02. A Perfect Experiment

02. A Perfect Experiment

Update: 2024-09-23
Share

Description

Chapter 2 of the book:

“From Riemann Hypothesis to CPS Geometry and Back  Volume 1 (https://www.amazon.com/dp/B08JG1DLCV) ”, Canadian Intellectual Property Office Registration Number: 1173734 (http://www.ic.gc.ca/app/opic-cipo/cpyrghts/srch.do?lang=eng&page=1&searchCriteriaBean.textField1=1173734&searchCriteriaBean.column1=COP_REG_NUM&submitButton=Search&searchCriteriaBean.andOr1=and&searchCriteriaBean.textField2=&searchCriteriaBean.column2=TITLE&searchCriteriaBean.andOr2=and&searchCriteriaBean.textField3=&searchCriteriaBean.column3=TITLE&searchCriteriaBean.type=&searchCriteriaBean.dateStart=&searchCriteriaBean.dateEnd=&searchCriteriaBean.sortSpec=&searchCriteriaBean.maxDocCount=200&searchCriteriaBean.docsPerPage=10) , Ottawa, ISBN 9798685065292, 2020.

On Google Books:
https://books.google.ca/books/about?id=jFQjEQAAQBAJ&redir_esc=y

On Google Play: https://play.google.com/store/books/details?id=jFQjEQAAQBAJ

Summary


The text explores the concept of "mental experiments" in mathematics, arguing that mathematics, like the physical world, can be investigated through a process of experimentation and measurement. The author uses the problem of determining the distribution of prime numbers as an example, highlighting the need to define fundamental concepts like "multiplication" and "addition" before performing such mental experiments. The author concludes that these mental experiments can be performed with perfect accuracy, resulting in measurements that exactly match the "actual" mathematical reality.

Comments 
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

02. A Perfect Experiment

02. A Perfect Experiment

Nick Trif