demonstrates the potential relevance of the IL-6 trans-signaling pathway and aneurysm growth, and suggests that further interrogation of this pathway may be informative in figuring out new ways to prevent aneurysm progression and rupture. Next, we have the first of two research letters this issue. The letter on Common Genetic Variation in Relation to Brachial Vascular Dimensions and Flow-Mediated Vasodilation comes to us from Marcus Dorr, Renate Schnabel and co-authors from several institutions including University Heart Center in Hamburg. They were interested in gaining a better understanding of the genetics underlying vascular function. They ran a meta-analysis of brachial artery diameter, maximum brachial artery diameter adjusted for baseline diameter, and flow-mediated dilation in over 17,000 individuals of European ancestry from six different GWA studies. They sought to replicate findings in over 9,500 newly genotyped individuals. They identified two novel SNPs for baseline brachial artery diameter, but no SNPs reached significance or replication from maximum brachial artery diameter or flow-mediated dilation. One of the significant
Jane Ferguson: Hello, everyone. Welcome to Episode 23 of Getting Personal, Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. It's December 2018. I'm Jane Ferguson. So let's get started. This month I talked to Dr. Merlin Butler from Kansas University Medical Center about an interesting clinical case he described recently in the Journal of Pediatric Genetics, concerning cardiac presentations in a case of classic Ehlers-Danlos syndrome with COL5A1 mutations. Keep listening for that interview, but first, let's talk about the papers in this month's issue of the Journal. Our first paper, entitled "Effects of Genetic Variance Associated With Familial Hypercholesterolemia on LDL Cholesterol Levels and Cardiovascular Outcomes in the Million Veteran Program." Comes from Yan Sun, Peter Wilson and co-authors on behalf of the V.A. Million Veterans Program. They were interested in the relatively between variants in LDLR, APOB and PCSK9, and LDL cholesterol in the general population. Low-frequency variants in these genes have been identified to underlie the greatly elevated LDL cholesterol seen in cases of familial hypercholesterolemia, but the effects of the population level are unknown. Using data from the Million Veterans Program, the team analyzed the associations between putatively pathogenic variants and the maximum recorded LDL cholesterol level, as measured repeatedly over a 15-year period, in over 330,000 participants. They restricted analysis to variants that were present in at least 30 people and found that eight of the 16 variants tested were associated with significantly higher LDL cholesterol. Through phenome-wide association analysis, they found that carriers had a higher likelihood of a diagnosis of hypercholesterolemia or coronary heart disease, but not of other diagnoses. Even though individuals carrying risk variants generally reduce their LDL cholesterol through statin treatment, they still had residual risk, suggesting that even earlier initiation of treatment may be required in individuals with genetic risk of high HDL. Continuing the theme, the next paper comes from Laurens Reeskamp, Merel Hartgers, Kees Hovingh and colleagues from the University of Amsterdam, and is entitled, "A Deep Intronic Variant in LDLR in Familial Hypercholesterolemia: Time to Widen the Scope?" This team had encountered a family with familial hypercholesterolemia, who did not carry a coding mutation in LDLR, APOB or PCSK9, and they wanted to figure out what was causing the elevated LDL cholesterol in this family. They conducted whole-genome sequencing in nine family members, five affected and four unaffected. They found a variant in an intron in LDLR, which resulted in an insertion of 97 nucleotides, leading to a frame shift in premature stop codon in exon 15 of LDLR. They confirmed the disease segregation in a second family, and found a frequency of over 0.2% in additional FH cases without a confirmed mutation. This study highlights the need to consider more than just exons when looking for causal variants, particularly in families where no coding mutations are identified. Next up, from Kathryn Siewert and Ben Voight from University of Pennsylvania, a paper reporting that "Bivariate Genome-Wide Association Scan Identified 6 Novel Loci Associated With Lipid Levels and Coronary Artery Disease." This paper started with a premise that, because heritable plasma lipids are genetically linked to coronary artery disease, we would have greater power to detect variants contributing to both traits by conducting joint GWAS analysis, rather than independent analyses for lipids or coronary disease, as has been done traditionally. Using data from over 500,000 individuals for CAD and over 180,000 individuals from the Global Lipid Genetics Consortium, they conducted a bivariate GWAS and identified six previously unreported loci that associated with CAD and either triglycerides, LDL cholesterol or total cholesterol. Many of these loci also had signals for effects on gene expression of genes in the region, suggesting that these novel loci may affect lipid levels and CAD risk through modulation of gene expression. Interestingly, for some of the newly-identified loci, there were multiple potential regulatory targets, suggesting that these loci may affect lipids and CAD through separate mechanisms. Overall, for closely-linked traits such as lipids and CAD, this joint GWAS approach gives additional power to detect novel variants. The next article comes from Terry Solomon, John-Bjarne Hansen and colleagues from University of California-San Diego and the Arctic University of Norway. Their paper concerns the "Identification of Common and Rare Genetic Variation Associated With Plasma Protein Levels Using Whole-Exome Sequencing and Mass Spectrometry." They were interested in identifying genetic variants that associate with plasma protein levels, both to understand genetic regulation and to identify potential sources of bias, where a genetic variant affects the assay used to quantify the protein, without necessarily altering biological components of the protein. Using data from 165 participants of the Tromsø Study, they quantified 664 proteins in plasma by tandem mass tag mass spectrometry and genotypes by whole-exome sequencing. They identified 109 proteins or peptides associated with genotype, and of these identified 49 that appeared to be technical artifacts based on genotype data. Of the rest, many of the genetic variants affected protein level by modulation of RNA, but some appeared to directly affect protein metabolism. Their method of quantifying multiple peptides from each protein and sequencing exons allowed them to identify spurious associations that would often be missed, and highlights the large number of artifacts that could be present in protein quantitative trait locus studies. At the same time, they show that over half of the pQTLs are real, with genetic variants affecting circulating proteins through diverse mechanisms. Our last of the full-length original research articles also applied proteomics. "Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy" comes from Caroline Coats, Perry Elliott and coauthors from University College, London. They obtained myocardial samples from 11 patients with hypertrophic cardiomyopathy and measured over 1500 proteins using label-free proteomic analysis. They compared protein expression to six control samples from healthy hearts. They identified 151 proteins that were differentially expressed in HCM hearts, compared with control, and they validated a subset of these using an additional 65 myocardial samples from healthy and diseased subjects. Of eight validated differentially expressed proteins, they represented pathways in metabolism, muscle contraction, calcium regulation and oxidative stress. Of particular interest, they highlighted lumican as a novel disease protein, and showed the potential of proteomics to identify mechanisms underlying HCM. We have two research letters this month, the first from Hisato Suzuki, Kenjiro Kosaki and coauthors from Keio University School of Medicine at Tokyo. It's titled, "Genomic Comparison With Supercentenarians Identifies RNF213 as a Risk Gene for Pulmonary Arterial Hypertension." In this letter, they were interested in identifying genetic variants underlying pulmonary arterial hypertension. They hypothesized that individuals with extremely long lifespan would be less likely to carry potentially pathogenic variants. They performed whole-exome sequencing in 76 individuals with PAH and compared them to 79 supercentenarians who had lived for over 110 years. They report variants in RNF213 and TMEM8A that were present in PAH but not in the controls, suggesting these genes may be important in the pathophysiology of PAH. The second research letter comes from Tessa Barrett, Jeffrey Berger and colleagues from New York University School of Medicine, and is entitled, "Whole-Blood Transcriptome Profiling Identifies Women With Myocardial Infarction With Nonobstructive Coronary Artery Disease: Findings From the American Heart Association Go Red for Women Strategically Focused Research Network." Most of the 750,000 acute MIs occurring in the U.S. each year are caused by obstructive coronary artery disease, but around 15% of the acute MIs occur in individuals whose arteries have less than 50% stenosis and are defined as unobstructed. These individuals are more likely to be female and of higher morbidity and mortality. In this AHSAFRM-funded project, the team sequenced whole-blood RNA from 32 women who presented with an MI with or without CAD, or controls. They report several thousand transcripts differing between groups on conducted pathway analysis, which highlighted several pathways, most notably estrogen signaling. This suggests that estrogen may be a novel component in MIs occurring in the absence of obstructive disease. We also have two clinical letters this month. The first, "Desmoplakin Variant-Associated Arrhythmogenic Cardiomyopathy Presenting as Acute Myocarditis," is brought to us by Kaitlyn Reichl, Chetan Shenoy and colleagues from University of Minnesota Medical School. They report a case of a 24-year-old man presenting with acute myocarditis, who was found to have a pathogenic variant in desmoplakin underlying arrhythmogenic cardiomyopathy, also present in his father and one brother. This case highlights myocarditis as a possible initial presentation of arrhythmogenic cardiomyopathy, which requires cardiac MRI and genetic testing for full evaluation. The
Jane Ferguson: Hello everyone, and happy new year. Welcome to episode 24 of Getting Personal: Omics of the Heart. It's January 2019, I am Jane Ferguson, an assistant professor at Vanderbilt University Medical Center and an associate editor at Circulation Genomic and Precision Medicine. We have a great line-up of papers this month in the journal, so let's jump right into the articles. First up, a paper from Christopher Nelson, Nilesh Samani, and colleagues from the University of Lester entitled, "Genetic Assessment of Potential Long-Term On-Target Side Effects of PCSK9 Inhibitors." I think most listeners are well aware of the efficacy of PCSK9 inhibition in reducing cardiovascular risk. However, as a relatively new treatment option, we do not yet have data on potential long-term side effects of PCSK9 inhibition. In this study, they utilized genetics as a proxy to understand potential long-term consequences of lower PCSK9 activity. They examined a PCSK9 variant that associates with lower LDL, as well as examining two LDL-lowering variants in HMGCR, the target of statins, which served as a positive control of sorts. They used data from over 479,000 individuals in the UK Biobank and looked for associations between the three LDL-lowering variants and 80 different phenotypes. For the PCSK9 variant, the allele which is associated with lower LDL was significantly associated with the higher risk of type 2 diabetes, higher BMI, higher waist circumference, higher waist-hip ratio, higher diastolic blood pressure, as well as increased risk of type 2 diabetes and insulin use. The HMGCR variants were similarly associated with type 2 diabetes as expected. Mediation analysis suggested that the effect of the PCSK9 variant on type 2 diabetes is independent of its effect on obesity. There were nominal associations between the PCSK9 variant and other diseases, including depression, asthma, chronic kidney disease, venous thromboembolism, and peptic ulcer. While genetics cannot fully recapitulate the information that would be gained from long-term clinical follow up, these data suggest that like statins, PCSK9 inhibition may increase the risk of diabetes and potentially other disease. Overall, the cardiovascular efficacy of PCSK9 inhibition may outweigh these other risks, however, future studies should carefully examine these potential side effects. Next up, we have a paper from Xiao Cui, Fang Qin, Xinping Tian, Jun Cai, and colleagues from Peking Uni and Medical College, on "Novel Biomarkers for the Precise Diagnoses and Activity Classification of Takayasu's Arteritis." They were interested in identifying protein biomarkers of Takayasu arteritis, to improve diagnosis and understanding of disease activity in this chronic vascular disease. They ran a proteomic panel including 440 cytokines on 90 individuals, including individuals with active disease, inactive disease, and healthy controls. They found a number of candidates and validated one protein, TIMP-1, as a specific diagnostic biomarker for Takayasu arteritis. For assessing disease activity, there was no single biomarker that could be used for classification, however, the combination of eight different cytokines identified through random forest-based recursive feature elimination and [inaudible] regression, including CA 125, FLRG, IGFBP-2, CA15-3, GROa, LYVE-1, ULBP-2, and CD 99, were able to accurately discriminate disease activity versus inactivity. Overall, this study was able to identify novel biomarkers that could be used for improved diagnosis and assessment of Takayasu arteritis, and may give some clues as to the mechanisms of pathogenesis. Our next paper is entitled, "Familial Sinus Node Disease Caused By Gain of GIRK Channel Function," and comes from Johanna Kuß, Birgit Stallmeyer, Marie-Cécile Kienitz, and Eric Schulze-Bahr, from University Hospital Münster. They were interested in understanding novel genetic underpinnings of inherited sinus node dysfunction. A recent study identified a gain of function mutation in GNB2 associated with sinus node disease. This mutation led to enhanced activation of the G-protein activated inwardly rectifying potassium channel, or GIRK, prompting the researchers to focus their interest on the genes encoding the GIRK subunits, KCNJ3 and KCNJ5. They sequenced both genes in 52 patients with idiopathic sinus node disease, and then carried out whole exome sequencing in family members of patients with potential disease variants in either gene. They identified a non-synonymous variant in KCNJ5, which was not present in the EVS or ExAC databases, and which segregated with disease in the affected family. This variant was associated with increased GIRK currents in a cell system, and in silico models, predicted the variant altered or spermine binding site within the GIRK channel. Thus, this study demonstrated that a gain of function mutation in a GIRK channel subunit associates with sinus node disease, and suggests that modulation of GIRK channels may be a viable therapeutic target for cardiac pacemaking. Our next paper, "Key Value of RNA Analysis of MYBPC3 Splice-Site Variants in Hypertrophic Cardiomyopathy," comes from Emma Singer, Richard Bagnall, and colleagues from the Centenary Institute and the University of Sydney. They wanted to understand the impact of variants in MYBCP3, a known hypertrophic cardiomyopathy gene, on splicing. They recruited individuals with a clinical diagnosis of hypertrophic cardiomyopathy and genetic testing of cardiomyopathy-related genes. They further examined individuals with a variant in MYBCP3 which had an in silico prediction to affect splicing. They sequenced RNA from blood or from fixed myocardial tissue and assessed the relationship between each DNA variant and gene splicing variation. Of 557 subjects, 10% carried rare splice site variants. Of 29 potential variants identified, they examined 9 which were predicted to affect splicing, and found that 7 of these were indeed associated with splicing errors. Going back to the families, they were able to reclassify four variants in four families from uncertain clinical significance to likely pathogenic, demonstrating the utility of using RNA analysis to understand pathogenicity in genetic testing. The next paper this issue comes from Catriona Syme, Jean Shin, Zdenka Pausova, and colleagues from the University of Toronto, and is entitled, "Epigenetic Loci of Blood Pressure: Underlying Hemodynamics in Adolescents and Adults." A recent large meta epigenome-wide association study identified methylation loci that associate with blood pressure. In this study, they wanted to understand more about how these loci related to blood pressure and hemodynamics. They recruited adolescents and middle-aged adults and assessed 13 CPG loci for associations with hemodynamic markers, including systolic and diastolic blood pressure, heart rate, stroke volume, and total peripheral resistance, measured over almost an hour during normal activities. Several of the loci replicated associations with blood pressure, and two of these also showed age-specific associations with hemodynamic variables. One site in PHGDH was particularly associated with blood pressure and stroke volume in adolescents, as well as with body weight and BMI, where lower methylation resulting in higher gene expression associated with higher blood pressure. A second site in SLC7A11 associated with blood pressure in adults but not adolescents, with lower methylation and consequent higher gene expression associated with increased blood pressure. Overall, this study indicates that methylation mediated changes in gene expression may modulate blood pressure and hemodynamic responses in an age-dependent manner. Next up is a research letter from Ben Brumpton, Cristen Willer, George Davey Smith, Bjørn Olav Åsvold, and colleagues from the Norwegian University of Science and Technology, entitled, "Variation in Serum PCSK9, Cardiovascular Disease Risk, and an Investigation of Potential Unanticipated Effects of PCSK9 Inhibition: A GWAS and Mendelian Randomization Study in the Nord-Trøndelag Health Study, Norway." As we heard about from the first study this issue, the long-term side effects of PCSK9 inhibition remain unknown. In this study, they also applied a genetic approach to understand potential unanticipated consequences of PCSK9 inhibition. They analyzed phenotypes from over 69,000 participants in the Nord-Trøndelag Health Study and measured serum PCSK9 in a subset. In PCSK9 GWAS of over 3,600 people, with replication in over 5,000 individuals from the twin gene study. They defined a genetic risk score for serum PCSK9 and assessed the relationship between genetically predicted PCSK9 and outcomes. They saw the expected associations between lower PCSK9 and lower LDL and coronary heart disease risk. However, there was minimal evidence for associations with other outcomes. While our first study in this issue, from Nelson, et al, found that lower PCSK9 from a single genetic variant was associated with higher dia
Jane Ferguson: Hello, welcome to Getting Personal: Omics of the Heart, Episode 22. This is a podcast from Circulation: Genomic and Precision Medicine, and the AHA Council on Genomic and Precision Medicine. I am Jane Ferguson and it's November 2018. Our first article comes from Carlos Vanoye, Alfred George and colleagues from Northwestern University Feinberg School of Medicine and is entitled, High Throughput Functional Evaluation of KCNQ1 Decrypts Variance of Unknown Significance. So a major growing problem in clinical genomics is that following the identification of a variant that is potentially linked to a disease phenotype, without further interrogation, it's really hard to make sense of the functional significance of that variant. Right now, the large number of variants of unknown significance lead to confusion for patients and clinicians alike. To allow for accurate diagnoses and the best treatment plans, we need a way to be able to screen variants to assess their function in a fast and cost-effective manner. In this paper, the authors decided to focus in the KCNQ1 gene, a cardiac ion channel, which can affect arrhythmias. They aim to assess whether a novel high-throughput functional evaluation strategy could identify functional mutations, as well as an in vitro electrophysiological approach. Which is effective, but expensive and time-consuming. Their approach capitalized on an existing automated electrophysiological recording platform that had originally had been developed for drug discovery essays. They selected 78 variants in KCNQ1 and assessed their function using the High-Throughput platform, which coupled high efficiency, cell electroporation with automated plain or patch clamp recording. They compared the results to traditional electrophysiological essays and find a high rate of concordance between the two methods. Overall, they were able to reclassify over 65% of the variants tested, with far greater efficiency than traditional methods. While this method will not work for all genes and phenotypes, the authors have demonstrated an efficient method for functional interrogation of variants. Which may greatly accelerate discovery and conditions such as Long QT or other congenital arrhythmias. The next paper, Nocturnal Atrial Fibrillation Caused by Mutations in KCND2 Encoding Poor Forming Alpha Subunit of the Cardiac KV 4.2 Potassium Channel, comes from Max Drabkin, Ohad Birk, and colleagues at Soroka University Medical Center in Israel. This paper also focuses on cardiac ion channels and the role of mutations in atrial fibrillation. In a family with early-onset peroxisomal AF across three generations, whole XM sequencing revealed a variant in KCND2 encoding the KV 4.2 Potassium Channel, which segregated consistent with autosomal dominant heredity. This variant resulted in a replacement of a conserved [inaudible] residue with an arginine. To investigate functional consequences of this novel variant, they conducted experiments in xenopos laevis oocytes and found that there is decreased voltage depended channel and activation and impaired formation of the KV 4.2 Homotetramer and the KV 4.2, KV 4.3 Heterotetramer. Overall, this study shows that a novel mutation in a conserved Protein kinase C Phosphorylation site within the KV 4.2 Potassium Channel underlies the phenotypes observed in a family of peroxisomal atrial fibrillation. The targeting Atrial KV 4.2 might be an effective therapeutic avenue. Next up, Michael Levin and Scott Damrauer and colleagues from the University of Pennsylvania published an article entitled, Genomic Risks Stratification Predicts All-Cause Mortality After Cardiac Catheterization. They were interested in understanding the utility of polygenic risk scores for disease prediction. They constructed a genome Y genetic risk score for CAD and applied it to individuals from the Penn Medicine Bio-bank who had undergone Coronary angiography and genotyping. They included over 139,000 variants for the 1,500 ancestry subjects who were included and classified them as high or low polygenic risk. Individuals who were classified as high polygenic risk were shown to have higher risk of All-Cause mortality than low polygenic risk individuals despite no differences in traditional risk factor profiles. This was particularly evident in individuals with high genetic risk but no evidence of angiographic CAD. Adding the polygenic risk score to a traditional risk assessment model was able to improve prediction of five year All-Cause mortality. Highlighting the utility of a polygenic score and underscoring traditional risk factors do not yet fully capture mortality risk. The next article entitled, "Bio-marker Glycoprotein Acetyls is Associated with the Risk of A Wide Spectrum of Incident Diseases and Stratifies Mortality Risk in Angiography Patients" comes from Johannes Kettunen, Scott Ritchie, Peter Würtz and colleagues from the University of Oulu Finland. GlycA is a circulating biomarker that reflects the amount of Glycated proteins in the circulation. It has been associated with cardiovascular disease, Type 2 Diabetes, and all-cause mortality. In this paper, the authors used electronic health record data from over 11,000 adults from the finish general population previously included in the "FINRISK" and "Dilgom" studies and they tested for a associations between GlycA and 468 different health outcomes over an 8-12 year follow up. They report new associations between GlycA and multiple conditions including incident alcoholic liver disease, chronic renal failure, glomerular diseases, chronic obstructive pulmonary disease, inflammatory polyarthric disease and hypertension. These associations held true even after adjusting for CRP suggesting that GlycA represents an independent biological contributor to inflammation and disease. Their findings highlight potential utility for GlycA as a biomarker of many diseases and underscore the importance future functional and mechanistic studies to understand how GlycA is linked to disease risk. Our last original research article entitled, "Tissue Specific Differential Expression of Novel Jeans and Long Intergenic Non-coding RNAs in Humans with Extreme Response to Endotoxic glycemia comes from Jane Ferguson, Murdock Riley, and colleagues from Vanderbilt University, Columbia University, and the University of Pennsylvania. That first author is none other than me, so I'm not unbiased reader of this particular manuscript, but I'd like to tell you a little bit about it anyway. We were interested in understanding the transcriptional changes that occur in tissues during acute inflammation. As part of the genetics of evoked responses to Niacin and Endotoxemia, or gene study, we recruited healthy individuals and performed an inpatient endotoxin challenge where we administered a low dose of LPS and looked at the systemic inflammatory response. Individuals vary greatly in the degree of their inflammatory response to LPS and we identified high and low responders, men and women, of African and European ancestry, who had responses in the top or bottom 10% for cytokines and fever. We conducted RNA seek and adipose tissue in 25 individuals and CD-14 positive monosites for 15 individuals in pre and two or four hours post LPS samples. We found that the differences in transcriptional response between high or low responders are mostly explained by magnitude rather than discrete sets of genes. So some core genes were altered similarly, in both groups, but overall the high responders mounted a large transcription of response to LPS or low responders rather than mounting an anti-inflammatory response actually just barely responded on the transcription level. We saw clear tissue specificity between manosites and adipose tissue we identified several long non-coding RNAs that were up or down regulated in response to LPS and validated these independent samples one of these link RNAs which we have now named Monosite LPs induced link RNA regulator vile six or Mahler Isle six, with highly regulated by LPs and monosites but not in adipose tissue. We [inaudible] THP-1 monosites and find a significant effect on iOS six expression suggesting that this is a novel link RNA that regulates Isle six expression in manosites potentially through a cd-86 dependent pathway. Overall our data revealed tissue specific transcriptional of changes that correlate with clinical inflammatory responses and highlight the role of specifically incarnate and inflammatory response. Next up is a research letter entitled "Reduced Sodium Current in Native Cardiomyocytes of a Regatta Syndrome Patient Associated with Beta Two Central Mutation" published by Constance Schmidt, Felix Wiedmann, Ibrahim El-Battrawy, Dierk Thomas, and co-authors from University Hospital Heidelberg. They obtained cardiomyocytes from a patient with Regatta Syndrome previous whole XM sequencing had implicated a variant in the Beta Two Syntrophin or "SNTB2" gene as potentially causal in this individual. Expression analysis showed lower SN
Speaker 1: Hi, everyone. Welcome to episode 21 of Getting Personal, Omics of the Heart from October 2018. I'm Jane Ferguson, an Assistant Professor at Vanderbilt University Medical Center and an Associate Editor at Circulation: Genomic and Precision Medicine. We have a great issue this month. So, let's dive straight in. First up, an article on "Loss-of-Function ABCC8 Mutations in Pulmonary Arterial Hypertension" from Michael Bohnen, Wendy Chung and colleagues from Columbia University. In pulmonary arterial hypertension, or PAH, compromised pulmonary arterial function can raise pressure in the pulmonary artery which leads to increased pulmonary vascular resistance. This ultimately results in right heart failure. While PAH is relatively rare, it has a high rate of mortality. Some genetic underpinnings have been identified, notably the KCNK3 gene identified by the same research group where they find that mutations result in potassium channelopathy. However, here the authors hypothesized that other genetic contributors also exist and that identification of these could highlight new therapeutic targets to improve treatment and outcomes in PAH. In their study, the authors performed exome sequencing for discovery of novel disease variants in 233 PAH patients, 99 of whom had pediatric-onset and 134 with adult-onset. They sequenced a replication sample of 680 individuals with adult-onset PAH. They found a de novo missense variant in the ABCC8 gene in one patient and then found 10 more ABCC8 variants in other unrelated patients in the discovery and replication samples. Half of these were novel mutations and all were located in conserved regions and predicted to be deleterious. They screened over 33,000 subjects from the Exome Aggregation Consortium and over 49,000 from the Regeneron-Geisinger DiscovEHR study and found significant overrepresentation on rare ABCC8 variants in the PAH cases compared with population controls. ABCC8 encodes sulfonylurea receptor ... part of the potassium ATP channel. The authors determined that it is expressed in lungs in both PAH and healthy individuals and is particularly localized to alveolar macrophages and proximal pulmonary arteries. They expressed eight of the newly discovered ABCC8 mutations in COS cells, which are a monkey-derived, fiberglass-like cell line and they assessed the effects on function. They used patch-clamp experiments to assess potassium ATP channel activity and recorded efflux rates of Rubidium-86. Every mutation was associated with impairments in one or both functional assays, suggesting that mutations in ABCC8 are responsible for PAH by a modulating potassium channel function and flux. An existing drug, Diazoxide, targets ABCC8 and has anti-hypertensive and insulin-lowering effects. The authors find that all mutants were pharmacologically activated by Diazoxide in the functional assays. Now, whether this drug would be safe or effective in PAH remains unknown, but these findings open up targeting of ABCC8 as a possible treatment in PaH and highlight the importance of potassium channels in PAH. Our next paper also used whole-exome sequencing for novel discovery. Marzia de Bortoli, Alessandra Rampazza and colleagues from the University of Padua in Italy published "Whole-Exome Sequencing Identifies Pathogenic Variants in TJP1 Gene Associated With Arrhythmogenic Cardiomyopathy". Arrhythmogenic Cardiomyopathy, or ACM, is one of the most common causes of sudden unexpected death in athletes and young people. It is known to be frequently caused by mutations in genes encoding mechanical junction proteins of the intercalated disks within the cardiac muscle. However, some individuals with ACM do not have any mutations in known genes. This research group was interested in finding novel causal gene mutation and they use whole-exome sequencing to identify mutations from a single patient in Italy. They used InSilica tools to screen for potentially damaging mutations which brought their list of candidate mutations down to 52 and this was topped by a novel mutation in the TJP1 gene which was predicted to be highly deleterious using various algorithms. Using Sanger sequencing, they found that this mutation was also present in several family members. A second mutation in TJP1, also predicted to be damaging, was identified in a second Italian family. They then screened a sample of 43 Dutch and German subjects diagnosed with ACM and found that, once again, mutations in TJP1 topped the list as predicted to be damaging. The TJP1, or tight junction protein 1, encodes the intercalated disk proteins ZO1. The identified mutations may affect folding and local interactions within the protein, affecting protein-protein interactions and gap junction organization. Well, within this paper, they were not able to fully disentangle the mechanisms linking these mutations to disease, given that the prevalence of TJP1 mutations in their ACM samples was almost 5%. Screening for TJP1 mutations in ACM cohorts may identify many additional affected subjects. Further research into TJP1 is needed to identify how these variants may cause ACM. If you want to read more about this paper, you can check out the accompanying editorial from Jason Roberts ... Western University, Ontario ... in this same issue. Next up is a paper from Natsuko Tamura, Yasuhiro Maejima, Mitsuaki Isobe and colleagues from Tokyo Medical and Dental University entitled "Single-nucleotide Polymorphism of the MLX Gene Is Associated With Takayasu Arteritis". Takayasu Arteritis, or TAK, is an autoimmune disease causing aortic vasculitis that is poorly understood and disproportionately affects young Asian women. In previous genome-wide associations, study of TAK in Japanese individuals conducted by this group, indicated SNPs in the MLX gene. In this paper, the authors aim to identify mechanisms linking MLX mutations with TAK. The top GWAS SNP rs665268 is a missense mutation causing L-Glutamine Arginine substitution in the DNA binding site of MLX. They found that this SNP was associated with severity in disease in TAK. With additional copies of the risk alleles associated with more severe aortic regurgitation and greater number arterial lesions. In mice, the highest expression of MLX was found in the aortic valves. Using crystallography, they found that the missense mutation likely stabilizes a complex formed between MLX and MondoA. Immunoprecipitation experiments confirmed that the missense mutation was associated with enhanced MLX MondoA heterodimer formation and MLX transcriptional activity. This resulted in upregulation of TXNIP and higher TXNIP expression is associated with increased intracellular oxidative stress and the authors found for increased oxidative stress in cells carrying the MLX mutation. Further, additional cell experiments showed evidence of this MLX mutation reduces autophagy and stimulates inflammasome activation. Overall, through a series of really elegant experiments, the authors demonstrate that a missense mutation in MLX leads to inflammasome activation and accumulation of cells within the aorta, potentially underlying the pathophysiology seen in TAK patients and highlighting novel causal pathways that may be probed therapeutically.regular Our next paper from Danxin Wang, Wolfgang Sadee and colleagues from the University of Florida and The Ohio State University, also delves into the functional impact of disease-associated SNPs. In their paper, "Interactions Between Regulatory Variants in CYP7A1 Promoter and Enhancer Regions Regulate CYP7A1 Expression", they used a series of experiments to demonstrate how SNPs in CYP7A1 ... which have been associated with cholesterol and cardiovascular disease ... are related to gene function. CYP7A1 is a gene which coordinates a key pathway for cholesterol removal from the body because it encodes an enzyme which is rate-limiting for bioassay synthesis from cholesterol. Although several SNPs in the gene have been associated with cardiovascular phenotypes, the reported effects on gene function have been inconsistent and/or unclear. Because of the linkage disequilibrium between SNPs, it has been hard to understand which SNP or SNPs are actually functional. What this team set out to do was to systematically screen functionality of individual CYP7A1 SNPs to understand the independent effects of each functional variant. First, they used chromatin conformation capture, or 4C assay, to identify regions that associated with a CYP7A1 promoter. They found three distinct regions with evidence of enhancer function and [phonetic 00:09:05] active A>G regulation. They, next, used CRISPR Cas9 to delete each of the three regions in HepG2 cells and assess effects on CYP7A1 expression. One region had no effect, while one led to increased expression and one led to decreased expression ... thus, identifying the presence of both enhancer and repressor regions. Using reporter gene assays, they confirmed the effects seen in CRISPR experiments. Based on reported SNP associations, they narrowed down candidate functional SNPs within the regions and constructed reporter assays containing haplotypes of potential functional SNPs. They were able to identify two SNPs acting together to determine differences in CYP7A1 gene expression. Because these SNPs are in LD, but the minor alleles have effects in opposite directions, considering genotype at both SNPs is required to understand the effects on gene expression. This explains why previous studies found inconsistent results. Both during the functional experiments, they went to human samples and they assessed the combined effect of the two SNPs on clinical phenotypes. Designating people as high or low activity based on the two SNPs, they found significant differences in cholesterol and in the likelihood to reach cholesterol targets on statin, as well as in the risk of MI. This paper is a lovely example of how careful functional interrogation can tease out a complex
Jane Ferguson: Hi everyone. Welcome to episode 20 of Getting Personal Omics of the Heart, the podcast brought to you by the Circulation: Genomic and Precision Medicine Journal and the American Heart Association Council on Genomic and Precision Medicine. I'm Jane Ferguson from Vanderbilt University. It's September 2018 and let's dive straight into the papers from this month's issue of Circulation: Genomic and Precision Medicine. We're starting off with some pharmacogenomics. Bruce Peyser, Deepak Voora and colleagues from Duke University published an article entitled, "Effects of Delivering SLCO1B1 Pharmacogenetic Information in Randomized Trial and Observational Settings." Although statins are generally well tolerated, 5-15% of patients taking statins for LDL lowering and cardiovascular protection end up developing statin associated muscular symptoms. Because onset of muscular symptoms associated with discontinuing statin use, as well as increased cardiovascular morbidity, there is a clear need to identify ways to prevent or reduce symptoms in these people. Variants affecting statin related myopathy have previously been discovered through GWAS, including a variant in the SLCO1B1 gene, which also has been shown to relate to statin myalgia and discontinuation of statin use. The risks appear to be greatest with simvastatin, indicating the people at risk of muscle complications may do better on either low-dose Simvastatin or another statin. However, there's still some uncertainty surrounding the risks and benefits of various statins as they pertain to risk of muscular symptoms. The authors have previously shown that pharmacogenetics testing led to increased number of people reporting statin use, but effects of pharmacogenetic testing on adherence, prescribing, and LDL cholesterol had never been tested in a randomized control trial. In this study, they randomized 159 participants to either genotype informed statin therapy or usual care, and then followed them for months to eight months. 25% of participants were carriers of the SLCO1B1 star five genotype. The authors found that statin adherence was similar in both groups, but gene type guided therapy resulted in more new statin prescriptions and significantly lower LDL cholesterol at three months, and levels that were lower but no longer significantly different at eight months. In individual's randomized to usual care who then crossed over to genotype informed therapy after the trial period ended, there was an additional decrease in LDL cholesterol. Overall, genotype informed statin therapy led to an increase in re-initiation of statins and decreases in LDL cholesterol, but did not appear to affect adherence. The authors also examined the effects of commercial genetic testing for SLCO1B1 variants in an observational setting by looking at over 92000 individuals with data available in the EHR. They found the people who receive genetic testing results had a larger drop in LDL cholesterol compared to untested controls. Overall, the study indicates that carriers of the SLCO1B1 risk variant may benefit from genotype informed statin therapy, while for non-carriers receiving their results may has limited effects. If you want to read more on this, Sony Tuteja and Dan Rader from UPenn wrote an editorial to accompany this article, which was published in the same issue. We're staying on the topic of statins and LDL for our next paper. This article comes from Akinyemi Oni-Orisan, and Neil Risch and colleagues from the University of California and is entitled, "Characterization of Statin Low-Density Lipoprotein Cholesterol Dose-Response Utilizing Electronic Health Records in a Large Population-Based Cohort." They were interested in understanding what determines variation in statin induced LDL reduction, particularly the genetic component, and they used a large EHR derived data set, the Kaiser Permanente Genetic Epidemiology research on adult health and aging cohort to address this important question. An EHR dataset does have intrinsic limitations, but also has some clear strengths, not only as a readily available and cost-effective data source for large sample sizes, but also because it reflects real world clinical care in diverse individuals, which is not always well represented within the selective constraints of a randomized trial. There were over 33000 individuals who met their inclusion criteria. To account for differences in potency between different statins and doses, the authors generated a defined daily dose value, with one defined daily dose equal to 40 milligrams per day of Lovastatin. The slope of the dose response was similar across statin types and across different sex and race or ethnicity groups. But there were differences by statin type in the response independent of dose, as well as differences in absolute responses by sex, age, race, smoking, and diabetes. Based on these differences, the authors revised the defined daily doses and they highlight how previously defined equivalencies between different statins may not be accurate. They found that individuals with East Asian ancestry had an enhanced response to therapy compared with individuals of European ancestry. The authors identified related individuals within the data set and the estimated heritability of statin response using parent-offspring and sibling pairs. They found only modest heritability, indicating that non-genetic factors may be more important in determining variability in statin response. Overall, this large single cohort study adds to our knowledge on determinants of statin response and raises further questions on the relative effects of different statins and doses within patient subgroups. Okay, so now let's talk about GWAS and Athero. Sander van der Lann, Paul de Bakker, Gerard Pasterkamp and coauthors from University Medical Center Utrecht published a paper entitled, "Genetic Susceptibility Loci for Cardiovascular Disease and Their Impact on Atherosclerotic Plaques." Over the past decade, genome-wide association studies in large cohorts have been very successful in identifying cardiovascular risk loci. However, relating these to subclinical disease or two mechanisms has been more challenging. The authors were interested in understanding whether established GWAS loci for stroke and coronary disease are associated with characteristics of atherosclerotic plaque, the idea being that some of the risk loci may alter disease risk by determining the development and stability of plaque. They identified seven plaque characteristics to study and histological samples, including intraplaque fat, collagen content, smooth muscle cell percentage, macrophage percentage, calcification, intraplaque hemorrhage, and intraplaque vessel density. They selected 61 known loci and examined association of those SNiPA with black phenotypes in over 1400 specimens from the athero express biobank study. Out of the 61 loci, 21 were associated with some black phenotype compared with zero of five negative control loci, which were chosen as established GWAS loci for bipolar disorder, which, presumably, should share limited mechanistic etiology with plaque. They used the software package VEGAS to run gene-based analyses. They also assessed SNiPA relationships with gene expression and methylation in multiple tissues derived from two independence Swedish biobanks, which included atherosclerotic arterial wall, internal mammary artery, liver, subcutaneous fat, skeletal muscle, visceral fat, and fasting whole blood. One CAD locus on chromosome 7q22 that survived correction for multiple testing was associated with intraplaque fat, and was also an EQTL for expression of several genes across multiple tissues. In addition, it was also a methylation QTL. The authors focused on this locus and looked at correlation of expression within the LDL receptor and noted associations with HDL and LDL cholesterol in the global lipids genetics contortion data, which suggests that this locus may have a role in the metabolism. At this locus, the HBP1 gene expressed foam cells may be an interesting candidate as a causal gene in determining plaque-lipid accumulation and cardiovascular risk. So next up, we have a paper that is also about athero and is coauthored by many of the same group as did that previous study. So yeah, this group's productivity is kind of making the rest of us look bad this month. So Martin Siemelink, Sander van de Lann, and Gerard Pasterkamp and their colleagues published, "Smoking is Associated to DNA Methylation in Atherosclerotic Carotid Lesions." Okay. So I think one of the few things we can all definitely agree on is that smoking is bad. But, does smoking exert any of its cardiovascular damage by altering within atherosclerotic plaques? That's the question this group set out to answer. They carried out a two-stage epigenome-wide association study, or EWAS, with discovery and replication of differentially methylated loci with tobacco smoking within carotid arteriosclerotic plaques of a total of 664 patients undergoing carotid endarterectomy and enrolled in the arthero-expressed biobanks study. In discovery, they found 10 CpG loci within six genes that associated with smoking. Four of the CpG loci replicated. These four loci mapping within six genes showed reduced methylation in curr
Jane Ferguson: Hello. Welcome to episode 19 of Getting Personal: Omics of the Heart, the issue from August 2018. I am Jane Ferguson, and this podcast is brought to you by the Circulation: Genomic and Precision Medicine Journal and the American Heart Association Council on Genomic and Precision Medicine. Before I dive into the papers from this month, a reminder that early bird registration for AHA Scientific Sessions runs until September 4th, so go register now if you haven't already to take advantage of reduced rates. The meeting will be held in Chicago from November 10th through 12th, and it's the first year of the new three-day meeting format. It's already promising to be a really great meeting, and I'm hoping to see a lot of you there. The August issue has a number of really interesting papers. First up, Gardar Sveinbjornsson, Eva Olafsdottir, Kari Stefansson, and colleagues from deCODE genetics-Amgen report that variants in NKX2-5 and FLNC cause dilated cardiomyopathy and sudden cardiac death. This team leveraged available DNA samples from the Icelandic population to carry out a genome-wide association study in 424 cases of dilated cardiomyopathy and over 337,000 controls. They applied whole genome sequencing to all of these samples, allowing them to identify common and rare variants. In total, they tested over 32 million variants. They found two variants that were significantly associated with DCM at genome-wide significance, a missense variant in NKX2-5 and a frameshift in FLNC, both associated with heart failure and sudden cardiac death. Further, the NKX2-5 variant was associated with atrioventricular block and atrial septal defect. Although these variants are rare and not documented in other populations, they are significant contributors to familial DCM in Iceland. Because of the unique population structure of Iceland and known genealogy, the researchers were able to trace the NKX2-5 variant back to a common ancestor born in 1865. They traced the FLNC variants to a common ancestor born in 1595. While the specific variants identified in this study may not be present in other populations, they are located in genes with known relevance for cardiac function. NKX2-5 encodes a cardiac transcription factor, which is required for embryonic cardiac development, and other variants in this gene have been associated with cardiac dysfunction in other populations. FLNC encodes filamin-C, a muscle cross-linking protein. Variants in FLNC have previously been ascribed to associate with myofibrillar myopathy, muscular dystrophy, and cardiomyopathy. This study adds to our knowledge of the genetics of dilated cardiomyopathy and supports screening for NKX2-5 and FLNC variants, particularly in the Icelandic population, which would allow for early intervention and monitoring in carriers. Staying with the topic of dilated cardiomyopathy, Inken Huttner, Louis Wang, Diane Fatkin, and colleagues from the Victor Chang Cardiac Research Institute in Australia report that an A-band titin truncation in zebrafish causes dilated cardiomyopathy and hemodynamic stress intolerance. We actually talked to Dr. Wang about this research last year when he was presenting this as a finalist for the FGTB Young Investigator Award. You can go back in the archives to episode 10 from November 2017 if you'd like to hear more. Titin mutations are responsible for a large number of cases of dilated cardiomyopathy, but there are also individuals with titin mutations that remain asymptomatic. This group used zebrafish as a model of human titin mutations and generated fish with a truncating variant in the A-band of titin, as has been identified in families with DCM. They found that homozygous mutants had a severe cardiac phenotype with premature death, but that heterozygous carriers survived into adulthood and developed spontaneous DCM. Prior to onset of DCM, the heterozygous fish had reduced baseline ventricular systolic function and reduced contractile response to hemodynamic stress, as well as ventricular diastolic dysfunction. Overall, the mutant fish displayed impaired ability to mount stress responses, which may have contributed to development of disease. Extrapolating this to humans, this could suggest that hemodynamic stress may be a factor that contributes to timing and severity of disease in individuals with titin variants. Hemodynamic stress can be exerted by exercise, pregnancy, and other diseases contributing to ventricular volume overload. Modifying these hemodynamic stressors in at-risk subjects could potentially help to modulate the severity of DCM phenotypes. Moving on to the topic of coronary artery disease, Vinicius Tragante, Daiane Hemerich, Folkert Asselbergs, and colleagues from University Medical Center Utrecht in the Netherlands report on druggability of coronary artery disease risk loci. This group was interested in using results from genome-wide association studies for CAD to identify new targets that may be amenable for drug repurposing. They used results from published GWAS for CAD and created a pipeline to integrate these loci with data on drug-gene interactions, chemical interactions, and potential side effects. They also calculated a druggability score based on the gene products to prioritize targets that are accessible and localized to increase the chance of a drug being able to find the target without affecting core systemic processes or housekeeping genes. Their pipelines allowed them to identify three possible drug-gene pairs, including pentolinium to target CHRNB4, adenosine triphosphate to target ACSS2, and riociguat to target GUCY1A3. They also identified three proteins to be prioritized for drug development, including leiomodin 1, huntingtin-interacting protein 1, and protein phosphatase 2, regulatory subunit b-double prime, alpha). While these predictions were all made in silico and need to be extensively tested in clinical trials, the pipeline did identify many current therapies for CAD and myocardial infarction, including statins, PCSK9 inhibitors, and angiotensin II receptor blockers. These positive controls support that this method can successfully discover effective CAD therapies. Staying on the topic of drugs, Kishan Parikh, Michael Bristow, and colleagues from Duke University report on dose response of beta-blockers in adrenergic receptor polymorphism genotypes. Two clinical trials have reported pharmacogenomic interactions between beta-blockers and beta-1 adrenergic receptor genotype in the setting of heart failure with reduced ejection fraction. In a retrospective analysis in almost 2,000 subjects from the BEST and HF-ACTION studies, the authors analyzed whether genotype at the Arg389Gly polymorphism in beta-1 adrenergic receptor, or an indel in the alpha-2C adrenergic receptor interacted with drug dose to affect mortality and hospitalization. They found that ADRB1 genotype affected mortality in response to drug dose with less all-cause mortality in high versus no or low-dose beta-blockers in individuals homozygous for arginine at position 389, but not in individuals carrying a glycine at that position. In individuals on high-dose beta-blockers, genotype did not affect outcomes, but there was a significant difference by genotype in all-cause mortality in individuals on no or low-dose beta-blockers. These data support the guideline recommendations to use high-target doses of beta-blockers in HFrEF. Switching gears towards precision medicine and genotype-guided approaches, Laney Jones, Michael Murray, and colleagues from Geisinger were interested in the patient's perspective. In their paper, Healthcare Utilization and Patients’ Perspectives After Receiving a Positive Genetic Test for Familial Hypercholesterolemia, they explored the impact of providing genotype test results for familial hypercholesterolemia to subjects participating in the MyCode Community Health Initiative. In MyCode, exome sequencing is conducted in participants, and results are returned for pathogenic and likely pathogenic variants in genes representing actionable conditions based on American College of Medical Genetics secondary findings and recommendations. It is estimated that 3.5% of MyCode participants will be carriers of such variants, and this number may increase as more variants are discovered. In this pilot study, the authors screened for individuals with mutations in LDLR, APOB, or PCSK9, consistent with FH. They identified 28 individuals, of which 23 were eligible for inclusion in the study. Only five of the 23 subjects had previously been diagnosed with FH. Receipt of genetic test results led to change in medications in 39% of individuals. 96% of the subjects had previous LDL measurements, but only four subjects had ever met LDL goals. After genetic test results, three individuals met their LDL goals. Seven individuals consented to participate in interviews about their experience. Almost all of these subjects already had a personal or family history of high cholesterol or heart disease, and all subjects felt that they were being adequately treated. Only three of the seven subjects mentioned using diet and exercise to control their high cholesterol, with most individuals being relatively unconcerned because they felt their medication was effective in controlling disease risk. While the numbers studied here are too small for any statistical testing or inference, the paper describes the results from the interviews, including some excerpts from patients, which really highlight the complexities of returning results and of helping patients understand what their results mean. Given increasing genetic testing and returning of results, studies like this are really important to help us figure out the most effective ways to communicate results and support patients and their care providers.
Jane: Hi, everyone. Welcome to Episode 18 of Getting Personal: Omics of the Heart. I'm Jane Ferguson, and this podcast is brought to you by the Circulation: Genomic and Precision Medicine Journal and the American Heart Association Counsel on Genomic and Precision Medicine. It is July 2018, which means that the best possible place to be listening to this episode is at the beach, but failing that I can also recommend listening on planes, during your commute, while exercising or while drinking a nice cup of tea. So before I get into the papers we published this month, I want to ask for your help. If you're listening to this right now, hi, that means you, we're a year and a half into podcasting and I would love to know what content you like and where we could improve things. We have a poll up on Twitter this week, and I would really appreciate your input. If you're listening to this a little bit later and miss the active voting part of the poll, you can still leave suggestions. Okay, so what I would like you to do right now is to go to Twitter. You can find us as Circ_Gen and locate the poll. If you don't already follow us on Twitter, go do that now too. We want you to let us know what content we should focus on and what is most useful to you, so go ahead and pick your favorites from the options and also please reply or tweet at us with other thoughts and suggestions. Options include giving summaries of the recent articles like I'm about to do later this episode, conducting interviews with authors of recently published papers, interviews with people working in cardiovascular genomics, broader topics. For example, to get their insight on career paths and lessons learned along the way. And something we have not done yet on the podcast but are considering, would be to record podcasts that focus on particular topics in genomics and precision medicine. These could give some background on an emerging field or technology and we could talk to experts who are leading particular innovations in the field. So, if that sounds good to you, let me know! If you're not on Twitter, I don't want to exclude you, so you can email me at jane.f.ferguson@vanderbilt.edu and give me your thoughts that way. I'm looking forward to hearing from you. Okay, so on to the July 2018 issue of Circ.: Genomic and Precision Medicine. First up is a PhWAS from Abrahim Rao, Eric Ingelsson, and colleagues from Stanford. The discovery of the PCSK9 gene as a regulator of cholesterol levels has led to a new avenue of LDL lowering therapies through PCSK9 inhibition. However, some studies suggest that long term use of PCSK9 inhibitors could have adverse consequences. Because of the long follow-up time required, it will take many more years to address this question through clinical studies. However, genetic approaches offer a fast and convenient alternative to address the issue. In this paper, entitled: "Large Scale Phenome-Wide Association Study of PCSK9 Variants Demonstrates Protection Against Ischemic Stroke," the authors use genetic and phenotype data from over 300,000 individuals in the UK BioBank to address whether genetic loss of function variants in PCSK9 are associated with phenotypes including coronary heart disease, stroke, type II diabetes, cataracts, heart failure, atrial fibrillation, epilepsy, and cognitive function. The missense variant RS11591147 was associated with protection against coronary heart disease and ischemic stroke. This SNP also associated with type II diabetes after adjustment for lipid medication status. Overall, this study recapitulated the associations between PCSK9 and coronary disease, and revealed an association with stroke. Previous studies suggested use of LDL lowering therapies may increase risk of cataracts, epilepsy, and cognitive dysfunction, but there was no evidence of association in this study. Overall, this study provides some reassurance that the primary effect of PCSK9 is on lipids and lipid related diseases, and that any effects on other phenotypes appear to be modest at best. While a PhWAS can't recapitulate a clinical trial, what this study indicates is that PCSK9 inhibition is an effective strategy for CVD prevention, which may confer protection against ischemic stroke and does not appear to convey increased risk for cognitive side effects. Next up we have a manuscript form Jason Cowan, Ray Hershberger, and colleagues from Ohio State University College of Medicine. Their paper, "Multigenic Disease and Bilineal Inheritance in Dilated Cardiomyopathy Is Illustrated in Non-segregating LMNA Pedigrees," explored pedigrees of apparent LMNA related cardiomyopathy identifying family members who manifested disease, despite not carrying the purported causal LMNA variant. Of 19 pedigrees studies, six of them had family members with dilated cardiomyopathy who did not carry the family's LMNA mutation. In five of those six pedigrees, the authors identified at least one additional rare variant in a known DCM gene that was a plausible candidate for disease causation. Presence of additional variants was associated with more severe disease phenotype in those individuals. Overall, what this study tells us is that in DCM, there is evidence for multi-gene causality and bilineal inheritance may be more common than previously suspected. Future larger studies should consider multi-genic causes and will be required to fully understand the genetic architecture of DCM. Yukiko Nakano, Yasuki Kihara, and colleagues from Hiroshima University published a manuscript detailing how HCN4 gene polymorphisms are associated with tachycardia inducted cardiomyopathy in patients with atrial fibrillation. Tachycardia induced cardiomyopathy is common in subjects with atrial fibrillation, but the pathophysiology is poorly understood. Recent studies have implicated the cardiac hyperpolarization activated cyclic nucleotide gated channel gene, or HCN4, in atrial fibrillation and ventricular function. In this paper, the authors enrolled almost 3,000 Japanese subjects with atrial fibrillation, both with and without tachycardia-induced cardiomyopathy, as well as non-AF controls. They compared frequency of variants in HCN4 in AF subjects with or without tachycardia-induced cardiomyopathy, and found a SNP, RS7164883, that may be a novel marker of tachycardia-induced cardiomyopathy in atrial fibrillation. Xinyu Yang, Fuli Yu, and coauthors from Tianjin University were interested in finding causal genes for intracranial aneurysms, and report their results in a manuscript entitled, "Rho Guanine Nucleotide Exchange Factor ARHGEF17 Is a Risk Gene for Intracranial Aneurysms." They sequenced the genomes of 20 Chinese intracranial aneurysm patients to search for potentially deleterious, rare, and low frequency variants. They found a coding variant in the ARHGEF17 gene which was associated with associated with increased risk in the discovery sample, and which they replicated in a sample of Japanese IA and in a larger Chinese sample. They expanded this to other published studies, including individuals of European-American and French-Canadian origin and found a significantly increased mutation burden in ARHGEF17 in IA patients across all samples. They were interested in further functional characterization of this gene and found that Zebra fish ARHGEF17 was highly expressed in blood vessels in the brain. They used morpholinos to knock down ARHGEF17 in Zebra fish, and found that ARHGEF17 deficient Zebra fish developed endothelial lesions on cerebral blood vessels, and showed evidence of bleeding consistent with defects in the vessel. This study implicates ARHGEF17 as a cerebro-vascular disease gene which may impact disease risk through effects on endothelial function and blood vessel stability. Sumeet Khetarpal, Paul Babb, Dan Rader, Ben Voight, and colleagues from the University of Pennsylvania used targeted resequencing to look at determinants of extreme HDL cholesterol in their aptly titled manuscript, "Multiplexed Targeted Resequencing Identifies Coding and Regulatory Variation Underlying Phenotypic Extremes of HDL Cholesterol in Humans." Stay tuned because we're gonna hear more about this paper from the first author Dr. Sumeet Khetarpal later this episode. Rounding out this issue we have a Perspective article from Chris Haggerty, Cynthia James, and coauthors from Geisinger and Johns Hopkins Medical Center entitled, "Managing Secondary Genomic Findings Associated With Arrhythmogenic Right Ventricular Cardiomyopathy: Case Studies and Proposal for Clinical Surveillance." In this paper the authors discuss the challenges for returning findings from clinical sequencing for arrhythmogenic right ventricular cardiomyopathy, presenting case studies exemplifying these challenges. They also propose a management approach for returning clinical genomic findings, and discuss new innovations in the light of precision medicine. We also published a review article by Pradeep Natarajan, Siddhartha Jaiswal, and Sekar Kathiresan from MGH on "Clonal Hematopoiesis Somatic Mutations in Blood Cells and Atherosclerosis", which discusses rec
Jane Ferguson: Hello, welcome to Getting Personal: Omics of the Heart. It is June 2018, and this is podcast episode 17. I'm Jane Ferguson, an assistant professor of medicine at Vanderbilt University Medical Center, and a proponent of precision medicine, genomics, and finding ways to prevent and treat heart disease. Jane Ferguson: This podcast is brought to you by Circulation: Genomic and Precision Medicine, and the AHA Council on Genomic and Precision Medicine. Jane Ferguson: For our interview this month, early career member, Jennie Lin talked to Beth McNally about science and careers in genomic medicine. We'll have more on that later but first I want to tell you about the cool papers we published in the journal this month. Jane Ferguson: First up, Orlando Gutierrez, Marguerite Irvin, Jeffrey Kopp, Cheryl Winkler, and colleagues from the University of Alabama at Birmingham, and the NIH, published an article entitled APOL1 Nephropathy Risk Variants and Incident Cardiovascular Disease Events in Community-Dwelling Black Adults. This study was conducted in over 10 thousand participants of the Reasons for Geographic and Racial Differences in Stroke, or, REGARDS Study. They examined associations between APOL1 variants and incident coronary heart disease, ischemic stroke, or composite CVD outcome. Because there are coding variants in the APOL1 Gene that are only found in individuals of African ancestry, these are hypothesized to contribute to the disparities in cardiovascular and renal disease in African Americans. Jane Ferguson: The authors found that carrying the risk variants was associated with increased risk of ischemic stroke, but only in individuals who did not have diabetes, or chronic kidney disease. They hypothesize that because diabetes and kidney disease already increase CVD risk, the variant does not have an additional effect on risk in individuals with existing comorbidities. But, it contributes to small vessel occlusion and stroke in individuals without diabetes. Jane Ferguson: They also found that the magnitude and strength of the association became stronger in a model adjusted for African ancestry, suggesting an independent effect of the APOL1 risk variants. Jane Ferguson: While future work is needed to study this more, this is an important step in understanding the complex relationship between APOL1 and disease. Jane Ferguson: Next up, Daniela Zanetti, Erik Ingelsson, and colleagues from Stanford, published a paper on Birthweight, Type 2 Diabetes, and Cardiovascular Disease: Addressing the Barker Hypothesis with Mendelian Randomization. The Barker Hypothesis considers that low birthweight as a result of intrauterine growth restriction, causes a higher future risk of hypertension, type 2 diabetes, and cardiovascular disease. However, observational studies have been unable to establish causality or mechanisms. Jane Ferguson: In this paper, the authors used Mendelian Randomization as a tool to address causality. They used data from the UK Biobank, and included over 237,000 participants who knew their weight at birth. They constructed genetic predictors of birthweight from published genome wide association studies, and then looked for genetic associations with multiple outcomes, including CAD, stroke, hypertension, obesity, dyslipidemia, dysregulated glucose and insulin metabolism, and diabetes. Jane Ferguson: The Mendelian randomization analysis indicated that higher birthweight is protective against CAD type 2 diabetes, LDL cholesterol, and high 2 hour glucose from oral tolerance test. But, higher birthweight was associated with higher adult BMI. This suggests that the association between low birthweight and higher disease risk is independent of effects on BMI later in life. While the study was limited to a well nourished population of European ancestry, and would need to be confirmed in other samples, and through non-genetic studies, it suggests that improving prenatal nutrition may be protective against future cardiometabolic disease risk. Jane Ferguson: Laura Muino-Mosquera, Julie De Backer, and co-authors from Ghent University Hospital, delved into the complexities of interpreting genetic variants, as published in their manuscript, Tailoring the ACMG and AMP Guidelines for the Interpretation of Sequenced Variants in the FBN1 Gene for Marfan Syndrome: Proposal for a Disease- and Gene-Specific Guideline. Jane Ferguson: With a large number of variants being uncovered through widespread sequencing efforts, a crucial challenge arises in their interpretation. The American College of Medical Genetics and Genomics, and the Association for Molecular Pathology put forward variant interpretation guidelines in 2015, but these were not tailored to individual genes. Because some genes have unique characteristics, the guidelines may not always allow for uniform interpretation. Jane Ferguson: In their manuscript, the authors focused on variants in fibrillin-1 that cause Marfan Syndrome, and reclassified 713 variants using the guidelines, comparing those classifications to previous in-depth methods which had indicated these variants' causal or uncertain significance. They find 86.4% agreement between the two methods. Jane Ferguson: Applying the ACMG, AMP guidelines without considering additional evidence may thus miss causal mutations. And it suggests that adopting gene specific guidelines may be helpful to improve clinical decision making and accurate variant interpretation. Jane Ferguson: Delving deeper into FBN1 and Marfan Syndrome, Norifumi Takeda, Ryo Inuzuka, Sonoko Maemura, Issei Komuro, and colleagues from the University of Tokyo examined the Impact of Pathogenic FBN1 Variant Types on the Progression of Aortic Disease in Patients With Marfan Syndrome. They evaluated 248 patients with pathogenic, or likely pathogenic, FBN1 variants, and examined the effect of variant subtype on severe aortopathy, including aortic root replacement, type A dissections, and related death. They found that the cumulative aortic event risk was higher in individuals with haploinsufficient type variants, compared with dominant negative variants. Jane Ferguson: Within individuals with dominant negative variants, those that affected Cysteine residues, or caused in-frame deletions, were associated with higher risk compared with other dominant negative mutations, and were comparable to the risk of the haploinsufficient variants. These results highlight the heterogeneity and risk of the FBN1 variants, and suggest that individuals with haploinsufficient variants, and those carrying dominant negative variants affecting Cysteine residues or in-frame Deletions, may need more careful monitoring for development of aortic root aneurysms. Jane Ferguson: Lydia Hellwig, William Klein, and colleagues from the NIH, investigated the Ability of Patients to Distinguish Among Cardiac Genomic Variant Subclassifications. In this study, they analyzed whether different subclassifications of variants of uncertain significance were associated with different degrees of concern amongst recipients of genetic test results. 289 subjects were recruited from the NIH ClinSeq Study, and were presented with three categories of variants, including variants of uncertain significance, possibly pathogenic, and likely pathogenic variants. Participants were better able to distinguish between the categories when presented with all three. Whereas, a result of possibly pathogenic given on its own, produced as much worry as a result of likely pathogenic. The authors conclude that multiple categories are helpful for subjects to distinguish pathogenicity subclassification, and that subjects receiving only a single uncertain result, may benefit from interventions to address their worry and to calibrate their risk perceptions. Jane Ferguson: Erik Ingelsson and Mark McCarthy from Stanford, published a really nice review article entitled Human Genetics of Obesity and Type 2 Diabetes: Past, Present, and Future. Over the past decade, we've had a lot of excitement, optimism, and also disappointment in what genome-wide association studies can deliver. Doctors Ingelsson and McCarthy do a great job laying out the history and the successes in the field of genetic interrogation of obesity and diabetes, as well as acknowledging where reality may not live up to the hype, what challenges remain, and what the future may hold. They also have a figure that uses an analogy of a ski resort to emphasize the importance of taking a longitudinal perspective. And I would argue that any paper that manages to connect apres-ski with genomics is worth reading, for that alone. Jane Ferguson: Robert Roberts wrote a perspective on the 1986 A.J. Buer program, pivotal to current management and research of heart disease. Highlighting how the decision by the AHA in 1986 to establish centers to train cardiologists and scientists in molecular biology, has led to huge advances in knowledge and treatment of heart disease. Jane Ferguson: Finally, rounding out this issue, Kiran Musunuru and colleagues, representing the AHA Council on Genomic and Precision Medicine, Council on Cardiovascular Disease in the Young, Council on Cardiovascular and Stroke Nursing, Council on Cardiovascular Radiology and Intervention, Council on Peripheral Vascular Disease, Council on Quality of Care and Outcomes Research, and the Stroke Council, published a scientific statement on Interdisciplinary Models for Research and Clinical Endeavors in Genomic Medicine. Jane Ferguson: This paper lays out the field of cardiovascular research in the post genomic era, highlights current practices in research and treatment, a



