ChuckGPT 2.0 – Three Body Problem Q&A
Description
What is the science behind the science fiction in Three Body Problem? In our second episode of “ChuckGPT” Dr. Charles Liu and co-host Allen Liu welcome two members of our production team: Jon Barnes, our Editor, and Stacey Severn, our Social Media/Patreon Community Director, to delve into the questions and answers posed by the award-winning novel and new series on Netflix.
As always, though, we start off with the day’s joyfully cool cosmic thing: the recent discovery of an exoplanet by high school students in Mountain View, California in collaboration with the SETI Institute.
The search for extraterrestrial intelligence and exoplanets that could bear life brings us to the topic of our second episode of ChuckGPT: Three Body Problem. Dr. Liu will be answering questions about the Hugo award-winning Chinese novel by Liu Cixin and new television series on Netflix.
Jon, it turns out, is a big fan of Three Body Problem and he has a bunch of questions about the scientific reality of the science fiction in the story, which Chuck and Allen are happy to answer. (NOTE: We tried to avoid any spoilers for anyone who hasn’t read the book or seen the first three episodes of the series yet, except for the last question, which comes with a mild SPOILER ALERT.)
Jon’s first question deals with the giant antenna on Radar Peak in the story. In the series, the antenna is turned on and a flock of birds flying by drop dead as they pass.
Chuck dives into the physics of both microwave radiation and radio waves, and why even our most powerful transmitters don’t emit enough energy to have that kind of impact. Allen describes the difference between ionizing radiation and non-ionizing radiation, further pushing the answer into the realm of science fiction, not science. Stacey asks about the relationship between magnetic fields and bird migration – Chuck explains that it is possible that magnetic transmissions could disorient the birds, but not kill them.
The next question is about whether suns can come in different colors like in the “Three Body” VR game in the story. The answer, according to Dr. Liu, is, yes – but primarily only because of their surface temperature, not their chemical makeup. Allen brings up the impact of the viewer’s atmosphere on their color perception of the star’s light.
Jon’s next questions is about lifeforms that can dehydrate themselves to survive unstable, life-threatening weather cycles and atmospheric conditions. Allen brings up the fact that tardigrades can do exactly that, allowing them even to survive in the vacuum of space. He also discusses some of the chaotic orbits we know about that could result in stable and unstable orbital periods.
Next up, Stacey asks one of Jon’s questions about whether snowflakes could be made of nitrogen and oxygen if the atmosphere is cold enough. The answer takes us from the nitrogen glaciers on Pluto to the methane rivers on Saturn’s moon Titan. And yes, depending on atmospheric pressure and temperature, there is a specific range where you could end up with nitrogen and oxygen snow.
For his last question (SPOILER ALERT), Jon asks about whether an advanced civilization could send out a message at the speed of light, and if so, could they use their sun as an amplifier to increase the strength of the signal. Allen and Chuck discuss how you might be able to use the sun for gravitational lensing, but that it would be more likely to drown out the signal than amplify it.
We hope you enjoy this episode of The LIUniverse, and, if you do, please support us on Patreon.
Credits for Images Used in this Episode:
– The Electromagnetic spectrum. Higher energy is to the right. – Edited from NASA, Public Domain
– Janus and Epimetheus viewed by the Cassini probe – NASA/JPL/Space Science Institute, Public Domain
– Orbit of 469219 Kamoʻoalewa, an Earth quasi-satellite – NASA/JPL-Caltech, Public Domain
– A tardigrade – Peter von Bagh, Public Domain
– Pluto with its heart shaped Tombaugh Regio – NASA/JHU APL/Southwest Research Institute/Alex Parker, Public Domain
– The surface of Titan from the Huygens lander – ESA/NASA/JPL/University of Arizona; processed by Andrey Pivovarov, Public Domain
– A galaxy acting as a gravitational lens – ESA/Hubble & NASA, Public Domain
#TheLIUniverse #CharlesLiu #AllenLiu #SciencePodcast #AstronomyPodcast #ThreeBodyProblem #microwaveradiation #radiowaves #transmitter #electromagneticspectrum #ionizingradiation #nonionizingradiation #magneticfields #birds #aliens #SETI #searchforextraterrestrialintelligence #tardigrade #nitrogensnow #Pluto #Titan #Saturn #gravitationallens