DiscoverMachine Learning GuideMLG 012 Shallow Algos 1
MLG 012 Shallow Algos 1

MLG 012 Shallow Algos 1

Update: 2017-03-193
Share

Description

Try a walking desk to stay healthy while you study or work!

Full notes at ocdevel.com/mlg/12 

Topics

  • Shallow vs. Deep Learning: Shallow learning can often solve problems more efficiently in time and resources compared to deep learning.

  • Supervised Learning: Key algorithms include linear regression, logistic regression, neural networks, and K Nearest Neighbors (KNN). KNN is unique as it is instance-based and simple, categorizing new data based on proximity to known data points.

  • Unsupervised Learning:

    • Clustering (K Means): Differentiates data points into clusters with no predefined labels, essential for discovering data structures without explicit supervision.
    • Association Rule Learning: Example includes the a priori algorithm, which deduces the likelihood of item co-occurrence, commonly used in market basket analysis.
    • Dimensionality Reduction (PCA): Condenses features into simplified forms, maintaining the essence of the data, crucial for managing high-dimensional datasets.
  • Decision Trees: Utilized for both classification and regression, decision trees offer a visible, understandable model structure. Variants like Random Forests and Gradient Boosting Trees increase performance and reduce overfitting risks.

Links

Comments 
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

MLG 012 Shallow Algos 1

MLG 012 Shallow Algos 1