DiscoverTheory of Water WavesInterface singularities for the Euler equations
Interface singularities for the Euler equations

Interface singularities for the Euler equations

Update: 2014-07-25
Share

Description

In fluid dynamics, a "splash" singularity occurs when a locally smooth interface self-intersects in finite-time. It is now well-known that solutions to the water waves equations (and a host of other one-phase fluid interface models) has a finite-time splash singularity. By means of elementary arguments, we prove that such a singularity cannot occur in finite-time for vortex sheet evolution (or two-fluid interfaces). This means that the evolving interface must lose regularity prior to self-intersection. We give a proof by contradiction: we assume that such a singularity does indeed occur in finite-time. Based on this assumption, we find precise blow-up rates for the components of the velocity gradient which, in turn, allows us to characterize the geometry of the evolving interface just prior to self-intersection. The constraints on the geometry then lead to an impossible outcome, giving the contradiction. This is joint work D. Coutand.
Comments 
In Channel
loading
00:00
00:00
1.0x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Interface singularities for the Euler equations

Interface singularities for the Euler equations

Vincenzo Abete