DiscoverAI Extreme Weather and ClimateFlow-Matched Neural Operators for Continuous PDE Dynamics
Flow-Matched Neural Operators for Continuous PDE Dynamics

Flow-Matched Neural Operators for Continuous PDE Dynamics

Update: 2025-12-09
Share

Description

The episode describes the Continuous Flow Operator (CFO), a novel neural framework for learning the continuous-time dynamics of Partial Differential Equations (PDEs), aimed at overcoming limitations found in conventional models like autoregressive schemes and Neural Ordinary Differential Equations (ODEs). CFO's key innovation is the use of a flow matching objective to directly learn the right-hand side of the PDE dynamics, utilizing the analytic velocity derived from spline-based interpolants fit to trajectory data. This approach uniquely allows for training on irregular and subsampled time grids while enabling arbitrary temporal resolution during inference through standard ODE integration. Across four benchmarks (Lorenz, 1D Burgers, 2D diffusion-reaction, and 2D shallow water equations), the quintic CFO variant demonstrates superior long-horizon stability and significant data efficiency, often outperforming autoregressive baselines trained on complete datasets even when trained on only 25% of irregularly sampled data.

Comments 
loading
00:00
00:00
1.0x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Flow-Matched Neural Operators for Continuous PDE Dynamics

Flow-Matched Neural Operators for Continuous PDE Dynamics