Generalized sampling and infinite-dimensional compressed sensing
Update: 2011-03-25
Description
We will discuss a generalization of the Shannon Sampling Theorem that allows for reconstruction of signals in arbitrary bases. Not only can one reconstruct in arbitrary bases, but this can also be done in a completely stable way. When extra information is available, such as sparsity or compressibility of the signal in a particular bases, one may reduce the number of samples dramatically. This is done via Compressed Sensing techniques, however, the usual finite-dimensional framework is not sufficient. To overcome this obstacle I'll introduce the concept of Infinite-Dimensional Compressed Sensing.
Comments
In Channel