DiscoverThe Backend Engineering Show with Hussein Nasser
The Backend Engineering Show with Hussein Nasser
Claim Ownership

The Backend Engineering Show with Hussein Nasser

Author: Hussein Nasser

Subscribed: 549Played: 16,230


Welcome to the Backend Engineering Show podcast with your host Hussein Nasser. If you like software engineering you’ve come to the right place. I discuss all sorts of software engineering technologies and news with specific focus on the backend. All opinions are my own.

Most of my content in the podcast is an audio version of videos I post on my youtube channel here

Buy me a coffee

🧑‍🏫 Courses I Teach
515 Episodes
Fundamentals of Operating Systems Course Linux I/O expert and subsystem maintainer Jens Axboe has submitted all of the IO_uring feature updates ahead of the imminent Linux 6.10 merge window. In this video I explore this with a focus on what zerocopy. 0:00 Intro 0:30 IO_uring gets faster 2:00 What is io_uring 7:00 How Normal Copying Work 12:00 How Zero Copy Works 13:50 ZeroCopy and TLS
Fundamentals of Operating Systems Course Looks like fedora is compiling cpython with the -o3 flag, which does aggressive function inlining among other optimizations. This seems to improve python benchmarks performance by at most 1.16x at a cost of an extra 3MB in binary size (text segment). Although it does seem to slow down some benchmarks as well though not significantly. O1 - local register allocation, subexpression elimination O2 - Function inlining only small functions O3 - Agressive inlining, SMID 0:00 Intro 1:00 Fedora Linux gets Fast Python 5:40 What is Compiling? 9:00 Compiling with No Optimization 12:10 Compiling with -O1 15:30 Compiling with -O2 20:00 Compiling with -O3 23:20 Showing Numbers Backend Troubleshooting Course Allegro improved their Kafka produce tail latency by over 80% when they switched from ext4 to xfs. What I enjoyed most about this article is the detailed analysis and tweaking the team made to ext4 before considering switching to xfs. This is a classic case of how a good tech blog looks like in my opinion.  0:00 Intro 0:30 Summary 2:35 How Kafka Works? 5:00 Producers Writes are Slow 7:10 Tracing Kafka Protocol  12:00 Tracing Kernel System Calls 16:00 Journaled File Systems 21:00 Improving ext4 26:00 Switching to XFS Blog
Get my backend course Google submitted a patch to Linux Kernel 6.8 to improve TCP performance by 40%, this is done via rearranging the tcp structures for better cpu cache lines, I explore this here. 0:00 Intro 0:30 Google improves Linux Kernel TCP by 40% 1:40 How CPU Cache Line Works 6:45 Reviewing the Google Patch Discovering Backend Bottlenecks: Unlocking Peak Performance
Database Torn pages

Database Torn pages


0:00 Intro 2:00 File System Block vs Database Pages 4:00 Torn pages or partial page 7:40 How Oracle Solves torn pages 8:40 MySQL InnoDB Doublewrite buffer 10:45 Postgres Full page writes
Get my backend course Cloudflare has announced they are opening sources Pingora as a networking framework! Big news, let us discuss  0:00 Intro 0:30 Reasons why Cloudflare built Pingora? 3:00 It is a framework!  7:30 What in Pingora? 11:50 Security in Pingora 13:45 Multi-threading in Pingora 21:00 Customization vs Configuration 25:00 Summary ⁠⁠ I’m a big believer that database systems share similar core fundamentals at their storage layer and understanding them allows one to compare different DBMS objectively. For example, How documents are stored in MongoDB is no different from how MySQL or PostgreSQL store rows.  Everything goes to pages of fixed size and those pages are flushed to disk.  Each database define page size differently based on their workload, for example MongoDB default page size is 32KB, MySQL InnoDB is 16KB and PostgreSQL is 8KB. The trick is to fetch what you need from disk efficiently with as fewer I/Os as possible, the rest is API.   In this video I discuss the evolution of MongoDB internal architecture on how documents are stored and retrieved focusing on the index storage representation. I assume the reader is well versed with fundamentals of database engineering such as indexes, B+Trees, data files, WAL etc, you may pick up my database course to learn the skills. Let us get started.
In this video I explore the type of languages, compiled, garbage collected, interpreted, JIT and more. 
I talk about default values and how PostgreSQL 14 got slower when a default parameter has changed. Mike's blog
Background writing is a process that writes dirty pages in shared buffer to the disk (well goes to the OS file cache then get flushed to disk by the OS) I go into this process in this video
Fragmentation is a very interesting topic to me, especially when it comes to memory. While virtually memory does solve external fragmentation (you can still allocate logically contiguous memory in non-contiguous physical memory) it does however introduce performance delays as we jump all over the physical memory to read what appears to us for example as contiguous array in virtual memory. You see, DDR RAM consists of banks, rows and columns. Each row has around 1024 columns and each column has 64 bits which makes a row around 8kib. The cost of accessing the RAM is the cost of “opening” a row and all its columns (around 50-100 ns) once the row is opened all the columns are opened and the 8 kib is cached in the row buffer in the RAM. The CPU can ask for an address and transfer 64 bytes at a time (called bursts) so if the CPU (or the MMU to be exact) asks for the next 64 bytes next to it, it comes at no cost because the entire row is cached in the RAM. However if the CPU sends a different address in a different row the old row must be closed and a new row should be opened taking an additional 50 ns hit. So spatial access of bytes ensures efficiency, So fragmentation does hurt performance if the data you are accessing are not contiguous in physical memory (of course it doesn’t matter if it is contiguous in virtual memory). This kind of remind me of the old days of HDD and how the disk needle physically travels across the disk to read one file which prompted the need of “defragmentation” , although RAM access (and SSD NAND for that matter) isn’t as bad. Moreover, virtual memory introduces internal fragmentation because of the use of fixed-size blocks (called pages and often 4kib in size), and those are mapped to frames in physical memory. So if you want to allocate a 32bit integer (4 bytes) you get a 4 kib worth of memory, leaving a whopping 4092 allocated for the process but unused, which cannot be used by the OS. These little pockets of memory can add up as many processes. Another reason developers should take care when allocating memory for efficiency.
In this video I explore the hidden costs of sending a request from the frontend to the backend Heard
Fundamentals of Database Engineering udemy course (link redirects to udemy with coupon) Why create Index blocks writes In this video I explore how create index, why does it block writes and how create index concurrently work and allow writes. 0:00 Intro 1:28 How Create Index works 4:45 Create Index blocking Writes 5:00 Create Index Concurrently
HTTP/3 is getting popular in the cloud scene but before you migrate to HTTP/3 consider its cost. I explore it here. 0:00 Intro HTTP/3 is getting popular 3:40 HTTP/1.1 Cost 5:18 HTTP/2 Cost 6:30 HTTP/3 Cost
The Encrypted Client Hello or ECH is a new RFC that encrypts the TLS client hello to hide sensitive information like the SNI. In this video I go through pros and cons of this new rfc. 0:00 Intro 2:00 SNI 4:00 Client Hello 8:40 Encrypted Client Hello 11:30 Inner Client Hello Encryption 18:00 Client-Facing Outer SNI 21:20 Decrypting Inner Client Hello 23:30 Disadvantages 26:00 Censorship vs Privacy ECH
From the frontend through the kernel to the backend processWhen we send a request to a backend most of us focus on the processing aspect of the request which is really just the last step. There is so much more happening before a request is ready to be processed, most of this step happens in the Kernel. I break this into 6 steps, each step can theoretically be executed by a dedicated thread or process. Pretty much all backends, web servers, proxies, frameworks and even databases have to do all these steps and they all do choose to do it differently. Grab my backend performance course 0:00 Intro 3:50 What is a Request? 10:14 Step 1 - Accept  21:30 Step 2 - Read 29:30 Step 3 - Decrypt 34:00 Step 4 - Parse 40:36 Step 5 - Decode 43:14 Step 6 - Process Medium article
In a wonderful blog, Kyle explores the pains he faced managing a Postgres instance for a startup he works for and how enabling partitioning sigintfically created wait events causing the backend and subsequently NGINX to through 500 errors. We discuss this in this video/podcast
WebTransport is a cutting-edge protocol framework designed to support multiplexed and secure transport over HTTP/2 and HTTP/3. It brings together the best of web and transport technologies, providing an all-in-one solution for real-time, bidirectional communication on the web. Watch full episode (subscribers only)
fsync is a linux system call that flushes all pages and metadata for a given file to the disk. It is indeed an expensive operation but required for durability especially for database systems. Regular writes that make it to the disk controller are often placed in the SSD local cache to accumulate more writes before getting flushed to the NAND cells. However when the disk controller receives this flush command it is required to immediately persist all of the data to the NAND cells. Some SSDs however don't do that because they don't trust the host and no-op the fsync. In this video I explain this in details and go through details on how postgres provide so many options to fine tune fsync 0:00 Intro 1:00 A Write doesn’t write 2:00 File System Page Cache 6:00 Fsync 7:30 SSD Cache 9:20 SSD ignores the flush 9:30 15 Year old Firefox fsync bug 12:30 What happens if SSD loses power 15:00 What options does Postgres exposes? 15:30 open_sync (O_SYNC) 16:15 open_datasync (O_DSYNC) 17:10 O_DIRECT 19:00 fsync 20:50 fdatasync 21:13 fsync = off 23:30 Don’t make your API simple 26:00 Database on metal?
ego is the main problem to a defective software product. the ego of the engineer or the tech lead seeps into the quality of the product. Fundamentals of Backend Engineering Design patterns udemy course (link redirects to udemy with coupon)
Comments (2)

jalal nx

I was struggling understanding those devil concepts, I was in a position of can't talk on them with anyone because I haven't acquired the all thing that good. Thanks you sensei

Mar 12th

Emad Poursina

Awesome job great content 👌👍

Nov 16th