AF - QAPR 5: grokking is maybe not that big a deal? by Quintin Pope
Update: 2023-07-23
Description
Link to original article
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: QAPR 5: grokking is maybe not that big a deal?, published by Quintin Pope on July 23, 2023 on The AI Alignment Forum.
[Thanks to support from Cavendish Labs and a Lightspeed grant, .I've been able to restart the Quintin's Alignment Papers Roundup sequence.]
Introduction
Grokking refers to an observation by Power et al. (below) that models trained on simple modular arithmetic tasks would first overfit to their training data and achieve nearly perfect training loss, but that training well past the point of overfitting would eventually cause the models to generalize to unseen test data. The rest of this post discusses a number of recent papers on grokking.
Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
In this paper we propose to study generalization of neural networks on small algorithmically generated datasets. In this setting, questions about data efficiency, memorization, generalization, and speed of learning can be studied in great detail. In some situations we show that neural networks learn through a process of "grokking" a pattern in the data, improving generalization performance from random chance level to perfect generalization, and that this improvement in generalization can happen well past the point of overfitting. We also study generalization as a function of dataset size and find that smaller datasets require increasing amounts of optimization for generalization. We argue that these datasets provide a fertile ground for studying a poorly understood aspect of deep learning: generalization of overparametrized neural networks beyond memorization of the finite training dataset.
My opinion:
When I first read this paper, I was very excited. It seemed like a pared-down / "minimal" example that could let us study the underlying mechanism behind neural network generalization. You can read more of my initial opinion on grokking in the post Hypothesis: gradient descent prefers general circuits.
I now think I was way too excited about this paper, that grokking is probably a not-particularly-important optimization artifact, and that grokking is no more connected to the "core" of deep learning generalization than, say, the fact that it's possible for deep learning to generalize from an MNIST training set to the testing set.
I also think that using the word "grokking" was anthropomorphizing and potentially misleading (like calling the adaptive information routing component of a transformer model its "attention"). Evocative names risk letting the connotations of the name filter into the analysis of the object being named. E.g.,
"Grokking" brings connotations of sudden realization, despite the fact that the grokking phase in the above plot starts within the first ~5% - 20% of the training process, though it appears much more abrupt due to the use of a base 10 logarithmic scale on the x-axis.
"Grokking" also brings connotations of insight, realization or improvement relative to some previously confused baseline. This leads to the impression that things which grok are better than things which don't.
Humans often use the word "grokking" to mean deeply understanding complex domains that actually matter in the real world. Using the same word in an ML context suggests that ML grokking is relevant to whatever mechanisms might let an ML system deeply understand complex domains that actually matter in the real world.
I've heard several people say things like:
Studying grokking could significantly advance ML capabilities, if doing so were to lead to a deeper understanding of the mechanisms underlying generalization in ML.
Training long enough could eventually result in grokking occurring in ML domains of actual relevance, such as language, and thereby lead to sudden capabilities gains or break alignment properties.
Grokking is an example of how thinking l...
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: QAPR 5: grokking is maybe not that big a deal?, published by Quintin Pope on July 23, 2023 on The AI Alignment Forum.
[Thanks to support from Cavendish Labs and a Lightspeed grant, .I've been able to restart the Quintin's Alignment Papers Roundup sequence.]
Introduction
Grokking refers to an observation by Power et al. (below) that models trained on simple modular arithmetic tasks would first overfit to their training data and achieve nearly perfect training loss, but that training well past the point of overfitting would eventually cause the models to generalize to unseen test data. The rest of this post discusses a number of recent papers on grokking.
Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
In this paper we propose to study generalization of neural networks on small algorithmically generated datasets. In this setting, questions about data efficiency, memorization, generalization, and speed of learning can be studied in great detail. In some situations we show that neural networks learn through a process of "grokking" a pattern in the data, improving generalization performance from random chance level to perfect generalization, and that this improvement in generalization can happen well past the point of overfitting. We also study generalization as a function of dataset size and find that smaller datasets require increasing amounts of optimization for generalization. We argue that these datasets provide a fertile ground for studying a poorly understood aspect of deep learning: generalization of overparametrized neural networks beyond memorization of the finite training dataset.
My opinion:
When I first read this paper, I was very excited. It seemed like a pared-down / "minimal" example that could let us study the underlying mechanism behind neural network generalization. You can read more of my initial opinion on grokking in the post Hypothesis: gradient descent prefers general circuits.
I now think I was way too excited about this paper, that grokking is probably a not-particularly-important optimization artifact, and that grokking is no more connected to the "core" of deep learning generalization than, say, the fact that it's possible for deep learning to generalize from an MNIST training set to the testing set.
I also think that using the word "grokking" was anthropomorphizing and potentially misleading (like calling the adaptive information routing component of a transformer model its "attention"). Evocative names risk letting the connotations of the name filter into the analysis of the object being named. E.g.,
"Grokking" brings connotations of sudden realization, despite the fact that the grokking phase in the above plot starts within the first ~5% - 20% of the training process, though it appears much more abrupt due to the use of a base 10 logarithmic scale on the x-axis.
"Grokking" also brings connotations of insight, realization or improvement relative to some previously confused baseline. This leads to the impression that things which grok are better than things which don't.
Humans often use the word "grokking" to mean deeply understanding complex domains that actually matter in the real world. Using the same word in an ML context suggests that ML grokking is relevant to whatever mechanisms might let an ML system deeply understand complex domains that actually matter in the real world.
I've heard several people say things like:
Studying grokking could significantly advance ML capabilities, if doing so were to lead to a deeper understanding of the mechanisms underlying generalization in ML.
Training long enough could eventually result in grokking occurring in ML domains of actual relevance, such as language, and thereby lead to sudden capabilities gains or break alignment properties.
Grokking is an example of how thinking l...
Comments
In Channel



