Episode 35: Regulated Drinking Water Testing: PFAS Detection, Sample Prep & Real Lab Insights
Description
In this episode of Concentrating on Chromatography, we sit down with Alex Brody, an organic chemist at Aqua America, to discuss the rigorous analytical methods required for regulated drinking water testing.Alex walks us through the multi-step PFAS detection process using EPA Method 537.1, including extraction, nitrogen blowdown concentration, and LC-MS analysis. He explains why sample preparation and quality control are critical for achieving trace-level detection—and why these methods can't be rushed or simplified, even with new technologies available.We also explore taste and odor investigations, disinfection byproducts, and volatile organic compounds, plus the surprising reality of why regulated labs move slowly when adopting new instrumentation. You'll learn about the quality control checkpoints, peer review processes, and the misconceptions surrounding analytical turnaround times in compliance labs.Topics Covered:- Role of organic chemistry in regulated drinking water labs- EPA compliance requirements and regulatory bodies (EPA, PA-DEP)- PFAS detection using Method 537.1 and LC-MS- The critical importance of nitrogen blowdown sample concentration- Taste and odor analysis: MIB, Geosmin, and unknown compound identification- Why regulated methods evolve slowly (validation timelines, approval processes)- Quality control procedures: calibration checks, matrix spikes, surrogate standards, internal standards- Automated sample preparation and lab efficiency- Future PFAS regulations and Method 533 expansionIdeal For:- Analytical chemists and environmental lab professionals- Water utilities and compliance officers- Chromatography practitioners interested in regulated workflows- Anyone curious about how drinking water safety is ensured




