DiscoverRecsperts - Recommender Systems Experts#28: Multistakeholder Recommender Systems with Robin Burke
#28: Multistakeholder Recommender Systems with Robin Burke

#28: Multistakeholder Recommender Systems with Robin Burke

Update: 2025-04-15
Share

Description

In episode 28 of Recsperts, I sit down with Robin Burke, professor of information science at the University of Colorado Boulder and a leading expert with over 30 years of experience in recommender systems. Together, we explore multistakeholder recommender systems, fairness, transparency, and the role of recommender systems in the age of evolving generative AI.


We begin by tracing the origins of recommender systems, traditionally built around user-centric models. However, Robin challenges this perspective, arguing that all recommender systems are inherently multistakeholder—serving not just consumers as the recipients of recommendations, but also content providers, platform operators, and other key players with partially competing interests. He explains why the common “Recommended for You” label is, at best, an oversimplification and how greater transparency is needed to show how stakeholder interests are balanced.


Our conversation also delves into practical approaches for handling multiple objectives, including reranking strategies versus integrated optimization. While embedding multistakeholder concerns directly into models may be ideal, reranking offers a more flexible and efficient alternative, reducing the need for frequent retraining.


Towards the end of our discussion, we explore post-userism and the impact of generative AI on recommendation systems. With AI-generated content on the rise, Robin raises a critical concern: if recommendation systems remain overly user-centric, generative content could marginalize human creators, diminishing their revenue streams.

 
Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00 ) - Introduction

  • (03:24 ) - About Robin Burke and First Recommender Systems

  • (26:07 ) - From Fairness and Advertising to Multistakeholder RecSys

  • (34:10 ) - Multistakeholder RecSys Terminology

  • (40:16 ) - Multistakeholder vs. Multiobjective

  • (42:43 ) - Reciprocal and Value-Aware RecSys

  • (59:14 ) - Objective Integration vs. Reranking

  • (01:06:31 ) - Social Choice for Recommendations under Fairness

  • (01:17:40 ) - Post-Userist Recommender Systems

  • (01:26:34 ) - Further Challenges and Closing Remarks


Links from the Episode:

Papers:

General Links:

Comments 
In Channel
loading
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

#28: Multistakeholder Recommender Systems with Robin Burke

#28: Multistakeholder Recommender Systems with Robin Burke

Marcel Kurovski