DiscoverThe History of ComputingFlight: From Dinosaurs to Space
Flight: From Dinosaurs to Space

Flight: From Dinosaurs to Space

Update: 2023-03-25
Share

Description

Humans have probably considered flight since they found birds. As far as 228 million years ago, the Pterosaurs used flight to reign down onto other animals from above and eat them. The first known bird-like dinosaur was the Archaeopteryx, which lived around 150 million years ago. It’s not considered an ancestor of modern birds - but other dinosaurs from the same era, the theropods, are. 25 million years later, in modern China, the Confuciusornis sanctus had feathers and could have flown. The first humans wouldn’t emerge from Africa until 23 million years later. By the 2300s BCE, the Summerians depicted shepherds riding eagles, as humanity looked to the skies in our myths and legends. These were creatures, not vehicles.

The first documented vehicle of flight was as far back as the 7th century BCE when the Rāmāyana told of the Pushpaka Vimāna, a palace made by Vishwakarma for Brahma, complete with chariots that flew the king Rama high into the atmosphere. The Odyssey was written around the same time and tells of the Greek pantheon of Gods but doesn’t reference flight as we think of it today. Modern interpretations might move floating islands to the sky, but it seems more likely that the floating island of Aeollia is really the islands off Aeolis, or Anatolia, which we might refer to as the modern land of Turkey. 

Greek myths from a few hundred years later introduced more who were capable of flight. Icarus flew into the sun with wings that had been fashioned by Daedalus. By then, they could have been aware, through trade routes cut by Alexander and later rulers, of kites from China. The earliest attempts at flight trace their known origins to 500 BCE in China. Kites were, like most physical objects, heavier than air and could still be used to lift an object into flight. Some of those early records even mention the ability to lift humans off the ground with a kite. The principle used in kites was used later in the development of gliders and then when propulsion was added, modern aircraft. Any connection between any of these is conjecture as we can’t know how well the whisper net worked in those ages.

Many legends are based on real events. The history of humanity is vast and many of our myths are handed down through the generations. The Greeks had far more advanced engineering capabilities than some of the societies that came after. They were still weary of what happened if they flew too close to the sun. In fact, emperors of China are reported to have forced some to leap from cliffs on a glider as a means of punishment. Perhaps that was where the fear of flight for some originated from. Chinese emperor Wang Mang used a scout with bird features to glide on a scouting mission around the same time as the Icarus myth might have been documented. Whether this knowledge informed the storytellers Ovid documented in his story of Icarus is lost to history, since he didn’t post it to Twitter.

Once the Chinese took the string off the kite and they got large enough to fly with a human, they had also developed hang gliders. In the third century BCE, Chinese inventors added the concept of rotors for vertical flight  when they developed helicopter-style toys. Those were then used to frighten off enemies. Some of those evolved into the beautiful paper lanterns that fly when lit.There were plenty of other evolutions and false starts with flight after that. Abbas ibn Ferns also glided with feathers in the 9th century. A Benedictine monk did so again in the 11th century. Both were injured when they jumped out of towers in the Middle Ages that spanned the Muslim Golden Age to England. 

Leonardo da Vinci studied flight for much of his life. His studies produced another human-power ornithopter and other contraptions; however he eventually realized that humans would not be able to fly on their own power alone. Others attempted the same old wings made of bird feathers, wings that flapped on the arms, wings tied to legs, different types of feathers, finding higher places to jump from, and anything they could think of. Many broke bones, which continued until we found ways to supplement human power to propel us into the air. Then a pair of brothers in the Ottoman Empire had some of the best luck. Hezarafen Ahmed Çelebi crossed the Bosphorus strait on a glider. That was 1633, and by then gunpowder already helped the Ottomans conquer Constantinople. That ended the last vestiges of ancient Roman influence along with the Byzantine empire as the conquerers renamed the city to Instanbul. That was the power of gunpowder. His brother then built a rocket using gunpowder and launched himself high in the air, before he glided back to the ground. 

The next major step was the hot air balloon. The modern hot air balloon was built by the Montgolfier brothers in France and first ridden in 1783 and (Petrescu & Petrescu, 2013). 10 days later, the first gas balloon was invented by Nicholas Louis Robert and Jacques Alexander Charles. The gas balloon used hydrogen and in 1785, used to cross the English Channel. That trip sparked the era of dirigibles. We built larger balloons to lift engines with propellers. That began a period that culminated with the Zeppelin. From the 1700s and on, much of what da Vinci realized was rediscovered, but this time published, and the body of knowledge built out. The physics of flight were then studied as new sciences emerged. Sir George Cayley started to actually apply physics to flight in the 1790s. 

Powered Flight
We see this over and over in history; once we understand the physics and can apply science, progress starts to speed up. That was true when Archimedes defined force multipliers with the simple machines in the 3rd century BCE, true with solid state electronics far later, and true with Cayley’s research. Cayley conducted experiments, documented his results, and proved hypotheses. He finally got to codifying bird flight and why it worked. He studied the Chinese tops that worked like modern helicopters. He documented glided flight and applied math to why it worked. He defined drag and measured the force of windmill blades. In effect, he got to the point that he knew how much power was required based on the ratio of weight to actually sustain flight. Then to achieve that, he explored the physics of fixed-wing aircraft, complete with an engine, tail assembly, and fuel. His work culminated in a work called “On Aerial Navigation” that was published in 1810. 

By the mid-1850s, there was plenty of research that flowed into the goal for sustained air travel. Ideas like rotors led to rotor crafts. Those were all still gliding. Even with Cayley’s research, we had triplane gliders, gliders launched from balloons. After that, the first aircrafts that looked like the modern airplanes we think of today were developed. Cayley’s contributions were profound. He even described how to mix air with gasoline to build an engine. Influenced by his work, others built propellers. Some of those were steam powered and others powered by tight springs, like clockworks. Aeronautical societies were created, wing counters and cambering were experimented with, and wheels were added to try to lift off. Some even lifted a little off the ground. By the 1890s, the first gasoline powered biplane gliders were developed and flown, even if those early experiments crashed. Humanity was finally ready for powered flight.

The Smithsonian housed some of the earliest experiments. They hired their third director, Samuel Langley, in 1887. He had been interested in aircraft for decades and as with many others had studied the Cayley work closely. He was a consummate tinkerer and had already worked in solar physics and developed the Allegheny Time System. The United States War department gave him grants to pursue his ideas to build an airplane. By then, there was enough science that humanity knew it was possible to fly and so there was a race to build powered aircraft. We knew the concepts of drag, rudders, thrust from some of the engineering built into ships. Some of that had been successfully used in the motorcar. We also knew how to build steam engines, which is what he used in his craft. He called it the Aerodrome and built a number of models. He was able to make it further than anyone at the time. He abandoned flight in 1903 when someone beat him to the finish line. 

That’s the year humans stepped beyond gliding and into the first controlled, sustained, and powered flight. There are reports that Gustave Whitehead beat the Wright Brothers, but he didn’t keep detailed notes or logs, and so the Wrights are often credited with the discovery. They managed to solve the problem of how to roll, built steerable rudders, and built the first biplane with an internal combustion engine. They flew their first airplane out of North Carolina when Orville Wright went 120 feet and his brother went 852 feet later that day. That plane now lives at the National Air and Space Museum in Washington DC and December 17th, 1903 represents the start of the age of flight.

The Wright’s spent two years testing gliders and managed to document their results. They studied in wind tunnels, tinkered with engines, and were methodical if not scientific in their approach. They didn’t manage to have a public demonstration until 1908 though and so there was a lengthy battle over the patents they filed. Turns out it was a race and there were a lot of people who flew within months of one another. Decades of research culminated into what had to be: airplanes. Innovation happened quickly. Flight improved enough that planes could cross English Channel by 1909. There were advances after that, but patent wars over the invention drug on and so investors stayed away from the unproven technology. 

Flight for the Masses
The superpowers of the world were at odds for the first half of the 1900s. An Italian pilot flew a rec

Comments 
loading
00:00
00:00
1.0x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Flight: From Dinosaurs to Space

Flight: From Dinosaurs to Space

Charles Edge