ARC Is a Vision Problem!
Update: 2025-12-09
Description
In this episode, we discuss ARC Is a Vision Problem! by Keya Hu, Ali Cy, Linlu Qiu, Xiaoman Delores Ding, Runqian Wang, Yeyin Eva Zhu, Jacob Andreas, Kaiming He. The paper reframes the Abstraction and Reasoning Corpus (ARC) tasks as an image-to-image translation problem using a vision-centric approach. It introduces Vision ARC (VARC), a model based on a vanilla Vision Transformer trained from scratch on ARC data, which generalizes well to new tasks via test-time training. VARC achieves a 60.4% accuracy on the ARC-1 benchmark, outperforming previous scratch-trained methods and approaching human-level performance.
Comments
In Channel



