Ep 17 Jennie Lin Beth McNally
Description
Jane Ferguson: Hello, welcome to Getting Personal: Omics of the Heart. It is June 2018, and this is podcast episode 17. I'm Jane Ferguson, an assistant professor of medicine at Vanderbilt University Medical Center, and a proponent of precision medicine, genomics, and finding ways to prevent and treat heart disease.
Jane Ferguson: This podcast is brought to you by Circulation: Genomic and Precision Medicine, and the AHA Council on Genomic and Precision Medicine.
Jane Ferguson: For our interview this month, early career member, Jennie Lin talked to Beth McNally about science and careers in genomic medicine. We'll have more on that later but first I want to tell you about the cool papers we published in the journal this month.
Jane Ferguson: First up, Orlando Gutierrez, Marguerite Irvin, Jeffrey Kopp, Cheryl Winkler, and colleagues from the University of Alabama at Birmingham, and the NIH, published an article entitled APOL1 Nephropathy Risk Variants and Incident Cardiovascular Disease Events in Community-Dwelling Black Adults. This study was conducted in over 10 thousand participants of the Reasons for Geographic and Racial Differences in Stroke, or, REGARDS Study. They examined associations between APOL1 variants and incident coronary heart disease, ischemic stroke, or composite CVD outcome. Because there are coding variants in the APOL1 Gene that are only found in individuals of African ancestry, these are hypothesized to contribute to the disparities in cardiovascular and renal disease in African Americans.
Jane Ferguson: The authors found that carrying the risk variants was associated with increased risk of ischemic stroke, but only in individuals who did not have diabetes, or chronic kidney disease. They hypothesize that because diabetes and kidney disease already increase CVD risk, the variant does not have an additional effect on risk in individuals with existing comorbidities. But, it contributes to small vessel occlusion and stroke in individuals without diabetes.
Jane Ferguson: They also found that the magnitude and strength of the association became stronger in a model adjusted for African ancestry, suggesting an independent effect of the APOL1 risk variants.
Jane Ferguson: While future work is needed to study this more, this is an important step in understanding the complex relationship between APOL1 and disease.
Jane Ferguson: Next up, Daniela Zanetti, Erik Ingelsson, and colleagues from Stanford, published a paper on Birthweight, Type 2 Diabetes, and Cardiovascular Disease: Addressing the Barker Hypothesis with Mendelian Randomization. The Barker Hypothesis considers that low birthweight as a result of intrauterine growth restriction, causes a higher future risk of hypertension, type 2 diabetes, and cardiovascular disease. However, observational studies have been unable to establish causality or mechanisms.
Jane Ferguson: In this paper, the authors used Mendelian Randomization as a tool to address causality. They used data from the UK Biobank, and included over 237,000 participants who knew their weight at birth. They constructed genetic predictors of birthweight from published genome wide association studies, and then looked for genetic associations with multiple outcomes, including CAD, stroke, hypertension, obesity, dyslipidemia, dysregulated glucose and insulin metabolism, and diabetes.
Jane Ferguson: The Mendelian randomization analysis indicated that higher birthweight is protective against CAD type 2 diabetes, LDL cholesterol, and high 2 hour glucose from oral tolerance test. But, higher birthweight was associated with higher adult BMI. This suggests that the association between low birthweight and higher disease risk is independent of effects on BMI later in life. While the study was limited to a well nourished population of European ancestry, and would need to be confirmed in other samples, and through non-genetic studies, it suggests that improving prenatal nutrition may be protective against future cardiometabolic disease risk.
Jane Ferguson: Laura Muino-Mosquera, Julie De Backer, and co-authors from Ghent University Hospital, delved into the complexities of interpreting genetic variants, as published in their manuscript, Tailoring the ACMG and AMP Guidelines for the Interpretation of Sequenced Variants in the FBN1 Gene for Marfan Syndrome: Proposal for a Disease- and Gene-Specific Guideline.
Jane Ferguson: With a large number of variants being uncovered through widespread sequencing efforts, a crucial challenge arises in their interpretation. The American College of Medical Genetics and Genomics, and the Association for Molecular Pathology put forward variant interpretation guidelines in 2015, but these were not tailored to individual genes. Because some genes have unique characteristics, the guidelines may not always allow for uniform interpretation.
Jane Ferguson: In their manuscript, the authors focused on variants in fibrillin-1 that cause Marfan Syndrome, and reclassified 713 variants using the guidelines, comparing those classifications to previous in-depth methods which had indicated these variants' causal or uncertain significance. They find 86.4% agreement between the two methods.
Jane Ferguson: Applying the ACMG, AMP guidelines without considering additional evidence may thus miss causal mutations. And it suggests that adopting gene specific guidelines may be helpful to improve clinical decision making and accurate variant interpretation.
Jane Ferguson: Delving deeper into FBN1 and Marfan Syndrome, Norifumi Takeda, Ryo Inuzuka, Sonoko Maemura, Issei Komuro, and colleagues from the University of Tokyo examined the Impact of Pathogenic FBN1 Variant Types on the Progression of Aortic Disease in Patients With Marfan Syndrome. They evaluated 248 patients with pathogenic, or likely pathogenic, FBN1 variants, and examined the effect of variant subtype on severe aortopathy, including aortic root replacement, type A dissections, and related death. They found that the cumulative aortic event risk was higher in individuals with haploinsufficient type variants, compared with dominant negative variants.
Jane Ferguson: Within individuals with dominant negative variants, those that affected Cysteine residues, or caused in-frame deletions, were associated with higher risk compared with other dominant negative mutations, and were comparable to the risk of the haploinsufficient variants. These results highlight the heterogeneity and risk of the FBN1 variants, and suggest that individuals with haploinsufficient variants, and those carrying dominant negative variants affecting Cysteine residues or in-frame Deletions, may need more careful monitoring for development of aortic root aneurysms.
Jane Ferguson: Lydia Hellwig, William Klein, and colleagues from the NIH, investigated the Ability of Patients to Distinguish Among Cardiac Genomic Variant Subclassifications. In this study, they analyzed whether different subclassifications of variants of uncertain significance were associated with different degrees of concern amongst recipients of genetic test results. 289 subjects were recruited from the NIH ClinSeq Study, and were presented with three categories of variants, including variants of uncertain significance, possibly pathogenic, and likely pathogenic variants. Participants were better able to distinguish between the categories when presented with all three. Whereas, a result of possibly pathogenic given on its own, produced as much worry as a result of likely pathogenic. The authors conclude that multiple categories are helpful for subjects to distinguish pathogenicity subclassification, and that subjects receiving only a single uncertain result, may benefit from interventions to address their worry and to calibrate their risk perceptions.
Jane Ferguson: Erik Ingelsson and Mark McCarthy from Stanford, published a really nice review article entitled Human Genetics of Obesity and Type 2 Diabetes: Past, Present, and Future. Over the past decade, we've had a lot of excitement, optimism, and also disappointment in what genome-wide association studies can deliver. Doctors Ingelsson and McCarthy do a great job laying out the history and the successes in the field of genetic interrogation of obesity and diabetes, as well as acknowledging where reality may not live up to the hype, what challenges remain, and what the future may hold. They also have a figure that uses an analogy of a ski resort to emphasize the importance of taking a longitudinal perspective. And I would argue that any paper that manages to connect apres-ski with genomics is worth reading, for that alone.
Jane Ferguson: Robert Roberts wrote a perspective on the 1986 A.J. Buer program, pivotal to current management and research of heart disease. Highlighting how the decision by the AHA in 1986 to establish centers to train cardiologists and scientists in molecular biology, has led to huge advances in knowledge and treatment of heart disease.
Jane Ferguson: Finally, rounding out this issue, Kiran Musunuru and colleagues, representing the AHA Council on Genomic and Precision Medicine, Council on Cardiovascular Disease in the Young, Council on Cardiovascular and Stroke Nursing, Council on Cardiovascular Radiology and Intervention, Council on Peripheral Vascular Disease, Council on Quality of Care and Outcomes Research, and the Stroke Council, published a scientific statement on Interdisciplinary Models for Research and Clinical Endeavors in Genomic Medicine.
Jane Ferguson:



