Quantum computation with Turaev-Viro codes

Quantum computation with Turaev-Viro codes

Update: 2017-08-03
Share

Description

The Turaev-Viro invariant for a closed 3-manifold is defined as the contraction of a certain tensor network. The tensors correspond to tetrahedra in a triangulation of the manifold, with values determined by a fixed spherical category. For a manifold with boundary, the tensor network has free indices that can be associated to qudits, and its contraction gives the coefficients of a quantum error-correcting code. The code has local stabilizers determined by Levin and Wen. By studying braid group representations acting on equivalence classes of colored ribbon graphs embedded in a punctured sphere, we identify the anyons, and give a simple recipe for mapping fusion basis states of the doubled category to ribbon graphs. Combined with known universality results for anyonic systems, this provides a large family of schemes for quantum computation based on local deformations of stabilizer codes. These schemes may serve as a starting point for developing fault-tolerance schemes using continuous stabilizer measurements and active error-correction.

This is joint work with Greg Kuperberg and Ben Reichardt.
Comments 
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Quantum computation with Turaev-Viro codes

Quantum computation with Turaev-Viro codes

Robert Koenig