DiscoverC08020 - Quantum Estimation: Theory and Practice - 2008Polarisation tomography of macro- and mesoscopic quantum states of light
Polarisation tomography of macro- and mesoscopic quantum states of light

Polarisation tomography of macro- and mesoscopic quantum states of light

Update: 2008-08-29
Share

Description

We report an experiment on reconstructing the quantum state of bright (macroscopic) polarization-squeezed light generated in a birefringent (polarization-maintaining) fibre due to the Kerr nonlinearity. The nonlinearity acts on both H and V polarization components, producing quadrature squeezing; by controlling the phase shift between the H and V components one can make the state squeezed in any Stokes observable. The tomography is performed by measuring histograms for a series of Stokes observables, and the resulting histograms (tomograms) are processed in a way similar to the classical 3D Radon transformation. At the output, we obtain the polarization Q-function, which in the case of large photon numbers coincides with the polarization W-function. An interesting extension of the performed experiment will be going down to lower photon numbers (mesoscopic quantum states), and we expect a different behaviour of polarization W and Q functions in this case. An experiment on producing such states is discussed.
Comments 
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Polarisation tomography of macro- and mesoscopic quantum states of light

Polarisation tomography of macro- and mesoscopic quantum states of light

Maria Chekhova