DiscoverEpigenetics PodcastAdvanced Optical Imaging in 3D Nuclear Organisation (Lothar Schermelleh)
Advanced Optical Imaging in 3D Nuclear Organisation (Lothar Schermelleh)

Advanced Optical Imaging in 3D Nuclear Organisation (Lothar Schermelleh)

Update: 2024-06-27
Share

Description

In this episode of the Epigenetics Podcast, we talked with Lothar Schermelleh from the University of Oxford about his work on advanced optical imaging in 3D nuclear organisation. 




The interview starts by Lothar Schermelleh sharing his groundbreaking work in understanding chromatin organization using super-resolution microscopy techniques. He then delves into his past experiments, including his publication on imaging chromatin domains and X chromosome inactivation. His work showcases the power of structured illumination microscopy in overcoming diffraction limits, revealing insights into nuclear organization and regulation.




Lothar also discusses refining methods for labeling chromosome territories and replication domains, as well as exploring structural and functional nuclear organization using advanced microscopy techniques. They touch on the potential of AI in microscopy, the importance of quality control in imaging, and Lothar's grant proposal for developing artifact-free, super-resolution imaging under cryo conditions with adaptive optics.




The conversation emphasizes the intersection of technology development and biological applications, highlighting the importance of addressing specific biological questions through innovative imaging approaches. 


 


References

  • Schermelleh, L., Carlton, P. M., Haase, S., Shao, L., Winoto, L., Kner, P., Burke, B., Cardoso, M. C., Agard, D. A., Gustafsson, M. G., Leonhardt, H., & Sedat, J. W. (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science (New York, N.Y.), 320(5881), 1332–1336. https://doi.org/10.1126/science.1156947




  • Schermelleh, L., Heintzmann, R., & Leonhardt, H. (2010). A guide to super-resolution fluorescence microscopy. The Journal of cell biology, 190(2), 165–175. https://doi.org/10.1083/jcb.201002018




  • Smeets, D., Markaki, Y., Schmid, V. J., Kraus, F., Tattermusch, A., Cerase, A., Sterr, M., Fiedler, S., Demmerle, J., Popken, J., Leonhardt, H., Brockdorff, N., Cremer, T., Schermelleh, L., & Cremer, M. (2014). Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics & chromatin, 7, 8. https://doi.org/10.1186/1756-8935-7-8




  • Ball, G., Demmerle, J., Kaufmann, R., Davis, I., Dobbie, I. M., & Schermelleh, L. (2015). SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy. Scientific reports, 5, 15915. https://doi.org/10.1038/srep15915




 


Related Episodes

 


Contact
Comments 
In Channel
loading
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Advanced Optical Imaging in 3D Nuclear Organisation (Lothar Schermelleh)

Advanced Optical Imaging in 3D Nuclear Organisation (Lothar Schermelleh)

Active Motif