DiscoverConcrete CausationComputing Non-Causal Knowledge for Causal Reasoning
Computing Non-Causal Knowledge for Causal Reasoning

Computing Non-Causal Knowledge for Causal Reasoning

Update: 2011-06-12
Share

Description

Roland Poellinger (Munich Center for Mathematical Philosophy/LMU Munich) gives a talk at the MCMP Workshop on Computational Metaphysics titled "Computing Non-Causal Knowledge for Causal Reasoning". Abstract: We use logical and mathematical knowledge to generate causal claims. Inter-definitions or semantic overlap cannot be consistently embedded in standard Bayes net causal models since in many cases the Markov requirement will be violated. These considerations motivate an extension of Bayes net causal models to also allow for the embedding of Epistemic Contours (ECs). Such non-causal functions are consistently computable in Causal Knowledge Patterns (CKPs). An application of the framework can be found, e.g., in the recording of the talk "The Mind-Brain Entanglement".
Comments 
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Computing Non-Causal Knowledge for Causal Reasoning

Computing Non-Causal Knowledge for Causal Reasoning

Roland Poellinger (MCMP/LMU Munich)