The Hopf algebra of dissection polylogarithms
Update: 2013-04-12
Description
Grothendieck's theory of motives has given birth to a conjectural Galois theory for periods. Replacing the periods with their motivic avatars, one gets an algebra of motivic periods that are acted upon by a motivic Galois group. Recently, the computation of this action for multiple zeta values has been studied and used by Deligne, Goncharov and Brown among others. In this talk we will introduce a family of periods indexed by some combinatorial objects called dissection diagrams, and compute the action of the motivic Galois group on their motivic avatars. This generalizes the case of (generic) iterated integrals on the punctured complex plane. We will show that the motivic action is given by a very simple combinatorial Hopf algebra.
Comments
Top Podcasts
The Best New Comedy Podcast Right Now – June 2024The Best News Podcast Right Now – June 2024The Best New Business Podcast Right Now – June 2024The Best New Sports Podcast Right Now – June 2024The Best New True Crime Podcast Right Now – June 2024The Best New Joe Rogan Experience Podcast Right Now – June 20The Best New Dan Bongino Show Podcast Right Now – June 20The Best New Mark Levin Podcast – June 2024
In Channel