Description
10 - Decision Trees & Ensemble Methods
01 - Stanford CS229: Machine Learning Course
2022-07-1301:15:19
02 - Linear Regression & Gradient Descent
2022-07-1301:18:16
03 - Locally Weighted & Logistic Regression
2022-07-1301:19:34
04 - Perceptron & Generalized Linear Model
2022-07-1301:22:01
05 - GDA & Naive Bayes
2022-07-1301:18:51
06 - Support Vector Machines
2022-07-1301:20:56
07 - Kernels
2022-07-1301:20:24
08 - Data Splits, Models & Cross-Validation
2022-07-1301:23:25
09 - Approx/Estimation Error & ERM
2022-07-1301:26:02
2022-07-1301:20:40
11 - Introduction to Neural Networks
2022-07-1301:20:13
12 - Backprop & Improving Neural Networks
2022-07-1301:16:37
13 - Debugging ML Models & Error Analysis
2022-07-1301:18:54
14 - Expectation-Maximization Algorithms
2022-07-1301:20:30
15 - EM Algorithm & Factor Analysis
2022-07-1301:19:47
16 - Independent Component Analysis & RL
2022-07-1301:18:09
17 - MDPs & Value/Policy Iteration
2022-07-1301:19:13
18 - Continuous State MDP & Model Simulation
2022-07-1301:20:14
19 - Reward Model and Linear Dynamical Systems
2022-07-1301:21:06
20 - RL Debugging and Diagnostics
2022-07-1301:12:42
0.5x
0.8x
1.0x
1.25x
1.5x
2.0x
3.0x
Sleep Timer
Off
End of Episode
5 Minutes
10 Minutes
15 Minutes
30 Minutes
45 Minutes
60 Minutes
120 Minutes