Effectiveness and Cost-Effectiveness of Gene Panels in Melanoma
Description
JCO PO author Dr. Dean A. Regier at the Academy of Translational Medicine, University of British Columbia (UBC), and the School of Population and Public Health, BC Cancer Research Institute shares insights into his JCO PO article, "Clinical Effectiveness and Cost-Effectiveness of Multigene Panel Sequencing in Advanced Melanoma: A Population-Level Real-World Target Trial Emulation."
Host Dr. Rafeh Naqash and Dr. Regier discuss the real-world clinical effectiveness and cost-effectiveness of multigene panels compared with single-gene BRAF testing to guide therapeutic decisions in advanced melanoma.
Transcript
Dr. Rafeh Naqash:
Hello and welcome to JCO Precision Oncology Conversations, where we bring you engaging conversations with authors of clinically relevant and highly significant JCO PO articles. I'm your host, Dr. Rafeh Naqash, Podcast Editor for JCO Precision Oncology and Assistant Professor at the OU Health Stephenson Cancer Center in the University of Oklahoma.
Today, we are excited to be joined by Dr. Dean A. Regier, Director at the Academy of Translational Medicine, Associate Professor at the School of Population and Public Health, UBC Senior Scientist at the British Columbia Cancer Research Institute, and also the senior author of the JCO Precision Oncology article entitled "Clinical Effectiveness and Cost-Effectiveness of Multigene Panel Sequencing in Advanced Melanoma: A Population-Level Real-World Target Trial Emulation."
At the time of this recording, our guest's disclosures will be linked in the transcript.
Dean, welcome to our podcast and thank you for joining us today.
Dr. Dean Regier:
Thank you. I'm delighted to be here.
Dr. Rafeh Naqash:
So, obviously, you are from Canada, and medicine, or approvals of drugs to some extent, and in fact approvals of gene testing to some extent is slightly different, which we'll come to learn about more today, compared to what we do in the US—and in fact, similarly, Europe versus North America to a large extent as well.
Most of the time, we end up talking about gene testing in lung cancer. There is a lot of data, a lot of papers around single-gene panel testing in non-small cell lung cancer versus multigene testing. In fact, a couple of those papers have been published in JCO PO, and it has shown significant cost-effectiveness and benefit and outcomes benefit in terms of multigene testing. So this is slightly, you know, on a similar approach, but in a different tumor type. So, could you tell us first why you wanted to investigate this question? What was the background to investigating this question? And given your expertise in health economics and policy, what are some of the aspects that one tends or should tend to understand in terms of cost-effectiveness before we go into the results for this very interesting manuscript?
Dr. Dean Regier:
Yeah, of course, delighted to. So, one of the reasons why we're deeply interested in looking at comparative outcomes with respect to single- versus multigene testing— whether that's in a public payer system like Canada or an insurer system, a private system in the United States— is that the question around does multigene versus single-gene testing work, has not typically tested in randomized controlled trials. You don't have people randomized to multigene versus single-gene testing.
And what that does, it makes the resulting evidence base, whether it's efficacy, safety, or comparative cost-effectiveness, highly uncertain. So, the consequence of that has been uneven uptake around the world of next-generation sequencing panels. And so if we believe that next-gen sequencing panels are indeed effective for our patients, we really need to generate that comparative evidence around effectiveness and cost-effectiveness. So we can go to payers, whether it be single payer or a private insurer, to say, "Here are the comparative outcomes." And when I say that uptake has been uneven, uptake there's been actually plenty, as you know, publications around that uneven uptake, whether it be in Europe, in the United States, in Canada. And so we're really interested in trying to produce that evidence to create the type of deliberations that are needed to have these types of technologies accessible to patients. And part of those deliberations, of course, is the clinical, but also in some contexts, cost-effectiveness.
And so, we really start from the perspective of, can we use our healthcare system data, our learning healthcare system, to generate that evidence in a way that emulates a randomized controlled trial? We won't be able to do these randomized controlled trials for various, like really important and and reasons that make sense, quite frankly. So how can we mimic or emulate randomized controlled trials in a way that allows us to make inference around those outcomes? And for my research lab, we usually think through how do we do causal inference to address some of those biases that are inherent in observational data. So in terms of advanced melanoma, we were really interested in this question because first of all, there have been no randomized controlled trials around next-gen sequencing versus single-gene testing. And secondly, these products, these ICIs, immune checkpoint inhibitors, and BRAF and MEK inhibitors, they are quite expensive. And so the question really becomes: are they effective? And if so, to what extent are they cost-effective? Do they provide a good reason to have information around value for money?
Dr. Rafeh Naqash:
So now going to the biology of melanoma, so we know that BRAF is one of the tumor-agnostic therapies, it has approvals for melanoma as well as several other tumor types. And in fact, I do trials with different RAF-RAS kinase inhibitors. Now, one of the things that I do know is, and I'm sure some of the listeners know, is the DREAMseq trial, which was a melanoma study that was an NCI Cooperative Group trial that was led by Dr. Mike Atkins from Georgetown a couple of years back, that did show survival benefit of first-line immunotherapy sequencing. It was a sequencing study of whether to do first-line BRAF in BRAF-mutant melanoma followed by checkpoint inhibitors, or vice versa. And the immune checkpoint inhibitors followed by BRAF was actually the one that showed benefit, and the trial had to stop early, was stopped early because of the significant benefit seen.
So in that context, before we approach the question of single-gene versus multigene testing in melanoma, one would imagine that it's already established that upfront nivolumab plus ipilimumab, for that matter, doublet checkpoint inhibitor therapy is better for BRAF-mutant melanoma. And then there's no significant other approvals for melanoma for NRAS or KIT, you know, mucosal melanomas tend to have KIT mutations, for example, or uveal melanomas, for that matter, have GNAQ, and there's no targeted therapies. So, what is the actual need of doing a broader testing versus



